Skip to main content

Advertisement

A Massively Parallel Face Recognition System

Article metrics

  • 1327 Accesses

  • 2 Citations

Abstract

We present methods for processing the LBPs (local binary patterns) with a massively parallel hardware, especially with CNN-UM (cellular nonlinear network-universal machine). In particular, we present a framework for implementing a massively parallel face recognition system, including a dedicated highly accurate algorithm suitable for various types of platforms (e.g., CNN-UM and digital FPGA). We study in detail a dedicated mixed-mode implementation of the algorithm and estimate its implementation cost in the view of its performance and accuracy restrictions.

[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28]

References

  1. 1.

    Turk M, Pentland A: Eigenfaces for recognition. Journal of Cognitive Neuroscience 1991,3(1):71-86. 10.1162/jocn.1991.3.1.71

  2. 2.

    Martinez AM, Kak AC: PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence 2001,23(2):228-233. 10.1109/34.908974

  3. 3.

    Yang J, Zhang D, Frangi AF, Yang J-Y: Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 2004,26(1):131-137. 10.1109/TPAMI.2004.1261097

  4. 4.

    Burges CJC: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 1998,2(2):121-167. 10.1023/A:1009715923555

  5. 5.

    Wiskott L, Fellous J-M, Krüger N, von Malsburg CD: Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 1997,19(7):775-779. 10.1109/34.598235

  6. 6.

    Ruiz-del-Solar J, Navarrete P: Eigenspace-based face recognition: a comparative study of different approaches. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews 2005,35(3):315-325. 10.1109/TSMCC.2005.848201

  7. 7.

    Ahonen T, Hadid A, Pietikäinen M: Face recognition with local binary patterns. Proceedings of 8th European Conference on Computer Vision (ECCV '04), May 2004, Prague, Czech Republic, Lecture Notes in Computer Science 3021: 469-481.

  8. 8.

    Bolme DS, Beveridge JR, Teixeira M, Draper BA: The CSU face identification evaluation system: its purpose, features, and structure. Proceedings of 3rd International Conference on Computer Vision Systems (ICVS '03), April 2003, Graz, Austria 304-313.

  9. 9.

    Phillips PJ, Wechsler H, Huang J, Rauss PJ: The FERET database and evaluation procedure for face-recognition algorithms. Image and Vision Computing 1998,16(5):295-306. 10.1016/S0262-8856(97)00070-X

  10. 10.

    Chua LO, Yang L: Cellular neural networks: theory. IEEE Transactions on Circuits and Systems 1988,35(10):1257-1272. 10.1109/31.7600

  11. 11.

    Roska T, Chua LO: The CNN universal machine: an analogic array computer. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 1993,40(3):163-173. 10.1109/82.222815

  12. 12.

    Cembrano GL, Rodríguez-Vázquez A, Galán RC, Jiménez-Garrido F, Espejo S, Domínguez-Castro R: A 1000 FPS at 128×128 vision processor with 8-bit digitized I/O. IEEE Journal of Solid-State Circuits 2004,39(7):1044-1055.

  13. 13.

    Paasio A, Kananen A, Halonen K, Porra V: A QCIF resolution binary I/O CNN-UM chip. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology 1999,23(2):281-290.

  14. 14.

    Lahdenoja O, Laiho M, Paasio A: Local binary pattern feature vector extraction with CNN. Proceedings of the 9th IEEE International Workshop on Cellular Neural Networks and Their Applications (CNNA '05), May 2005, Hsinchu, Tawian 202-205.

  15. 15.

    Lahdenoja O, Maunu J, Laiho M, Paasio A: A massively parallel algorithm for local binary pattern based face recognition. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '06), May 2006, Kos, Greece 4.

  16. 16.

    Laiho M, Lahdenoja O, Paasio A: Dedicated hardware for parallel extraction of local binary pattern feature vectors. Proceedings of the 9th IEEE International Workshop on Cellular Neural Networks and Their Applications (CNNA '05), May 2005, Hsinchu, Tawian 27-30.

  17. 17.

    Ojala T, Pietikäinen M, Harwood D: A comparative study of texture measures with classification based on feature distributions. Pattern Recognition 1996,29(1):51-59. 10.1016/0031-3203(95)00067-4

  18. 18.

    Mäenpää T: The local binary pattern approach to texture analysis—extensions and applications, Dissertation.

  19. 19.

    Ojala T, Pietikäinen M, Mäenpää T: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 2002,24(7):971-987. 10.1109/TPAMI.2002.1017623

  20. 20.

    Heikkilä M, Pietikäinen M: A texture-based method for modeling the background and detecting moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 2006,28(4):657-662.

  21. 21.

    Hadid A, Pietikäinen M, Ahonen T: A discriminative feature space for detecting and recognizing faces. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '04), June-July 2004, Washington, DC, USA 2: 797-804.

  22. 22.

    Mäenpää T, Ojala T, Pietikäinen M, Soriano M: Robust texture classification by subsets of local binary patterns. Proceedings of 15th International Conference on Pattern Recognition (ICPR '00), September 2000, Barcelona, Spain 3: 935-938.

  23. 23.

    Lahdenoja O, Laiho M, Paasio A: Reducing the feature vector length in local binary pattern based face recognition. Proceedings of IEEE International Conference on Image Processing (ICIP '05), September 2005, Genova, Italy 2: 914-917.

  24. 24.

    Dudek P: A flexible global readout architecture for an analogue SIMD vision chip. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '03), May 2003, Bangkok, Thailand 3: 782-785.

  25. 25.

    CNN Software Library, Ver. 1.1, Chapter 3, http://lab.analogic.sztaki.hu

  26. 26.

    CNN Template Analysator, TemInfo, http://lab.analogic.sztaki.hu

  27. 27.

    Flak J, Laiho M, Paasio A, Halonen K: VLSI implementation of a binary CNN: first measurement result. Proceedings of the 8th IEEE International Workshop on Cellular Neural Networks and Their Applications (CNNA '04), July 2004, Budapest, Hungary 129.

  28. 28.

    Turtinen M, Pietikäinen M, Silvén O: Visual characterization of paper using isomap and local binary patterns. IEICE Transactions on Information and Systems 2006,E89-D(7):2076-2083. 10.1093/ietisy/e89-d.7.2076

Download references

Author information

Correspondence to Olli Lahdenoja.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Keywords

  • Face Recognition
  • Recognition System
  • Control Structure
  • Local Binary Pattern
  • Electronic Circuit