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Abstract

State-based schedules use a time division multiple access (TDMA) mechanism that supports executing conditional
semantics and making on-the-fly decisions at runtime in each communication cycle. Until now, state-based schedules
are unable to tolerate transient faults due to the assumption that stations make the on-the-fly decision on which
message to execute next. Stations may make a faulty decision at run time in an unreliable communication
environment such as wireless medium due to the presence of transient faults. This faulty decision causes state
inconsistency among the stations in the system.
In this work, we extend state-based schedules to tolerate faulty decisions in environments where transient faults can
occur at the communication layer. Our proposed approach generates fault-tolerant state-based schedules using an
integer linear programming optimization model after reducing the possibility of state inconsistency through using a
clock and a sampling rate synchronization mechanism. The optimization model maximizes the use of time slots to
place checkpoints for fault tolerance and resolving state inconsistency.

1 Introduction
The popularity of wireless networks is increasing every
day because of their easy and affordable deployment char-
acteristics. Due to the management issues, wired net-
works such as Ethernet-based networks often impede
rapid deployment. However, wired networks in general
are more reliable than wireless networks due to the trans-
mission characteristics such as low channel interference
and high bandwidth.
Several communication barriers such as channel inter-

ference and environmental challenges are the reasons for
occurring faults in wireless networks.Moreover, faults can
occur due to hardware and software glitches. For example,
device memory can flip bits and routers may drop pack-
ets. In our context, a fault is a defect or flaw that occurs
in a hardware or software component of the system. An
error is a consequence of such a fault. As described in [1],
a fault remains inactive until it produces an error. A fail-
ure occurs when an error results in the cancelation of the
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requested service of a system. The failures can have catas-
trophic affects in the system. For example, Therac-25 had
catastrophic consequences due to software failures.
Fault recovery can be effectively carried out by either

restoring a previously correct state [2] or using redun-
dancy [3]. Faults like floating point arithmetic may occur
but not be apparent at the same time [4]. Fault-tolerant
systems attempt to detect and correct errors before they
become effective.
Safety-critical real-time applications must function cor-

rectly and meet their timing constraints even in the
presence of faults. Such faults can be permanent such
as broken communication links and damaged stations,
or transient such as temporary faults caused by interfer-
ence. Transient faults occur temporarily in the system but
occur more frequently (100 times more than permanent
faults) than permanent faults [5, 6]. This paper discusses
transient fault tolerance, leaving the extension to tolerate
permanent faults in future work.
State-based schedules [7, 8] are effective in saving sys-

tem resources for hard real-time systems because of
scheduling messages for the average-case rather than the
worst-case, and several case studies across different appli-
cation areas already demonstrate the advantages of this
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approach including control theory [9], hybrid systems
[10], video-on-demand, hierarchical scheduling frame-
works [11], and bursty demand models [12, 13]. It is
possible to avoid executing the worst-case due to the abil-
ity of making on-the-fly decisions at run time. On the
other hand, messages are always scheduled for the worst-
case in the traditional static scheme that is TDMA-based
and does not allow to make a decision at run time.
In safety-critical systems, the triple modular redun-

dancy (TMR) technique [14] is widely used for fault tol-
erance. Although TMR is not a robust mechanism for
fault tolerance, the scheme can mask faults quickly and
runs efficiently. A state-based schedule can become fault-
tolerant by the use of TMR, but it might not remain
effective in unreliable environments due to the possibil-
ity of occurring faulty decisions. A faulty decision is an
incorrect or inconsistent decision taken by any of the par-
ticipating stations in the network. This results in state
inconsistency and a potential deadline loss, which is unac-
ceptable in real-time systems.
To ensure making the correct decision in a timely man-

ner for safety-critical applications, architectures using a
state-based schedule require state inconsistency detec-
tion and resolution. A system can use state-based sched-
ules instead of static TDMA for lower bandwidth usage,
but the possibility of occurring state inconsistency may
become challenging for using such schedules in practice.
Therefore, this paper discusses the state inconsistency
problem and its resolving strategies to ensure correct
operation while using the state-based schedules in an
unreliable communication environment.
State inconsistency due to the occurrence of faulty deci-

sions requires reduction, detection, and resolution. It is
possible to reduce the number of faulty decisions when
using clock and sampling rate synchronization. Existing
approaches such as C-State-based approach or history of
recent transmissions can be used to detect state inconsis-
tency. To resolve state inconsistency, systems can either
use approaches likemajority voting for faster resolution or
generated fault-tolerant state-based schedules with check-
points for guaranteed recovery.
To demonstrate the advantage and challenges of

using state-based schedules in the presence of com-
munication and measurement faults, we use an unre-
liable wireless communication medium that connects a
drive-by-wire automotive architecture. The faults occur
for different reasons such as communication CRC
failures, packet drops, clock synchronization issues,
and sampling frequency drifts. We also observe the
effect of measurement faults while using a state-based
schedule as a communication mechanism in a posi-
tion control system. These communication and mea-
surement faults cause state inconsistency which is
reduced using a clock and sampling rate frequency

drift algorithm and a generated fault-tolerant schedule
afterwards.
This work mainly contributes the following in

using state-based schedules reliably for safety-critical
applications:

• With an industrial testbed, we have shown how a
state inconsistency can occur when using a
state-based schedule in an unreliable environment

• We have shown that TMR, a commonly used
fault-tolerance technique, can be efficiently
implemented using state-based schedules, however,
may still suffer from state inconsistency due to
making incorrect decisions at run time

• We generate state-based schedules with checkpoints
to recover from state inconsistency. Prior generating
schedules, we also discuss how to reduce the number
of state inconsistency and detect them if occurred

• We demonstrate the existence and recovery of state
inconsistency through experimental analysis using a
drive-by-wire (DVW) application and a position
control system (PCS) application running state-based
schedules

In this paper, we show how to tolerate state inconsis-
tency in state-based schedules. In Sections 2 and 3, we
present the fault and system model. Sections 4 and 5 dis-
cuss the state inconsistency problem that can occur when
using state-based schedules. Sections 6, 7, and 9 present
the strategies to reduce the occurrence of state incon-
sistencies and resolve the remaining of them. Section 10
explains the experimental design, setup environment, and
results. We discuss the related work in Section 12. Finally,
Section 13 concludes the paper.

2 Systemmodel and terminology
We assume a distributed real-time communication frame-
work that consists of periodic messages. Messages execute
on stations that are connected wirelessly. The number
of stations is fixed and known throughout the entire
communication phase. Messages communicate with other
messages through messages on channels. All channels
are mapped onto one shared unreliable communication
medium. All message transmissions are atomic broadcast,
and therefore, potentially all stations receive messages
reliably. Stations have mutually exclusive access to chan-
nels at any point in time defined a priori. The state-based
schedules are based on TDMA for deterministic access to
the medium.
In state-based scheduling, participating stations in the

communication use dedicated slots to send their mes-
sages. We assume that the communication link has suffi-
cient bandwidth to carry out messages. A slot has a known
start and end time. A communication round or cycle is
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the time duration after which the state-based schedule is
repeated.
We use state-based scheduling to tailor communication

behavior to application demands. In contrast to traditional
static TDMA schedules, the state-based schedules permit
making decisions during the communication cycle. We
use the abstraction of Network Code [15] to implement
these state-based schedules.
We assume that the system is well designed and static.

This refers that the communication behavior is known a
priori including the message sizes, variables, bus band-
width, and the timing requirements. We can thus assume
that it is possible to generate an optimal state-based
schedule, the programs, and all other data structures
offline.

3 Fault model
The fault model comprises transient faults that are unable
to cause permanent failure of a system. Transient faults
can occur for a number of reasons such as sending wrong
and contradictory information, or receiving altered data
during transmission. Transmitted packets may also get
dropped for a variety of reasons such as link failure and
channel interference.
We assume that faults are independent, which avoids

the domino effect that can occur when a small change
in a component causes a subsequent change in the con-
nected component. We also assume that the system can
reliably continue the system operation upon encountering
permanent faults because of running backup stations in
parallel.
Due to a number of reasons, stations may make wrong

decisions at run time. One reason is that faults may be
undetected because of CRC failures or limitations on
using CRC [16]. Some faults do not appear at the same
time they occur.Moreover, faults may occur because hard-
ware or software glitches such as memory bit flipping [17]
that may alter the data before making decisions at run
time.
The fault model consists of the following faults: (1)

clock and sampling rate drifts, (2) corrupt messages,
(3) corrupt memories, (4) measurement faults due to
truncation or floating-point arithmetic, and (5) data
races between computation and communication. Figure 1
shows the occurrence of these faults in different enti-
ties in a network architecture. Faults due to clock
and sampling rate drifts are handled using synchro-
nization mechanisms. The C-State mechanism [18] can
detect corrupt messages, memories, or measurement
faults, which can also be detected using history informa-
tion of previous successfully sent messages. Data races
between computation and communication will not occur,
because state-based schedules allow only time-triggered
communication. Therefore, in this work, we have

Fig. 1 Fault model

considered all the above described faults except the data
races.

4 Overview of state-based schedules
Our approach towards building a fault-tolerant state-
based schedule is based on the notion of state-based
schedules as proposed in [15]. A state-based schedule can
be represented as a graph where vertices denote the states,
and arcs refer the transitions. A transition from one vertex
to another vertex represents the condition associated with
them evaluated to true. A state-based schedule is TDMA-
based and facilitates making on-the-fly decisions at run
time.

Definition 1 (State-based schedule) A state-based
schedule is a graph defined by the tuple (V, v0, VF , sl, κ , E)
where

• V is a set of states,
• v0 ∈ V denotes the initial state,
• VF ⊆ V denotes the set of final states,
• sl labels states V with broadcast communications,
• κ is a set of clocks with |κ| ≥ 1, and
• E is a set of tuples 〈vs, gx, λ, vd〉 representing

transitions from state vs to state vd . The guard gx is an
enabling condition and λ is a set of updates on clock
values. The set of transitions must be free of cycles.

Example 1 This example illustrates a state-based sched-
ule for an industrial shutdown system using TMR. We
assume multiple controllers periodically receive the sen-
sor samples. In each communication cycle, the controllers
receive the temperature readings from either two sensors
(best and average-case) or three sensors (worst-case) and
make the decision by voting on the results. If two of the three
temperature sensors report a temperature beyond a set
threshold, the system will shutdown the system, because the
voting will already be decisive. Otherwise, the controllers
will receive the third sensor value and will include it in the
voting process.
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Suppose each sensor spends T time units to send data to
the controller. Therefore, the sensor n1 sends a temperature
sample in [ 0,T), the sensor n2 in [T , 2T), and the sensor n3
in [ 2T , 3T). If n1 and n2 send more or less than the thresh-
old temperature value, then the sensor n3 will not transmit
its sample. Instead of sending the temperature sample in
the third time slot, the stations can transmit best-effort
traffic. The controllers may also use this slot for running a
background message displaying state information. Figure 2
shows the resulting tree schedule for this example.

5 The state inconsistency problem
Definition 2 (State Inconsistency) A state inconsistency

occurs if at least two stations at any state vi ∈ V execute
different transitions to reach from state vs to vd, although
each station executes the same state-based schedule.

Faulty decisions occur at points that lead to stations
executing different branches in state-based schedules. For
example, in the state-based schedule of TMR, a faulty
decision may occur after the transmission of the first two
samples to decide whether to transmit the third sample in
the next time slot. Therefore, stations must have a consen-
sus on making the same decision after the first two sample
transmissions. If the values of the first two samples are
within a tolerance and correctly received by all stations,
then the states will remain consistent. If undetected faults
occur in any of the previous two transmissions, then state
inconsistency will occur.

Example 2 (Continuing from Example 1)An occurrence
of a faulty decision in Example 1 is to make a wrong and
different decision by any of the stations. This may occur
in an unreliable environment (e.g., a wireless medium) on
sending the third sensor sample to the controller when sen-
sors making different decisions are likely. This can lead to
one of the sensors or controllers to have a different view of
the system and result in making a faulty decision.
Suppose n1 reports a value above the threshold, and n2’s

reported value above the threshold is corrupted by noise
during the transmission to the controllers c1, c2, and c3. If
c2 fails to detect the data corruption or has a timeout in

Fig. 2 An example of a state-based schedule

receiving the sample, then the controller c2 may make not
wait to receive the sample in the next time slot from n3. As a
result, state inconsistency will occur, because the controller
c2 will have a different view of the system than controller c1
or c3.

6 Reducing the occurrence of state inconsistency
We use a two-step procedure to reduce the occurrence
of state inconsistency in state-based schedules. First, we
use a method of clock synchronization to adjust the clock
drifts. Thereafter, we use a method to adjust the sampling
frequency drifts of the stations.
Clock synchronization [19] mechanisms are necessary

to ensure the timeliness occurrence of timing events in
using state-based schedules. Due to clock drifts, sta-
tions may be de-synchronized in making decisions, and
therefore, faulty decisions will occur. We use a clock syn-
chronization algorithm [20] that considers the worst-case
network delay instead of the average network delay. The
synchronization takes place when the medium is idle for
long periods so that synchronization messages do not
interfere with the communication messages. If stations
make intensive use of the medium and it almost never gets
idle, then the clock synchronization happens locally based
on previous updates.
The mismatch of sampling rates among stations can be

controlled using hardware or software. However, it is dif-
ficult to eliminate the problem completely because of the
temperature effects and the level of accuracy of clock skew
correction. We use a software-based sampling frequency
drift management scheme [20] to adjust the sampling fre-
quency drifts with reference to an independent global
sampling rate manager.

7 Recovery from state inconsistency
Safety-critical systems not only use mechanisms to
reduce the occurrence of state inconsistency, but also
require methods to recover from state inconsistency for
safety. Safety-critical applications such as pacemakers and
nuclear shutdown systems emphasize safety over perfor-
mance. Therefore, state inconsistency is a safety issue
that must be resolved completely when using state-based
schedules in safety-stringent applications.
Despite the occurrence of state inconsistency, a recov-

ery scheme keeps the system safe from failure. A detection
scheme first identifies the occurrence of a state inconsis-
tency. A recovery scheme ensures the correct functional
operation in the system hereafter. A recovery scheme
resolves the state inconsistency upon detecting it by run-
ning recover algorithms.
To recover from state inconsistency, stations first

need to detect faulty decisions. All stations must
check for faulty decisions that follow different branches
in state-based schedules. This refers to a distributed
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consensus problem [21]. To detect such inconsistencies, a
system can use the C-State-based approach [18]. In addi-
tion to using the C-State-based approach, this paper also
discusses using history of recent transmissions to detect
such inconsistencies.
After detecting state inconsistency, we use a recovery

scheme that is either time-efficient such as the major-
ity voting scheme or reliable such as the rollback. The
majority voting scheme is less reliable than the rollback
approach to recover from state inconsistency. However,
rolling back to an earlier point in time may cause a system
failure or destabilize a control system because of having
any limitations on re-execution.

7.1 Detecting state inconsistency
To detect state inconsistency when using state-based
schedules, the C-State-based approach [18] can be used.
The C-State of the sender includes with the message con-
tents to calculate CRC at the sender, and the stations use
the C-State of the receiver to check CRC over the message
contents at the receiver. A C-State contains state’s infor-
mation such as TDMA slot information, information on
current mode, information on global time, and member-
ship information. The C-State of the sender and receiver
will differ if faults or faulty decisions occur.
The C-State-based approach requires to transmit the

C-State information even though sending it may not nec-
essary. For example, C-State information in redundant
transmissions will become unnecessary to send or receive
if they are the same. To avoid unnecessary transmission
of C-State information, we propose an approach that uses
the history of recent transmissions.
To use history of recent transmissions in detecting state

inconsistency, it is required to store a number of variables
of interest in a buffer. The system stores variables in a tab-
ular format that are common in subsequent transmissions
(see Table 1). Successful communications are recorded
to use them in validating redundant transmissions. For
example, in a TMR-based system, the system can store
the C-State information after the first sample transmis-
sion and can avoid transmitting the C-State information
for subsequent transmissions.
At design time, the developer specifies the buffer table

that uses a tiny storage in the memory. In the buffer table,
the columns represent the list of variables and the rows
represent the slots. The first row stores the start values.
Every subsequent row stores the values of variables for the
slots over time. The number of rows is bounded by the
number of slots in each communication cycle. The devel-
oper can specify initial values; otherwise, the variable is
initialized with φ.

Example 3 Assume that we have three stations s1, s2,
and s3 maintain a buffer history. Consider a state-based

schedule that has three slots, and the schedule has five vari-
ables that are common in redundant transmissions. All
variables are initially set to φ and updated over time. In
the table, the value Tx denotes the value of a transmitted
variable and Rx denotes the value of a received variable.
For example, in slot 1, the station s1 transmits message that
contains the variables a and b which are common in sub-
sequent transmissions. In slot 2, the station s1 transmits
message that contains the variables a, b, c, d, and e. In slot
3, the station s1 may remain idle or transmit the message
that contains the variable e.

Upon receiving messages, the system will update the
buffer table. At the beginning of a communication cycle,
all variables reset to their initial value or φ. Upon receiv-
ing a message, if the variable’s current history information
contains φ in the buffer table, then the system will use
the C-State-based CRC method to validate the transmit-
ted message before updating the associated variable entry
in the buffer table. On the other hand, if the variable in
the buffer table has already been initialized or updated,
then the system will use the variable’s history to check
state inconsistency. The history-based approach performs
better than the C-State-based approach [22].

7.2 Resolving state inconsistency
7.2.1 Usingmajority voting for recovery
Majority voting [23] is a mechanism of reaching a consen-
sus in distributed systems. The decision with the highest
number of agreements among the stations is chosen and
the stations which differ are forced to make that decision.
In case of a tie, a random but the same decision will be
taken. Majority voting can be implemented using the arbi-
tration method in CAN [24] or any distributed agreement
algorithms [25].

Example 4 Continuing from Example 2, all controllers
in turn check the sample values of the other controllers.
For example, the controller c2 checks the sample values of
the other controllers (c1 and c3). Since controllers c1 and c3
decide to receive the third sample, controller c2 will ask for
the third sample, because two from three controllers want
to receive the redundant sample.

7.2.2 Using checkpoints for recovery
This buffer table can be used not only for detecting state
inconsistency but also for recovery. A row in the buffer
table can be treated as a checkpoint if the row contains
all variables’ information. Upon detecting a state inconsis-
tency, stations can rollback to the closest checkpoint.
A state inconsistency handler contains the method

for detecting state inconsistency and the method of
rolling back to the immediate checkpoint. A number
of state inconsistency handlers are associated to each
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checkpoint. The more the number of inconsistency han-
dlers in between checkpoints, the more the system can
tolerate state inconsistencies. However, increasing the
number inconsistency handlers also increases the over-
head. Inconsistency handlers can be placed based on
weights, and developers can choose weights (wi) based on
the importance of the contents in the slots. If there are
some trailing zero weighted slots, then these slots will not
contain inconsistency handlers.
A system can tolerate a maximum number of occur-

rences of state inconsistencies at any slot, which we define
as replay bound. When a system tolerates a maximum
number of occurrences of state inconsistencies globally
for each communication cycle, we define the replay bound
as global replay bound. Figure 3 depicts an example of a
schedule with the global replay bound which is set to ten.

Example 5 The fault-tolerant schedule contains five
checkpoints and ten data slots. We assume that the global
replay bound is ten. Therefore, the system can handle ten
repeated state inconsistencies at any slot in a cycle. Sup-
pose, state inconsistencies occur three times between the
slots s1 and s4, twice between s5 and s6, five between s7 and
s10. Since the global replay bound is ten, the system can
tolerate these ten state inconsistencies. If state inconsisten-
cies occur six times in between s7 and s10, then the system
will unable to tolerate an additional state inconsistency
because of exceeding the limit on the global replay bound.

The other way to handle repeated state inconsistencies
is to set a replay bound at the data slots. The replay bound
may vary based on weights or the importance of the con-
tents of data slots. For example, Fig. 4 shows an example of
the replay bound at checkpoints and Fig. 5 shows an exam-
ple of the weighted reply bound. The maximum number
of occurrences of state inconsistencies must be equal to
the summation of all replay bounds at data slots.

8 Defining fault-tolerant dynamic schedules
When providing the definition of dynamic TDMA sched-
ules, the authors of [15] assumed single-segmented
bus networks. They assumed that the communication
medium provides a reliable atomic broadcast service and
either all stations receive a message or none of them

do. This assumption is inapplicable for systems with
unreliable channels such as found in wired or wire-
less communications. We now adapt dynamic TDMA or
state-based TDMA schedules to accommodate the fault-
tolerant functionality so that we can use the original
abstraction for unreliable channels (see Fig. 6).We assume
that communication slots are large enough to accommo-
date recovery activity. Since the system is well defined and
static (see Section 2), we can check this at design time.

Definition 3 (Fault-tolerant dynamic schedule) A fault-
tolerant tree schedule is a tree defined by the tuple (V, v0,
VF , sl, κ , E , Ecp) where

• V is a set of states,
• v0 ∈ V denotes the initial state
• VF ⊆ V denotes the set of final states
• sl is a mapping sl : V → B that maps a state to a

broadcast communication associated with that state
• κ is a set of clocks with |κ| ≥ 1
• E is a set of tuples (vs, gx, λ, vd) representing

transitions from state vs to state vd . The guard gx is an
enabling condition and λ is a set of updates on clock
values. The set of transitions must be free of cycles.

• A checkpointing transition or rollback edge Ecp:(vs, λ,
vd) represents an transition from a state vs to a state
vd . λ is a set of updates on clock values.

Ecp is a special form of E. We can implement Ecp using
E by assuming a specific fault tolerance guard for E. A
location that detects a fault can use an edge in Ecp for
rolling back to a checkpoint. We determine Ecp for a given
schedule.
Given a checkpointing transition (vs, λ, vd), the state vs

refers the location of fault detection and vd refers the
location of a checkpoint.

9 Generating fault-tolerant schedules
A system may allow provisioning extra resources at the
design time and perform schedulability analysis at run
time before placing a checkpoint such that all messages
in the system meet their deadlines. However, in this
paper, we propose an optimization framework to gen-
erate fault-tolerant state-based schedules from the given

Fig. 3 Global replay bound for checkpoints
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Fig. 4 Replay bound for checkpoints

timing requirements of a checkpoint and the messages
that are schedulable. This framework optimizes fault tol-
erance and therefore places the maximum possible num-
ber of checkpoints after meeting the timing requirements
of all messages. For simplicity, we assume that the tim-
ing requirement of each checkpoint is the same. The
timing requirement of messages includes the faulty deci-
sion detection and rollback overhead. The schedulability
analysis is performed on the messages in system (Eq. 1)
before placing checkpoints. The optimization framework
ensures that each message in the system gets at least the
number of slots to meet the execution time requirements.
If the schedulability analysis fails, the system designer may
change the number of messages or the specification of
checkpoints.

U(vk) =
∑

τi∈vk

ei
pi

≤ B
L

(1)

where B is the bandwidth assigned to scheduled messages
τi ∈ {vk} and L is the link capacity, with B ≤ L. This
is because, we divide the communication cycle into time
slots and each time slot can be occupied by a message
according to our scheduling generation policy. Since each
time slot can be assigned if needed, the worst-case usage
of the communication link will be B

L .
We address the challenge of generating fault-tolerant

state-based TDMA schedules using a number of con-
straints that are specific to messages requirements and
to the characteristics (i.e., non-preemptive). We formu-
late a set of constraints using message requirements for
each of the reachable and schedulable state in the system.
The constraints specify that the messages at least get the

required computational time units and no two stations get
the same time slot in the same state.
To generate fault-tolerant state-based schedules, we

formulate a number of constraints that are specific
to message requirements and characteristics (i.e., non-
preemptive). The constraints only refer to the messages
for the reachable and schedulable states. The constraints
specify that the messages at least get the required compu-
tational time units and no two stations get the same time
slot in the same state. We also formulate constraints to
represent the timing requirement of a checkpoint.
The computation time of a message in the system is to

obtain at least the required number of slots for each mes-
sage in its period. A boolean variable xkij = 1 if a message
i is allocated at a slot j in state k, and 0 if otherwise. There-
fore, the summation of xkij is greater than the computation
time (cki ) required by a message i in state k. Transmitted
messages are non-preemptive. Therefore, if a message is
allocated to a slot in a state, the message will be allocated
to the subsequent slots until the timing requirement of
that message is met.
The formulation of the schedule generation problem is

shown as an integer linear problem (ILP). Assume the
following:

• V is the set of states in the system.
• N is the set of messages in each state (τ1, τ2, . . . , τn).
• cki is the computation time for each message τi in

state k.
• pki is the period for each message τi in state k and Pk

is the set of all pi in state k.
• αi instances for every message τi such that

αi = LCM(Pk)
pki

.

Fig. 5Weighted replay bound for checkpoints
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Fig. 6 An abstraction of fault-tolerant state-based TDMA schedule

• xkij, the coefficients showing the usage of a time slot
for i ∈ N , j ∈ {1, . . . , LCM(Pk)} and k ∈ V . These
coefficients are defined as follows:

xkij =
{
1 if message τi uses slot i in state k
0 otherwise.

• skij, the coefficients showing the usage of a time slot by
a checkpoint for i ∈ N , j ∈ {1, . . . , LCM(Pk)} and
k ∈ V . These coefficients are defined as follows:

skij =

⎧
⎪⎨

⎪⎩

1 if a checkpoint uses slot j when xkij = 0

0 otherwise.

Optimization model

max
∑

∀i∈N,j∈{1,...,LCM(Pk)},k∈V
skij.

st. C1{∀i ∈ N, k ∈ V} :
gpki +pki∑

j=gpki +1

xkij ≥ eki , g = 0, . . . αi − 1;

C2
{
∀j ∈

{
LCM(Pk)

}
, k ∈ V

}
:

∑

i
xkij ≤ 1,

C3{∀u ∈ N, j ∈
{
LCM(Pk)

}
, k ∈ V, q ∈ {1 . . . j−1} :

∑

i
xkiq + xkuj ≥ eku,

C4
{
∀i ∈ N, j ∈

{
LCM(Pk)

}
, k ∈ V

}
:

skij ≤ xkij,

C5
{∀i ∈ N, j ∈

{
LCM(Pk)

}
, k ∈ V

}
:

skij ≥ 0,

Table 1 An example of a buffer table

Time a b c d e

t1 − t0 Tx Tx φ φ φ

t2 − t1 Tx Tx Tx Tx Tx

t3 − t2 Tx Tx Tx Tx Tx

The objective of the optimization model is to maximize
the placement of checkpoints. Constraint C1 specifies that
all messages at least get the computation units in their
periods. Constraint C2 specifies that no two messages are
assigned to the same slot at the same state. Constraint C3
specifies a message is allocated to the consecutive slots
until timing requirement is met. Constraint C4 represents
that a checkpoint is placed to a slot if no message exists
to allocate to that slot. Constraint C5 specifies the range
on the number of checkpoints. Table 2 shows timing spec-
ifications of three messages in each of the four states.
After running the AMPL/CPLEX optimizer with these
constraints for maximizing the placement of checkpoints,
we get the total number of checkpoints equal to 40 such
that the execution time for a checkpoint is 1 time unit.

10 Experimental analysis
To demonstrate the advantage of using state-based
TDMA and need for fixing the issues that arise in prac-
tice, we provide a number of experimental results. The
experimental setup contains an industrial testbed that
runs hard real-time applications. We have used Quanser
rapid prototype environment QUARC [26] that has been
used for running several real-time experiments such as
double inverted pendulum control, unmanned aerial vehi-
cles, unmanned ground vehicles, and mobile robots [27].
We implement state-based schedules to run applications
using QUARC.
To analyze state inconsistency, we have chosen two

applications: a drive-by-wire (DVW) application and a
position control system (PCS) application. The DVW
application uses human-machine interfaces that send
command signals to the electromechanical controllers
via a communication network. Faults are common by
nature in a DVW application, and therefore, it should
tolerate them for reliable operation. One of the rea-
sons for such faults is the unreliable communication.
A triple modular redundant system reduces the impact
of faults. Although both static TDMA and state-based

Table 2 Timing requirements for different states (in time units)

System state Timing of messages (e,p)

1 τ1(1, 8), τ2(1, 8), τ3(1, 8)

2 τ1(1, 8), τ2(1, 4), τ3(1, 8)

3 τ1(1, 8), τ2(1, 8), τ3(1, 4)

4 τ1(1, 8), τ2(1, 4), τ3(1, 4)
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Fig. 7Worst-case versus average case execution analysis for the DVW application

schedules can represent such system operation, a state-
based TDMA schedule outperforms static TDMA when
the first two transmissions are correctly received and suf-
ficient enough. The PCS application tries to control a
load shaft connected to a rotary motor in the presence
of deliberately injected noise. The PCS is a feedback con-
trol loop-based system, where we use TMR to reduce the
effect of the measurement faults.
The architectural setup for running both the DVW

and PCS applications is different due to their operational
requirements. For the DVW application, we have used
the Gumstix Verdex Pro XL6P series board which has the
400 MHz processor Marvell PXA270 with XScale, a dual-
core ×86, and a quad-core ×86 machine. We have used
four different configurations for the DVW application: (1)
local×86, (2) remote×86, (3)×86-verdex, and (4) verdex.
In the local ×86 configuration, both host and target sys-
tem architecture are ×86 and they communicate through
the wireless port. In the remote ×86 configuration, the
host and the target system have the same architecture i.e.,
×86 but are located distantly and they communicate via
wireless. In the ×86-verdex configuration, the host archi-
tecture is ×86, and the target architecture is armv5te. In
the DVW experiment, we set the buffer size 1460 bytes
and the sampling rate 50 Hz. On the other hand, the PCS
setup contains a hard real-time operating system QNX
connected to a local ×86 machine to control the position
of a load shaft.

10.1 State-based TDMA scheduling vs static TDMA
scheduling

An advantage of using state-based TDMA for a TMR-
based application is that TMR can be used for fault toler-
ance and state-based TDMA adds flexible behavior such
that the system can discard the transmission of the third
sample or can run a background message upon receiving
first two successful sample transmissions. Therefore, the

best case or average case is to receive two samples and the
worst case is to receive all three samples. For the DVW
application, Fig. 7 shows that the rate of receiving all three
samples in each communication cycle is almost 5% less
than the rate of receiving two samples to make a decision
in the presence of only communication faults. However,
this result uncovers the effect of measurement faults that
can occur in the system. Using the PCS application, we
have analyzed the effect of different rates of measurement
faults as shown in Table 3. For the TMR-based PCS appli-
cation, Table 3 shows the percentage of saved resources
when the system uses state-based TDMA instead of static
TDMA. We see from Table 3 that the rate of preserved
resources increases with the decrease of measurement
faults. Therefore, using state-based schedules provides
efficient use of TMR in applications. The valueμ indicates
themean value, and σ denotes the standard deviation. The
confidence interval for the PCS experiments is 95%.

10.2 State inconsistency analysis
State inconsistency does not occur in static TDMA
because of no points that can lead to multiple decisions.
However, it is possible to occur in state-based schedules.
We have found after running the applications for almost a
day that the percentage of state inconsistency is less than
9.5%. The number of faulty decisions that lead to state
inconsistency also varies with the number of stations (see
Fig. 8).

Table 3 Statistical analysis for the TMR-based position control
system application

Measurement faults (%) Worst-case resource μ (%) σ (%)
savings (%)

5 33.2822 33.3043 .0127

20 16.5915 16.6235 .0188

50 4.6414 4.6725 .0290
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Fig. 8 Faulty decisions for different number of processors

10.3 Resolving state inconsistency
We use the methods described in this paper to resolve
state inconsistency. The number of faulty decisions
decreases (see Fig. 9) when we use the clock synchro-
nization algorithm and the sampling rate drift manage-
ment policy as described in [20]. The number of state
inconsistencies decrease because of using clock synchro-
nizaion, and Fig. 10 shows that the overhead of using clock
synchronization methods are small enough to meet the
requirements of execution for computation and commu-
nication. To resolve the remaining state inconsistency, we
generate fault-tolerant schedules using the optimization
solver. The schedules will contain checkpoints if plac-
ing them does not violate the timing requirements of the
messages in the system.
The system experiences small amount of jitter while

running the DVW application (Fig. 11). In the PCS appli-
cation, jitter is low compared to that in the DVW applica-
tion, because real-time system QNX has been used as the
target with which PCS is connected.

11 Discussion
This work proposes the generation of fault-tolerant state-
based schedules for real-time systems. The paper deals
with state inconsistencies which can occur in sched-
ules that have the capability of conditional executions.
The conditional execution capability of communication
scheduling makes the appearance of state inconsistency
problem unique. The state consistency arises when there
are faults in the system. Therefore, in this paper, the
fault tolerance capability is embedded through generat-
ing the schedules according to the real-time constraints.
This fault tolerance is required for the efficient operation
of state-based schedules, specially in unreliable medium.
Since state-based schedules have been already proven to
perform well in situations [7, 8, 28], the fault tolerance
is much needed to increase the applicability in different
environments. Moreover, if the schedule is fault-tolerant,
it will work well for both reliable and unreliable envi-
ronments because we are designing schedules for the
worst-case.
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Fig. 9 State inconsistency decrease due to sampling rate and clock synchronization
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Fig. 10 Computation and communication time for the sampling period of 0.020 s

12 Related work
Kopetz et al. [18] propose the C-State-based CRC [18]
method that can detect state inconsistencies using cer-
tain information such as TDMA slot information, current
mode, global time, and membership information. The
authors use the C-State-based CRC for static TDMA
which can be extended to state-based TDMA for detect-
ing state inconsistencies. Schemes like two-phase commit
(2PC) scheme or the three-phase commit (3PC) scheme
can also be used for detecting state inconsistencies; how-
ever, these schemes have more communication overhead
than the C-State-based method due to a significant num-
ber of message transmissions.
State-based TDMA schedules [7, 8] demonstrate high-

confidence real-time software characteristics such as
deterministic behavior, meeting deadlines, verification,
and separation of concerns in addition to making on-the-
fly decisions at run time. A number of work on state-based
schedules refer to build high confidence software for
safety-critical systems such as networked medical devices

[29]. However, state-based schedules assume to operate
in the presence of high reliable communication channel
which limits the applicability of the scheme in unreliable
environments for operating correctly and timely because
of the occurrence of state inconsistencies.

13 Conclusions
The conditional execution capability of the state-based
schedule makes it advantageous in many systems such as
TMR-based applications. However, this conditional exe-
cution capability creates challenges in distributed agree-
ment because of faulty decisions, particularly in wireless
architectures. Hence, in this paper, we have identified the
reasons that make faulty decisions and proposed incon-
sistency reduction schemes and recovery schemes. This
knowledge of reduction, detection, or recovery process
can be encoded at the specification level when state-based
schedules are generated. Experimental analysis demon-
strates the necessity of generating fault-tolerant state-
based schedules.
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Fig. 11 Jitter analysis
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