Skip to main content

Application-Specific Instruction Set Processor Implementation of List Sphere Detector

Abstract

Multiple-input multiple-output (MIMO) technology enables higher transmission capacity without additional frequency spectrum and is becoming a part of many wireless system standards. Sphere detection has been introduced in MIMO systems to achieve maximum likelihood (ML) or near-ML estimation with reduced complexity. This paper reviews related work on sphere detector implementations and presents an application-specific instruction set processor (ASIP) implementation of K-best list sphere detector (LSD) using transport triggered architecture (TTA). The implementation is based on using memory and heap data structure for symbol vector sorting. The design space is explored by presenting several variations of the implementation and comparing them with each other in terms of their latencies and hardware complexities. An early proposal for a parallelized architecture with a decoding throughput of approximately 5.3 Mbps is presented

[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46]

References

  1. 1.

    Telatar IE: Capacity of multi-antenna gaussian channels. In Internal Technical Memorandum. Bell Laboratories, Suffolk, UK; 1995:1-28.

    Google Scholar 

  2. 2.

    Telatar E: Capacity of multi-antenna gaussian channels. European Transactions Telecommunication 1999, 10: 585-595. 10.1002/ett.4460100604

    Article  Google Scholar 

  3. 3.

    Foschini GJ, Gans MJ: On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications 1998,6(3):311-335. 10.1023/A:1008889222784

    Article  Google Scholar 

  4. 4.

    Wolniansky PW, Foschini GJ, Golden GD, Valenzuela RA: V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel. Proceedings of the International Symposium on Signals, Systems and Electronics, (ISSSE '98), 1998, Pisa, Italy 295-300.

  5. 5.

    Gesbert D, Shafi M, Shiu D, Smith PJ, Naguib A: From theory to practice: an overview of MIMO space-time coded wireless systems. IEEE Journal on Selected Areas in Communications 2003,21(3):281-302. 10.1109/JSAC.2003.809458

    Article  Google Scholar 

  6. 6.

    Paulraj AJ, Gore DA, Nabar RU, Bölcskei H: An overview of MIMO communications—a key to gigabit wireless. Proceedings of the IEEE 2004,92(2):198-217. 10.1109/JPROC.2003.821915

    Article  Google Scholar 

  7. 7.

    Boelcskei H, Gesbert D, Papadias CB, van der Veen AJ: Space-Time Wireless Systems: From Array Processing to MIMO Communications. Cambridge University Press, Cambridge, UK; 2006.

    Google Scholar 

  8. 8.

    Myllylä M, Hintikka JM, Cavallaro J, Juntti M, Limingoja M, Byman A: Complexity analysis of MMSE detector architectures for MIMO OFDM systems. Conference Record—Asilomar Conference on Signals, Systems and Computers, 2005, Pacific Grove, Calif, USA 2005: 75-81.

  9. 9.

    Artés H, Seethaler D, Hlawatsch F: Efficient detection algorithms for MIMO channels: a geometrical approach to approximate ML detection. IEEE Transactions on Signal Processing 2003,51(11):2808-2820. 10.1109/TSP.2003.818210

    MathSciNet  Article  Google Scholar 

  10. 10.

    Golden GD, Foschini CJ, Valenzuela RA, Wolniansky PW: Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture. Electronics Letters 1999,35(1):14-16. 10.1049/el:19990058

    Article  Google Scholar 

  11. 11.

    Fincke U, Pohst M: Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Mathematics of Computation 1985, 44: 463–-471. 10.1090/S0025-5718-1985-0777278-8

    MathSciNet  Article  Google Scholar 

  12. 12.

    Damen O, Chkeif A, Belfiore JC: Lattice code decoder for space-time codes. IEEE Communications Letters 2000,4(5):161-163. 10.1109/4234.846498

    Article  Google Scholar 

  13. 13.

    Yao H, Wornell GW: Lattice-reduction-aided detectors for MIMO communication systems. Proceedings of the IEEE Global Telecommunications Conference, 2002, Taipei, Taiwan 1: 424-428.

  14. 14.

    Wübben D, Böhnke R, Kühn V, Kammeyer K: Near-maximum-likelihood detection of MIMO systems using MMSE-based lattice-reduction. Proceedings of the IEEE International Conference on Communications, 2004, Paris, France 2: 798-802.

  15. 15.

    Damen MO, El Gamal H, Caire G: On maximum-likelihood detection and the search for the closest lattice point. IEEE Transactions on Information Theory 2003,49(10):2389-2402. 10.1109/TIT.2003.817444

    MATH  MathSciNet  Article  Google Scholar 

  16. 16.

    Silvola P, Hooli K, Juntti M: Sub-optimal soft-output MAP detector with lattice reduction. IEEE Signal Processing Letter 2006, 13: 321–-324. 10.1109/LSP.2006.871726

    Article  Google Scholar 

  17. 17.

    Hochwald BM, Ten Brink S: Achieving near-capacity on a multiple-antenna channel. IEEE Transactions on Communications 2003,51(3):389-399. 10.1109/TCOMM.2003.809789

    Article  Google Scholar 

  18. 18.

    de Jong YLC, Willink TJ: Iterative tree search detection for MIMO wireless systems. IEEE Transactions on Communications 2005,53(6):930-935. 10.1109/TCOMM.2005.849638

    Article  Google Scholar 

  19. 19.

    Kang JW, Lee KB: Simplified ML detection scheme for MIMO systems. Proceedings of the IEEE Vehicular Technology Conference, 2004, Milan, Italy 2: 824-827.

  20. 20.

    Hassibi B, Vikalo H: On the sphere-decoding algorithm I. expected complexity. IEEE Transactions Signal Processing 2005, 53: 2806-2818. 10.1109/TSP.2005.850352

    MathSciNet  Article  Google Scholar 

  21. 21.

    Vikalo H, Hassibi B: On the sphere-decoding algorithm II. generalizations, second-order statistics, and applications to communications. IEEE Transactions Signal Processing 2005, 53: 2819–-2834. 10.1109/TSP.2005.850350

    MathSciNet  Article  Google Scholar 

  22. 22.

    Garrett DC, Davis LM, Woodward GK: 19.2 Mbit/s 4×4 BLAST/MIMO detector with soft ML outputs. Electronics Letters 2003,39(2):233-235. 10.1049/el:20030125

    Article  Google Scholar 

  23. 23.

    Burg A, Borgmann M, Wenk M, Zellweger M, Fichtner W, Bölcskei H: VLSI Implementation of MIMO detection using the sphere decoding algorithm. IEEE Journal of Solid-State Circuits 2005,40(7):1566-1576. 10.1109/JSSC.2005.847505

    Article  Google Scholar 

  24. 24.

    Garrett D, Davis L, Ten Brink S, Hochwald B, Knagge G: Silicon complexity for maximum likelihood MIMO detection using spherical decoding. IEEE Journal of Solid-State Circuits 2004,39(9):1544-1552. 10.1109/JSSC.2004.831454

    Article  Google Scholar 

  25. 25.

    Garrett D, Woodward GK, Davis L, Nicol C: A 28.8 Mbit/s 4×4 MIMO 3G CDMA receiver for frequency selective channels. IEEE Journal of Solid-State Circuits 2005, 40: 320-3302. 10.1109/JSSC.2004.837931

    Article  Google Scholar 

  26. 26.

    Guo Z, Nilsson P: Algorithm and implementation of the K -best sphere decoding for MIMO detection. IEEE Journal on Selected Areas in Communications 2006,24(3):491-503. 10.1109/JSAC.2005.862402

    Article  Google Scholar 

  27. 27.

    Wong K, Tsui C, Cheng RK, Mow W: A VLSI architecture of a K -best lattice decoding algorithm for MIMO channels. Proceedings of the IEEE International Symposium on Circuits and Systems, 2002, Scottsdale, Ariz, USA 3: 273-276.

  28. 28.

    Schlegel C, Prez L: Trellis and Turbo Coding. Wiley IEEE Press, Piscataway, NJ, USA; 2004.

    Google Scholar 

  29. 29.

    Jeon WG, Chang KH, Cho YS: Instrumentable tree encoding of information sources. IEEE Transactions on Information Theory 1971,17(1):118-119. 10.1109/TIT.1971.1054572

    Article  Google Scholar 

  30. 30.

    Anderson J, Mohan S: Source and channel coding: an algorithmic approach. IEEE Transactions on Communications 1984, 32: 169-176. 10.1109/TCOM.1984.1096023

    Article  Google Scholar 

  31. 31.

    Corporaal H: Microprocessor Architectures: From VLIW to TTA. John Wiley & Sons, New York, NY, USA; 1998.

    Google Scholar 

  32. 32.

    Corporaal H: Design of transport triggered architectures. Proceedings of the 4th Great Lakes Symposium on (VLSI '94), 1994, Notre Dame, Ind, USA 130-135.

  33. 33.

    Corporaal H: A different approach to high performance computing. Proceedings of the 4th International Conference on High Performance Computing, 1997, Bangalore, India 22–-27.

  34. 34.

    Antikainen J, Salmela P, Silvén O, Juntti M, Takala J, Myllylä M: Transport triggered architecture implementation of list sphere detector. Proceedings of the Finnish Signal Processing Symposium, August 2007, Oulu, Finland

    Google Scholar 

  35. 35.

    Antikainen J, Salmela P, Silvén O, Juntti M, Takala J, Myllylä M: Application-specific instruction set processor implementation of list sphere detector. Proceedings of the 39th Annual Asilomar Conference on Signals, Systems Composition, 2007, Pacific Grove, Calif, USA

  36. 36.

    3rd Generation Partnership Project : Group radio access network requirements for evolved UTRA (E-UTRA) and evolved UTRAN (E-UTRAN). In Technical Specification TR 25.913 version 7.3.0 (release 7). 3rd Generation Partnership Project, Valbonne, France; 2006.

  37. 37.

    Fujita T, Onizawa T, Jiang W, Uchida D, Sugiyama T, Ohta A: A new signal detection scheme combining ZF and K -best algorithms for OFDM/SDM. Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, (PIMRC '04), 2004 4: 2387-2391.

  38. 38.

    Myllylä M, Silvola P, Juntti M, Cavallaro JR: Comparison of two novel list sphere detector algorithms for MIMOOFDM systems. Proceedings of the IEEE International Symposium Personal, Indoor, Mobile Radio Communications, September 2006, Helsinki, Finland 12-16.

    Google Scholar 

  39. 39.

    Wenk M, Zellweger M, Burg A, Felber N, Fichtner W: K -best MIMO detection VLSI architectures achieving up to 424 Mbps. Proceedings of the IEEE International Symposium on Circuits and Systems, 2006, Kos, Greece 1151-1154.

  40. 40.

    Kerttula J: Implementation of a K-best based multiple antenna detector, M.S. thesis. Department of Electrical and Information Engineering, University of Oulu, Oulu, Finland; 2007.

    Google Scholar 

  41. 41.

    Kerttula J, Myllylä M, Juntti M: Implementation of a K -best based MIMO-OFDM detector algorithm. Proceedings of the European Signal Proccessing Conference, 2007, Poznán, Poland

  42. 42.

    Janhunen J: Signal processor implementation of list sphere detection, M.S. thesis. Department of Electrical and Information Engineering, University of Oulu, Oulu, Finland; 2007.

    Google Scholar 

  43. 43.

    Janhunen J, Silvèn O, Myllylä M, Juntti M: A DSP implementation of a K -best list sphere detector algorithm. Proceedings of the Finnish Signal Processing Symposium, 2007, Oulu, Finland 6.

  44. 44.

    Wiesel A, Mestre X, Pags A, Fonollosa JR: Efficient implementation of sphere demodulation. Proceedings of the IEEE Workshop on Signal Processing Advances in Wireless Communications, June 2003, Rome, Italy 36-40.

    Google Scholar 

  45. 45.

    Widdup B, Woodward G, Knagge G: A highlyparallel VLSI architecture for a list sphere detector. Proceedings of the IEEE International Conference on Communications, June 2004, Paris, France 2720–-2725.

    Google Scholar 

  46. 46.

    Salmela P, Antikainen J, Silvén O, Takala J: Memory-based list updating for list sphere decoders. Proceedings of the IEEE Workshop on Signal Processing Systems (SiPS '07), 2007, Shanghai, China 633–-638.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juho Antikainen.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Antikainen, J., Salmela, P., Silvén, O. et al. Application-Specific Instruction Set Processor Implementation of List Sphere Detector. J Embedded Systems 2007, 054173 (2008). https://doi.org/10.1155/2007/54173

Download citation

Keywords

  • MIMO System
  • Transmission Capacity
  • Hardware Complexity
  • Symbol Vector
  • ASIP