
EURASIP Journal on
Embedded Systems

Brinkschulte EURASIP Journal on Embedded Systems (2017) 2017:23
DOI 10.1186/s13639-016-0066-2

RESEARCH Open Access

Prototypic implementation and
evaluation of an artificial DNA for
self-descripting and self-building embedded
systems
Uwe Brinkschulte

Abstract

Embedded systems are growing more and more complex because of the increasing chip integration density, larger
number of chips in distributed applications, and demanding application fields (e.g., in cars and in households).
Bio-inspired techniques like self-organization are a key feature to handle this complexity. However, self-organization
needs a guideline for setting up and managing the system. In biology the structure and organization of a system is
coded in its DNA. In this paper we present an approach to use an artificial DNA for that purpose. Since many
embedded systems can be composed from a limited number of basic elements, the structure and parameters of such
systems can be stored in a compact way representing an artificial DNA deposited in each processor core. This leads to
a self-describing system. Based on the DNA, the self-organization mechanisms can build the system autonomously
providing a self-building system. System repair and optimization at runtime are also possible, leading to higher
robustness, dependability, and flexibility. We present a prototypic implementation and conduct a real-time evaluation
using a flexible robot vehicle. Depending on the DNA, this vehicle acts as a self-balancing vehicle, an autonomous
guided vehicle, a follower, or a combination of these.

Keywords: Artificial DNA, Prototypic implementation, Evaluation, Real-time, Self-organization, Self-building,
Self-description

1 Introduction
Embedded systems are growing more and more complex
because of the increasing chip integration density, larger
number of chips in distributed applications, and demand-
ing application fields (e.g., in cars and in households).
In the near future, it will become reality to have thou-
sands of computing nodes within an embedded system.
Bio-inspired techniques like self-organization are a key
feature to handle this complexity. We have developed the
Artificial Hormone System (AHS) as a decentralized, self-
organizing, self-healing, and self-optimizing mechanism
to assign tasks to computing nodes of an embedded real-
time system. The AHS is able to handle task assignment

Correspondence: brinks@es.cs.uni-frankfurt.de
Institut für Informatik, Johann Wolfgang Goethe Universität Frankfurt,
Frankfurt, Germany

in complex embedded systems with a large number of
processor cores.
However, to do so the AHS needs a blueprint of the

structure and organization of the embedded application.
This covers the segmentation of the application into tasks,
the cooperation and communication between these tasks,
the suitability of the processor cores for each of these
tasks, etc. Currently, these assignments are done manu-
ally by the system developer, but in the future this is no
longer feasible for large embedded systems having a large
number of cores and tasks.
The idea is to follow again a bio-inspired principle.

In biology the structure and organization of a system is
coded in its DNA. This can be adopted to embedded
systems. The blueprint of the structure and organiza-
tion of the embedded system will be represented by an
artificial DNA. The artificial DNA can be held compact
and stored in every processor core of the system (like

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13639-016-0066-2&domain=pdf
mailto: brinks@es.cs.uni-frankfurt.de
http://creativecommons.org/licenses/by/4.0/

Brinkschulte EURASIP Journal on Embedded Systems (2017) 2017:23 Page 2 of 16

the biological DNA is stored in every cell of an organ-
ism). This makes the system self-descripting and enables
a maximum amount of robustness and flexibility. Now, a
mechanism like the AHS can transcribe the artificial DNA
to set up and operate the embedded system accordingly.
All the needed information for such a process like task
structure, cooperation, communication, and core suitabil-
ity can be derived from the artificial DNA. Therefore, the
system becomes self-building based on its DNA.
In our previous work [1], we have developed a DNA

simulator as a proof of concept. Now we present a pro-
totypic implementation which enables real applications.
Furthermore, we conduct an evaluation of real-time prop-
erties, robustness, and communication and memory use
based on a flexible robotic vehicle platform. Depending on
the DNA, this vehicle acts as a self-balancing vehicle, an
autonomous guided vehicle, a follower, or a combination
of these.
The paper is structured as follows: After the intro-

duction and motivation, related work is presented in
Section 2. Section 3 describes the basic ideas and concep-
tion of the artificial DNA. The prototypic implementation
is described in Section 4; Section 5 presents the evaluation
results while Section 6 concludes this paper.

2 Related work
Self-organization has been a research focus for several
years. Publications like [2] or [3] deal with basic princi-
ples of self-organizing systems, e.g., emergent behavior,
reproduction, etc. Regarding self-organization in com-
puter science, several projects and initiatives can be listed.
IBM’s and DARPAS’s Autonomic Computing project

[4, 5] deals with self-organization of IT servers in
networks. Several so-called self-X properties like self-
optimization, self-stabilization, self-configuration, self-
protection, and self-healing have been postulated. The
MAPE cycle consisting of Monitor, Analyze, Plan, and
Execute was defined to realize these properties. It is exe-
cuted in the background and in parallel to normal server
activities similar to the autonomic nervous system.
The GermanOrganic Computing Initiative was founded

in 2003. Its basic aim is to improve the controllability of
complex embedded systems by using principles found in
organic entities [6, 7]. Organization principles which are
successful in biology are adapted to embedded comput-
ing systems. The DFG priority programme 1183 “Organic
Computing” [8] has been established to deepen research
on this topic.
Self-organizing and organic computing is also followed

on an international level by a task force of the IEEE Com-
putational Intelligence Society (IEEE CIS ETTC OCTF)
[9]. Several other international research programs have
also addressed self-organization aspects for computing
systems, e.g., [10, 11].

Self-organization for embedded systems has been
addressed especially at the ESOS workshop [12]. Further-
more, there are several projects related to this topic like
ASOC [13, 14], CARSoC [15, 16] or DoDOrg [17]. In
the frame of the DoDOrg project, the Artificial Hormone
System (AHS) was introduced [17, 18]. Another hormone-
based approach has been proposed in [19]. Nicolescu and
Mosterman [20] describe self-organization in automotive
embedded system. None of these approaches deal with
self-description or self-building using DNA-like struc-
tures.
DNA computing [21] uses molecular biology instead

of silicon-based chips for computation purposes. In [22],
e.g., the traveling salesman problem is solved by DNA
molecules. Our approach relies on classical computing
hardware using DNA-like structures for the description
and building of the system. This enhances the self-
organization and self-healing features of embedded sys-
tems, especially when these systems are getting more and
more complex and difficult to handle using conventional
techniques. Our approach is also different from generative
descriptions [23], where production rules are used to pro-
duce different arbitrary entities (e.g., robots) while we are
using DNA as a building plan for a dedicated embedded
system.
To realize DNA-like structures, we have to describe

the building plan of an embedded system in a compact
way so it can be stored in each processor core. There-
fore, we have adapted well-known techniques like netlists
and data flow models (e.g., the actor model [24]) to
achieve this description. However, in contrast to such clas-
sical techniques, our approach uses this description to
build the embedded system dynamically at run-time in
a self-organizing way. The description acts like a DNA
in biological systems. It shapes the system autonomously
to the available distributed multi/many-core hardware
platform and re-shapes it in case of platform and environ-
ment changes (e.g., core failures, temperature hotspots,
reconfigurations like adding new cores, removing cores,
changing core connections, etc.). This is also a major
difference to model-based [25] or platform-based design
[26], where the mapping of the desired system to the
hardware platform is done by tools at design time (e.g.,
a Matlab model). Our approach allows very high flexi-
bility and robustness due to self-organization and self-
configuration at run-time while still providing real-time
capabilities.

3 Conception of the artificial DNA
In the following, the basic conception of the proposed
approach is explained in detail. It consists of the system
composition model, the structure of the artificial DNA,
and how a system is built from its artificial DNA.

Brinkschulte EURASIP Journal on Embedded Systems (2017) 2017:23 Page 3 of 16

3.1 System composition model
The approach presented here is based on the observation
that in many cases embedded systems are composed of a
limited number of basic elements, e.g., controllers, filters,
arithmetic/logic units, etc. This is a well-known concept
in embedded systems design. If a sufficient set of these
basic elements is provided, many embedded real-time
systems could be completely built by simply combining
and parameterizing these elements. This fact is also
exploited in model-driven design, e.g., by constructing a
Matlab model. In our approach, we use it to generate a
compact description of the targeted embedded system
which can be stored in each processor core to serve as
a digital artificial DNA. As we show later, this enables
the self-building of the system at run-time including an
autonomous reaction to failures and changes in the envi-
ronment. Figure 1 shows the general structure of such a
basic element. This structure is influenced by the way
a middleware like the AHS handles tasks and provides
maximum flexibility as it allows active and reactive, data-
driven, and control-driven, uni- and bidirectional flow.
A task is basically a service having two possible types of
links to other services. The Sourcelink is a reactive link,
where the task reacts to incoming requests. It consists of
the two functions:

Sourcelink (the task acts as server)
GetRequest Looking for an incoming request

from others
SendResponse Sending a response to the requester

The Destinationlink is an active link, where the task
sends requests to other tasks. It consists of the two func-
tions:

Destinationlink (the task acts as client)
SendRequest Sending a request to others
GetResponse Looking for a response to the request

Each basic element is identified by a unique Id and a set
of parameters. The sourcelink and the destinationlink of
a basic element are compatible to all other basic elements
and may have multiple channels. Both links can be bidi-
rectional (in Fig. 1 the filled arrowhead indicates the active

Basic Element

Id
Parameters

Sourcelink

1
 …

n

C
ha

nn
el

s

Destinationlink

C
ha

nn
el

s
1

 …
 m

Fig. 1 Structure of a basic element for system description

direction) or unidirectional. For elements with unidirec-
tional links an incoming request on the sourcelink has no
direct response but triggers an outgoing request on the
destinationlink. In that case the direction is the one given
by the filled arrowhead only. Figure 2 gives some examples
which all provide a unidirectional dataflow. The Id num-
bers are arbitrarily chosen here, it is important only that
they are unique. So, we see an arithmetic logic unit (ALU)
element with the Id = 1 and the parameter defining the
requested operation (minus, plus, mult, div, greater, . . .).
The two input operands are given by channels 1 and 2 of
the sourcelink whereas the result is provided via a single-
channel destinationlink. Such an element is needed for
calculations in a dataflow, e.g., a setpoint comparison in a
closed control loop. Another element often used in closed
control loops is a PID controller. Here, this element has
the unique Id = 10 and the parameter values for P, I, D,
and the control period. Furthermore, it has a single uni-
directional sourcelink and destinationlink channel. Other
popular elements in embedded systems have a unidirec-
tional sourcelink or destinationlink only. Examples are

ALU
(Id = 1,parameter = op)

Sourcelink

Destinationlink

Arithmetic Logic Unit

PID
(Id = 10, parameters =

P,I,D, period)

Sourcelink

PID Controller

Destinationlink

Sensor
(Id = 500, parameter =

resource, period)

Sensor Interface

Destinationlink

Actor
(Id = 600, parameter =

resource)

Sourcelink

Actor Interface

Constant
(Id = 70, parameter =

constant value, period)

Destinationlink

Constant Value Generator

1
 …

2

1
1 1

1
1

1

Fig. 2 Sample basic elements with unidirectional links

Brinkschulte EURASIP Journal on Embedded Systems (2017) 2017:23 Page 4 of 16

interfaces to sensors (Id = 500, the parameter resource and
period define the specific sensor and its sample period)
and actors (Id = 600, resource specifies the specific actor)
or a constant value generator (Id = 70, the parameters are
the output value produced and its period).
Embedded systems can be composed by using these

basic elements as building blocks. Figure 3 shows a very
simple example of a closed control loop based on the
basic elements mentioned above. An actor (defined by its
resource id, e.g., a motor) is controlled by a sensor (also
defined by its resource id, e.g., a speed sensor) applying a
constant setpoint value.

3.2 Artificial DNA
If a sufficient set of standardized basic elements with
unique Ids is available, an embedded systemwill no longer
be programmed, but composed by connecting and param-
eterizing these elements. An example extract of such a
set can be found in Section 4. In general, some hundreds
of these elements are usually adequate to compose many
kinds of embedded real-time systems. Typical elements
for different application fields are, e.g., known or can be
adapted from model-driven design approaches.
Using such a blueprint, the composition of an embed-

ded system can be stored in a very compact way
representing a kind of digital artificial DNA, since it can
be used to completely build up the system at run-time.
Furthermore, this DNA will be even small enough for
complex systems (see Section 5) to be stored in each pro-
cessor core like the biological DNA is stored in each cell.
In this way the embedded system becomes self-describing.
To create the artificial DNA, the blueprint is transformed
into a netlist of basic elements. Each line of the artificial
DNA contains the Id of a basic element, its connection
to other basic elements (by defining the corresponding
destinationlinks for each sourcelink of the basic element)
and its parameters:

Artificial DNA line = [Id Destinationlink Parameters]

The destinationlink description in an artificial DNA
line can be defined as the following set:

(Destinationlinkchannel:Destination.Sourcelinkchannel...)

Here, Destinationlinkchannel gives the channel num-
ber of the destinationlink, Destination refers to the line
of the basic element the destinationlink channel is con-
nected to and Sourcelinkchannel is the channel number
of the sourcelink channel of the destination element. As
an example, the destinationlink description (1:10.1 1:9.2
2:7.1) defines that channel 1 of the destinationlink is con-
nected to the sourcelink channel 1 of the basic element in
line 10 of the DNA (1:10.1) and to the sourcelink channel
2 of the basic element in line 9 (1:9.2) while channel 2 of
the destinationlink is connected to the sourcelink chan-
nel 1 of the basic element in line 7 (2:7.1). Figure 4 shows
the DNA of the system from Fig. 3 enriched with com-
ments (defined by //). More examples and a very memory
efficient format to store a DNA can be found in [1].
Even in case of a very special embedded system not

being able to be composed from the set of standardized
basic elements, special Ids for user/application specific
elements can be defined to solve this issue.

3.3 Building the system from its artificial DNA
Using the artificial DNA, the system now becomes self-
building at run-time. The DNA serves as the basis for the
middleware layer of the distributed embedded system to
setup and connect the system tasks. Figure 5 shows the
system architecture using a DNA builder and the AHS as
middleware layer. There, we call the processor cores of
the distributed system DNA processors. First, the DNA
builder parses the DNA and segments the system into
tasks. Each instance of a basic element becomes a task
in the embedded system. Second, the AHS tries to assign
tasks to the most suitable processor cores. Core suitabil-
ity is indicated by specific hormone levels [18]. With the
artificial DNA, the suitability of a processor core for a task
can be derived automatically by the DNA builder from the

ALU
 (Id = 1, parameter = Minus)

PID
(Id = 10, parameters = P,I,D,

period)

Sensor
(Id = 500, parameters =

resource, period)

Actor
(Id = 600, parameter =

resource)

Constant
(Id = 70, parameter =

constant value, period)

1

1 1 1 1
1

1

 2

Fig. 3 A closed control loop consisting of basic elements

Brinkschulte EURASIP Journal on Embedded Systems (2017) 2017:23 Page 5 of 16

Fig. 4 DNA structure of the sample system

Id of the basic element representing the task and the fea-
tures of the processor core. As an example, a basic element
with Id = 10 (PID controller) performs better on a proces-
sor core with better arithmetic features while memory is
less important. So the appropriate hormone levels can be
calculated automatically by the DNA builder and assigned
to the AHS. Third, task relationship is also considered
for task assignment. The AHS tries to locate cooperat-
ing tasks in the neighborhood to minimize communica-
tion distances. This has to be indicated also by hormone
levels [18]. Using the artificial DNA, task relationship can
be derived automatically by the DNA builder from ana-
lyzing the destinationlink fields of the DNA lines. This
allows to set up the communication links between tasks
and to determine cooperating tasks. So the appropriate
hormone levels can be generated automatically. All steps
of this building process are linear in time with relation
to the number of basic elements n, so the overall time
complexity isO(n).
Overall, the artificial DNA represents the blueprint that

enables the self-building of a system. In case of failures1
or changes, the system can be autonomously restored or
readapted by the DNA which is present in each DNA
processor. This increases system robustness and depend-
ability. The time complexity for restoring or readapting
the system is alsoO(n), where n is the number of affected
basic elements (e.g., the number of basic elements lost by
a crash of a DNA processor). The program code for the
basic elements used in the DNA can be stored in code

Local copy of
DNA

…

Local
instance of

AHS

DNA Processor

Task
1

Task
m

. . .

Local
instance of

DNA Builder

Local copy of
DNA

…

Local
instance of

AHS

DNA Processor

Task
1

Task
m

Local
instance of

DNA Builder

Fig. 5 System architecture

repositories distributed in the system. Even changes in the
DNA representing changes in the system composition or
parameters are possible at run-time providing maximum
flexibility.

4 Prototypic implementation
As a proof of concept, we first have implemented a simula-
tor for the DNA concept. The results have been published
in [1]. This simulator was focused on the ability of self-
building a system from its DNA and reconstructing it in
case of component failures. So the basic elements were
simply dummies in the DNA simulator which are allo-
cated to processor cores, interconnected, and visualized.
They provided no real functionality. However, simulation
results showed that these basic elements were properly
allocated and interconnected by the DNA so self-building
and self-repairing is possible.
Encouraged by these promising results, we have decided

to implement a real prototype of the DNA concept. In
this prototype, the basic elements provide real function-
ality (e.g., an ALU, a PID controller, etc.) and interaction
schemes, so working systems can emerge from a DNA.
This allows for a far better evaluation than the simulator
does. Communication and memory needs as well as real-
time properties can be investigated on a real application
example, see Section 5.
Figure 6 shows the detailed architecture of a real DNA

processor within the overall system architecture already
presented in Fig. 5. The currently active DNA is read
from a file by the processor front end consisting of the
DNA Processor Library and the DNA Processor Basic
Library. While the first one contains all processor and
OS-specific parts, the latter is platform independent and
provides generic processor-based functions like retrieving
hormone values for basic elements on a given processor
core (e.g., an ALU works better on a processor core with
strong arithmetic features and therefore deserves higher
hormone values to attract this basic element). This is
done in cooperation with the DNA Class Library which
implements all the basic elements. Table 1 shows the
basic elements realized in the prototypic implementation
of the class library. In addition to the elements already
mentioned in the previous section, there are elements to
multiplex and demultiplex data values, to limit data val-
ues, to define thresholds, switching levels and hysteresis
for data values. A complementary filter allows data fusion

Brinkschulte EURASIP Journal on Embedded Systems (2017) 2017:23 Page 6 of 16

DNA Processor
Library

(hardware/OS dependent)

DNA Processor
Basic Library

DNA AHS DNA Class Library DNA Sensor Actor
Interface

AHS
DNA Sensor Actor

Interface Driver

(hardware/OS dependent

DNA Processor

Hormone/Task Network IO Network

Link to other DNA processors and IO devices

DNA File

DNA Builder

Fig. 6 Architecture of the DNA implementation

similar to but more simple than a Kalmann filter. The
DNA checker creates a non-zero output value as soon as
the system defined by the given DNA is completely set
up and therefore becomes operational on the distributed
DNA processors. It can be connected, e.g., to an actor like
a LED to indicate the operational state of the system con-
structed by the DNA (see Fig. 13 in Section 5). The DNA
logger writes all input values to a log file and therefore
allows the logging of data streams within the system. This
small number of basic elements already enables a consid-
erable range of embedded applications, as will be seen in
Section 5. All basic elements realized in this prototypic
implementation use single precision IEEE float values for
data exchange.
The component DNA AHS is the connector between

all other components and the AHS Library. Together
these components realize the DNA Builder introduced in

Table 1 Basic elements implemented

Id Basic element Id Basic element

1 ALU 50 Complementary filter

10 PID 70 Constant

11 P 71 Counter

12 I

13 D 500 Sensor

600 Actor

40 Multiplexer

41 Demultiplexer 997 Stop

42 Level 998 DNA checker

43 Limit 999 DNA logger

44 Hysteresis

45 Threshold

Section 3.3. Based on the DNA read from file, all necessary
basic elements are selected, all interconnections between
these basic elements are defined and all hormone values
are calculated. This information is promoted to the AHS
library which places the basic elements to the DNA pro-
cessors (see also Section 3.3). To provide an interface to
sensors and actors, the DNA Sensor Actor Interface com-
ponent is used. It maps the resource id used as an abstract
identification of a specific sensor or actor (see Section 3.1)
to the real sensor or actor. This is done in a flexible way
by a mapping table allowing the use of various sensors
and actors. The DNA Sensor Actor Driver component is
used to access the real sensor/actor hardware2. Only the
two components shaded gray in Fig. 6 are platform depen-
dent, all other components are independent from the used
processor, sensor/actor hardware, and OS platform. This
allows a high portability of the DNA processor implemen-
tation. All components are implemented in ANSI C/C++.
We compiled them for two target platforms: PC running
Windows and Raspberry Pi running Linux. Table 2 shows
the memory footprint of both implementations. It can be
seen that this footprint is rather small and compact. Only
the DNAprocessor library component forWindows is big.

Table 2 Components of the DNA implementation

Raspberry Pi (kB) Windows PC (kB)

DNA-AHS 31 71

DNA Class Library 34 75

DNA Processor Basic Library 7 19

DNA Processor Library 27 3964

DNA Sensor Actor Interface 41 22

AHS 146 379

Processor overall 270 1662

Brinkschulte EURASIP Journal on Embedded Systems (2017) 2017:23 Page 7 of 16

Fig. 7 The demonstrator vehicle

This is due to the fact that Microsoft Foundation Classes
(MFC) are used there to show processor information in
Windows dialog boxes. The Raspberry Pi implementation
uses console IO for this purpose and is therefore rather
small. The overall DNA processor size on the Raspberry
Pi is only 270 kB. It is possible to create a similar small
footprint for Windows PC by using a console version
instead of MFC. Both implementations are fully com-
patible and can be used in a distributed heterogeneous
environment.

5 Evaluation
A first evaluation result has already been presented in
the previous section. The memory footprint of the arti-
ficial DNA implementation is rather small as shown in
Table 2. To conduct further evaluations, we have chosen
a flexible robot vehicle platform (FOXI)3 as a demonstra-
tor. This platform can be used either as a self-balancing
two-wheel vehicle (as an inverse pendulum, e.g., a Segway
personal transporter) or a stable four-wheel vehicle by two

additional foldaway supporting wheels. It uses a differen-
tial drive and is equipped with various sensors and actors.
This allows a wide range of real-time applications. Figure 7
shows a picture of the vehicle (while running a self-
balancing applicationDNA) and Fig. 8 sketches the vehicle
architecture. It holds three quadcore Raspberry Pi proces-
sors running Raspian Linux. Three cores of each Pi are
used as DNA processors resulting in overall 9 DNA pro-
cessors on the demonstrator platform4. The Pis are inter-
connected by Ethernet. Additionally, a WLAN module is
connected. This allows to load DNA files from the out-
side to the DNA archive of each Pi and to remotely control
which DNA is cloned (loaded) from the DNA archive to
all DNA processors. It is guaranteed that all DNA proces-
sors (the cells) use the same DNA at a time5. Furthermore,
additional external DNA processors and external sensors
and actors, e.g., on a Windows PC can be attached via
WLAN to extend the demonstrator6. All internal sensors
and actors are attached to and shared by the Raspberry
Pis via an I2C bus7. Available sensors are three super-
sonic rangefinders (to detect obstacles left, right, or in
front of the vehicle in autonomous driving applications),
a three-axis gyroscope and accelerometer (used, e.g., for
self-balancing applications), an odometer for the left and
the right drive wheel (to measure the distance traveled),
and several push buttons as digital inputs. Actors are the
left and right motor of the differential drive and several
LEDs which can be used as digital outputs or dimmed
by PWM. The power supply of each Pi can be shutdown
remotely or by a push button to inject a heavy component
failure (turning off the power of one Raspberry Pi means
the simultaneous hard failure of three DNA processors).
Single cores can be shutdown individually as well8.
Loading a specific DNA to the demonstrator vehicle

platform now determines what the vehicle will become.
For evaluation purpose, we have created several different
DNAs as shown in Figure 9.

Quadcore Raspberry Pi 1

Hormone/Task Network (Ethernet, UDP)

IO Network (I2C)

Motor
Left/Right

Obstacle Range
Left/Middle/Right

Distance
travelled

3D Gyroscope/
Accelerometer

LEDs
Buttons

Sensors/Actors

DNA
Processor

DNA Archive

Active DNA

DNA
Processor

DNA
Processors

Quadcore Raspberry Pi 2

DNA
Processor

DNA Archive

Active DNA

DNA
Processor

DNA
Processors

Quadcore Raspberry Pi 3

DNA
Processor

DNA Archive

Active DNA

DNA
Processor

DNA
Processors

WLAN Adapter Remote DNA Load
and Control

Fig. 8 Architecture of the demonstrator vehicle

Brinkschulte EURASIP Journal on Embedded Systems (2017) 2017:23 Page 8 of 16

Fig. 9 Shaping the vehicle by different DNAs

5.1 A first example
As a first very simple example, Fig. 10 shows the block
diagram of a DNA for a battery indicator. It displays the
battery voltage by a bar of LEDs. For better identification
of the basic elements in this figure they are numbered in
the left-lower corner. The DNA consists of a battery volt-
age sensor (basic element 1) which delivers its output each
100 ms to a level discriminator (basic element 3). This
discriminator triggers actor LEDs (basic elements 5–12)
depending on the input voltage level. The discriminator
levels are defined by the parameter set 10 (high voltage),
0.25 (voltage step), and 8 (low voltage). Finally, another

LED actor (basic element 4) shows when the application
has been completely built or rebuilt (in case of a failure)
by its DNA using the DNA checker basic element (2) with
a period of also 100 ms. The DNA consist of 12 basic
elements and uses only 4 different basic elements. The
size of the DNA stored in the compact form proposed in
[1] is 162 B.
This simple DNA can be used as a good first example

to demonstrate the self-healing properties of the concept
in a qualitative way. When loading the DNA and start-
ing the system, the battery indicator builds itself based
on its DNA. The upper part of Fig. 11 shows how the
battery indicator initially allocates and connects itself
to the 9 DNA processors of the 3 Raspberry Pis. The
upper picture of Fig. 12 shows a snapshot of the vehi-
cle once the battery indicator has established itself at
time t1. The bar of red LEDs shows the battery is com-
pletely charged. The three yellow LEDs above the bar
indicate all 3 Raspberry Pis are powered up and active.
At time t2 we suddenly shut down the power supply of
Raspberry Pi 3. This results in the simultaneous failure
of its 3 DNA processors, which hold 3 LED actors (basic
elements 5, 6, and 11, see upper part of Fig. 11). So for
a very short moment, those 3 red LEDs go dark as can
be seen in the middle snapshot picture of Fig. 12. Fur-
thermore, the rightmost yellow LED is now dark since
Raspberry Pi 3 is down. However, based on its DNA the
battery indicator rebuilds itself autonomously. At time

Sensor
(Battery Voltage,100ms)

1

Level
(10 0.25 8)

3

DNA Checker
(100 msec)

2

Actor
(LED)

4

Actor
(LED)

5

Actor
(LED)

6

Actor
(LED)

7

Actor
(LED)

8

Actor
(LED)

9

Actor
(LED)

10

Actor
(LED)

11

Actor
(LED)

12

Fig. 10 Block diagram of the battery DNA

Brinkschulte EURASIP Journal on Embedded Systems (2017) 2017:23 Page 9 of 16

Fig. 11 Allocation and connection of battery indicator basic elements before and after killing of Pi 3

t3 the system has completely recovered as can be seen
in the lower snapshot picture of Fig. 12. This happens
very quickly, as the green LED (basic element 4, located
right next to the red LED bar) which checks and indi-
cates the completeness of the DNA every 100 ms, does
not even go dark. The lower part of Fig. 11 shows the
result of reallocation and reconnection to the remaining
6 DNA processors. Actually, basic elements 5, 6, and 11
have autonomously moved to new DNA processors, as
also indicated in Table 3. As mentioned in Section 3.3, the
time complexity of this rebuilding process is O(n). With
n equal to 3 basic elements to relocate, this is achieved in
less than 150 ms, so the flickering of the LED is too short
to be visible.

5.2 More DNAs
In the following, a more detailed quantitative evaluation
is conducted based on more complex DNAs. Figure 13

shows a DNA that makes the vehicle self-balancing, e.g.,
a Segway. Like before, the basic elements in this figure
are numbered in the left-lower corner. The self-balancing
DNA basically consists of a cascaded closed control loop.
The outer loop (basic elements 1, 2, 3, 7, 8, 10, 12, 16)
controls the speed of the vehicle by a PID controller. The
current speed is determined by differentiating (7, 8) and
averaging (10) the odometer data of the left (1) and right
(2) wheels of the differential drive. The desired speed set-
point is read by an external sensor (3) via WLAN. A PID
controller (16) sets the vehicle angle by the speed devia-
tion (12) with a period of 100 ms. If the vehicle is too slow,
it will tilt forward to accelerate. If the vehicle is too fast, it
will tilt backward to slow down. With a slight correction
regarding the mass center (15, 20), this is the setpoint for
the inner loop which controls the vehicle angle (basic ele-
ments 4, 5, 9, 11, 14, 18). The current angle is determined
by the fusion of accelerometer (4) and gyroscope (5) data

Brinkschulte EURASIP Journal on Embedded Systems (2017) 2017:23 Page 10 of 16

Fig. 12 DNA-based self-healing of the battery indicator

using a complementary filter (9). This is necessary because
pure accelerometer data is noisy and gyroscope data has
a permanent drift. A PID controller (14) accelerates or
decelerates the differential drive (18) using the angle devi-
ation (11) with a period of 15 ms to achive the desired
angle. The desired direction of the vehicle is read by
another external sensor (6) viaWLAN and is directly con-
nected to the direction actor (19) of the differential drive.
Finally, a LED (17) shows when the application has been
completely built or rebuilt (in case of a failure) by its DNA
using the DNA checker basic element (13). This DNA
consists of 20 basic elements and uses 8 different basic ele-
ments. The size of this DNA stored in the compact form
proposed in [1] is 188 B. It shows the artifical DNA con-
cept allows a very compact representation of embedded
applications.
To further evaluate this, we have created more DNAs:

An Autonomous Guided Vehicle (AGV) DNA shown in
Fig. 14 autonomously drives the vehicle in a maze using
the supersonic range finder sensors. This DNA uses the
supporting wheels so no self-balancing is necessary. Based

on the left and right range finders (basic elements 1, 2),
a driving direction is calculated (5, 6, 10, 11, 14, 18).
In case of an obstacle very close to the mid range
finder (basic element 3), an evasive turn action is pro-
vided (7, 12, 15, 16, 19, 20, 22). The vehicle speed is

Table 3 Movement of battery indicator basic elements due to
killing of Pi 3

Pi DNA processor Basic elements Basic elements
before killing Pi 3 after killing Pi 3

1 1 1 1, 5

1 2 3, 9 3, 9

1 3 7, 10 7, 10

2 1 2 2, 6

2 2 4, 12 4, 12

2 3 8, 8, 11

3 1 5

3 2 6

3 3 11

Brinkschulte EURASIP Journal on Embedded Systems (2017) 2017:23 Page 11 of 16

Sensor
(Accel X, 15msec)

4

Sensor
(Gyro X, 15msec)

5

Complementary
Filter

9 (15, 15msec)

Sensor
(Distance Left, 100msec)

1

D
(0.001, 100msec)

7

Sensor
(Distance Right,100msec)
2

D
(0.001, 100msec)

8

ALU
(Average)

10

Sensor
(Speed Setpoint,

3 100msec)

Sensor
(Direction Setpoint,

6 100msec)

ALU
(-)

12

PID
(12, 0.001, 0, 100msec)

16

ALU
(+)

20

Constant
(-3.0, 100msec)

15

ALU
(-)

11

PID
(-0.1, 0.05, 0.08, 15msc)

14

Actor
(Motor Speed)

18

Actor
(Motor Direction)

19

DNA Checker
(100 msec)

13

Actor
(LED)

17

Fig. 13 Block diagram of the balancer DNA

calculated by the lowest value of all three range find-
ers (8, 13, 17). This DNA applies direct control to the
left and right motor of the differential vehicle drive
(23, 24, 25, 26, 28, 29).
A Balanced AGV DNA sketched in Fig. 15 combines

the self-balancing (basic elements 1–17) and the AGV
DNA (basic elements 18–42) to create a self-balancing
autonomous vehicle.
A Follower DNA displayed in Fig. 16 lets the vehicle fol-

low an object using the rangefinders. The direction to the
obstacle is calculated by the left and right range finders
(1, 2, 5, 6, 9, 10, 13, 15, 17, 19, 20). The speed is calculated
by a closed PID control loop (14, 16, 21) to keep it at a

desired distance of 30 cm (11) from the obstacle. The dis-
tance is derived by the minimum of all three range finders
(1, 2, 3, 7, 12).
Finally, a Balanced Follower DNA shown in Fig. 17

combines the self-balancing (basic elements 1–17) and
the Follower DNA (basic elements 18–42) to create a
self-balancing follower.
Table 4 gives the sizes of these DNAs. They are all very

small and only consist of few different basic elements. Fur-
thermore, the load produced by the communication of the
basic elements for each application is given in this table.
This load is also considerably small in the range of some
kiloBytes per second.

Sensor
(Range Left, 100msec)

1

Limit
(0 35)

5

Sensor
(Range Right, 100msec)

2

Limit
(0 35)

6

ALU
(max)

11

Sensor
(Range Middle, 100msec)
3

ALU
(-)

10

Constant
(30, 100msec)

7

ALU
(<)

12

Actor
(LED)

27

DNA Checker
(100 msec)

4

Actor
(LED)

9

Limit
(1 9999)

14

ALU
(/)

18
MUX

22

MUX

20

Constant
(1)

15

Constant
(-1, 100msec)

16

Hysteresis
(-8 8)

19

ALU
(min)

8
ALU
(min)

13

P
(0.015)

17

Actor
(Motor Right)

29

ALU
(*)

26

ALU
(-)

24

Actor
(Motor Left)

28

ALU
(*)

25

ALU
(+)

23

Constant
(0.5, 100msec)

21

Fig. 14 Block diagram of the AGV DNA

Brinkschulte EURASIP Journal on Embedded Systems (2017) 2017:23 Page 12 of 16

Fig. 15 Block diagram of the Balanced AGV DNA

Sensor
(Range Right, 100msec)

1

Limit
(0 65)

5

Sensor
(Range Left, 100msec)

2

Limit
(0 65)

6

ALU
(max)

10

Sensor
(Range Middle, 100msec)
3

ALU
(-)

9

DNA Checker
(100 msec)

4

Actor
(LED)

8

Limit
(1 9999)

13

ALU
(/)

15

ALU
(min)

7
ALU
(min)

12

Constant
(30, 100msec)

11

Actor
(Motor Direction)

20

ALU
(-)

14

Actor
(Motor Speed)

21

P
(0.4)

17

PID
(0.03 0 0, 100msec)

16

Hysteresis
(0 0 1 -1)

18

ALU
(*)

19

Fig. 16 Block diagram of the Follower DNA

Brinkschulte EURASIP Journal on Embedded Systems (2017) 2017:23 Page 13 of 16

Sensor
(Accel X, 15msec)

3

Sensor
(Gyro X, 15msec)

4

Complementary
Filter

7 (15, 15msec)

Sensor
(Distance Left, 100msec)

1

D
(0.001, 100msec)

5

Sensor
(Distance Right,100msec)
2

D
(0.001, 100msec)

6

ALU
(Average)

8 ALU
(-)

10

PID
(12 0.01 0, 100msec)

15

ALU
(+)

16

Constant
(-3.0, 100msec)

14

ALU
(-)

9

PID
(-0.1 0.05 0.08, 15msec)

11

Actor
(Motor Speed)

17

Sensor
(Range Right, 100msec)

18

Limit
(0 55)

22

Sensor
(Range Left, 100msec)

19

Limit
(0 55)

23

ALU
(max)

27

Sensor
(Range Middle, 100msec)
20

ALU
(-)

26

DNA Checker
(100 msec)

21

Actor
(LED)

25

Limit
(1 9999)

30

ALU
(/)

34

ALU
(min)

24
ALU
(min)

29

Constant
(30, 100msec)

28

Actor
(Motor Direction)

42

ALU
(-)

31

P
(0.4)

38

PID
(0.005 0 0, 100msec)

35

Hysteresis
(0 0 1 -1)

33
ALU

(*)
37

Limit
(-0.2 0.2)

41

ALU
(*)

40

Limit
(-0.18 0.18)

39

ALU
(*)

13

ALU
(*)

12

Hysteresis
(30 150 0 1)

32

Actor
(LED)

36

Fig. 17 Block diagram of the Balanced Follower DNA

5.3 Real-time behavior
The basic elements are allocated and connected to the
DNA processors by the DNA and the AHS in a self-
organizing way. Table 5 shows this exemplarily for the
self-balancing DNA. The first row shows the initial allo-
cation to the available 9 DNA processors. After a while,
the power supply of Raspberry Pi 2 was shut down turning
off three DNA processors simultaneously. The DNA and
AHS now reallocate and reconnect the basic elements so
the remaining 6 DNA processors can still perform the

Table 4 Sample DNAs

DNA Basic Different basic DNA size Communication
elements elements (Bytes) load (Bytes/s)

Battery 12 4 162 2100

Balancer 20 8 188 9513

AGV 29 10 338 7140

Balanced AGV 42 13 536 15,183

Follower 21 10 270 5040

Balanced Follower 42 11 536 22,953

application. The new allocation is shown in row 2 of the
table. The reallocated basic elements are marked in italic.
We use this DNA scenario to evaluate the real-time

behavior of the artificial DNA system on the demonstrator
platform. The results of the other DNAs are very similar.
Figure 18 shows the measured period of the motor control

Table 5 Balancer: allocation of basic elements before and after
killing of Pi 2

Pi DNA processor Basic elements Basic elements
before killing Pi 2 after killing Pi 2

1 1 13, 17 6, 13, 17, 19

1 2 4, 5, 9, 11 4, 5, 9, 11

1 3 15, 20 12, 15, 16, 20

2 1 6, 19

2 2 10, 12, 16

2 3 3

3 1 14, 18 3, 14, 18

3 2 1, 7 1, 7, 10

3 3 2, 8 2, 8

Brinkschulte EURASIP Journal on Embedded Systems (2017) 2017:23 Page 14 of 16

Fig. 18 Real-time properties: period of the motor control signal

signal (output of basic element 14 in the balance DNA). As
mentioned above, the period of the inner control loop is
set to 15 ms by the DNA parameters. Overall this period
is reached quite well; however, Raspian Linux is no real-
time operating system. So some occasional spikes in the
range of plus/minus 12 ms to the intended period can be
observed. It is very interesting that shutting down Pi 2
at timestamp 14,800 only produces a spike of plus/minus
10 ms, which is in the range of the other spikes. So the
self-rebuilding of the system by the DNA works almost

seamlessly and fast. The vehicle does not lose its balance.
This can be seen in Fig. 19. Here, the deviation of the
desired speed and angle of the vehicle are shown. After the
initial self-building of the system which takes about 700
ms, the target angle and speed are well reached. The small
angle deviations of about plus/minus 5° result from the
remaining noise of the accelerometer, friction, mechanical
play of the drive and the occasional spikes in the control
period as shown in the previous diagram. Interestingly, the
shutdown of Pi 2 does not cause a major disturbance in

Fig. 19 Angle and speed deviation of the vehicle controlled by the balancer DNA

Brinkschulte EURASIP Journal on Embedded Systems (2017) 2017:23 Page 15 of 16

Fig. 20 Extract of Fig. 19

angle and speed control. This is shown in more detail in
Fig. 20. The deviation is in the range of the other devia-
tions. The rebuilding process is fast enough to keep well
the balance and the speed. Additionally, Fig. 21 shows the
motor control signal itself. Also here it can be seen that the
shutdown of Pi 2 does not cause any extraordinary change
in this signal.

6 Conclusions
In this paper we presented an approach to use a dig-
ital artificial DNA for self-describing and self-building

systems. This DNA is deposited in each computation node
as a blueprint to build and repair the system autonomously
at runtime. Mimicking biology this way provides robust-
ness and dependability. The prototypic implementation of
the DNA approach enabled an evaluation on a real-world
scenario, a robot vehicle. The results showed that the
memory and communication overhead of the implemen-
tation are rather small, application DNAs are compact,
and can be built with a limited number of basic ele-
ments. Self-building and self-repairing of the application
at runtime can meet real-time requirements.

Fig. 21Motor control signal

Brinkschulte EURASIP Journal on Embedded Systems (2017) 2017:23 Page 16 of 16

Future work will focus on larger DNAs in combination
with more DNA processors and dynamic DNA modifica-
tion at runtime to allow system evolution.

Endnotes
1Permanent processor failures like e.g. core crashes,

which are detected by missing hormones of the AHS or
temporary failures like e.g. single event upsets in memory,
which can be detected by monitoring circuits. Commu-
nication failures are currently not handled and will be
subject of future work.

2This driver allows not only access to real sensors and
actors, but also to simulated ones. So the implemented
DNA system is able to handle mixed environments con-
sisting of real and simulated hardware.

3FlexibleOrganix eXperimental vehIcle
4 Since Raspian Linux is no real-timeOS, the fourth core

of each Pi is spared for operating system usage.
5However, the DNA on all processors can be changed at

run-time simultaneously.
6As a restriction, external DNA processors have no

access to the internal sensors and actors of the vehicle,
so basic elements attached to these sensors and actors
will not be allocated to external DNA processors. Further-
more, real-time capabilities of external DNA processors,
sensors and actors are limited due to the WLAN connec-
tion.

7 since the native I2C bus interface of the Raspberry Pi
is not multi-master capable, we added some additional
hardware support to realize multi-master access.

8 Failures of the communication system are not in the
focus of this demonstrator. This will be covered by future
research work.
Competing interests
The authors declare that they have no competing interests.

Received: 11 October 2016 Accepted: 22 December 2016

References
1. U Brinkschulte, An artificial DNA for self-descripting and self-building

embedded real-time systems. Concurrency Computat.: Pract. Exper. 2016.
28, 3711–3729 (2016)

1. U Brinkschulte, (2016), . 2016; Vol.28, Pages: 3711âĂŞ3729, Wiley
2. G Jetschke,Mathematik der Selbstorganisation. (Harry Deutsch Verlag,

Frankfurt, 1989)
3. R Whitaker, Self-Organization, Autopoiesis, and Enterprises (1995). http://

www.enolagaia.com/RW-ACM95-Main.html
4. IBM, Autonomic Computing (2003). http://www-03.ibm.com/autonomic/

pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
5. JO Kephart, DM Chess, The Vision of Autonomic Computing. IEEE

Comput. 36(1), 41–50 (2003)
6. VDE/ITG (Hrsg.), VDE/ITG/GI-Positionspapier Organic Computing:

Computer und Systemarchitektur im Jahr. GI, ITG, VDE, (2003). https://

www.gi.de/fileadmin/redaktion/Presse/VDE-ITG-GI-Positionspapier_
20Organic_20Computing.pdf

7. H Schmeck, in 8th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC 2005). Organic Computing - A
New Vision for Distributed Embedded Systems (IEEE, Seattle, 2005),
pp. 201–203

8. DFG Schwerpunktprogramm, Organic Computing (2007). http://gepris.
dfg.de/gepris/projekt/5472210

9. IEEE, Organic Computing Task Force (2009). http://www.neuroinformatik.
rub.de/thbio/project/oc

10. EU, Program Future Emerging Technolgies FET - Complex systems (2009).
https://cordis.europa.eu/ist/fet/co.htm

11. CSIRO, Centre for Complex Systems (2009). https://www.natureindex.
com/institution-outputs/australia/csiro-centre-for-complex-systems-
science-css/563ab1fe140ba0097e8b4574

12. U Brinkschulte, CMüller-Schloer, M Pacher (eds.), Proceedings of the
Workshop on Embedded Self-Organizing Systems (Usenix, San Jose, 2013)

13. G Lipsa, A Herkersdorf, W Rosenstiel, O Bringmann, W Stechele, in 2nd IEEE
International Conference on Autonomic Computing. Towards a Framework
and a Design Methodology for Autonomic SoC (IEEE, Seattle, 2005)

14. A Bernauer, O Bringmann, W Rosenstiel, in IEEE International Conference on
Self-Adaptive and Self-Organizing Systems (SASO), San Francisco, USA.
Generic Self-Adaptation to Reduce Design Effort for System-on-Chip, 717
(IEEE, San Francisco, 2009), pp. 126–135

15. F Kluge, J Mische, S Uhrig, T Ungerer, in Second International Summer
School on Advanced Computer Architecture and Compilation for Embedded
Systems (ACACES 2006). CAR-SoC - Towards and Autonomic SoC Node
(HiPEAC, L’Aquila, 2006)

16. F Kluge, S Uhrig, J Mische, T Ungerer, in 6th IFIP Workshop on Software
Technologies for Future Embedded and Ubiquitous Systems (SEUS 2008). A
Two-Layered Management Architecture for Building Adaptive Real-time
Systems, (Capri, 2008)

17. J Becker, K Brändle, U Brinkschulte, J Henkel, W Karl, T Köster, M Wenz, H
Wörn, inWorkshop on Parallel Systems and Algorithms (PASA), ARCS 2006.
Digital On-Demand Computing Organism for Real-Time Systems (GI,
Frankfurt, 2006)

18. U Brinkschulte, M Pacher, Av Renteln, in Organic Computing. An Artificial
Hormone System for Self-Organizing Real-Time Task Allocation in Organic
Middleware (Springer, Heidelberg, 2008)

19. W Trumler, T Thiemann, T Ungerer, in Biologically inspired Cooperative
Computing, IFIP 19thWorld Computer Congress 2006, August 21-24 2006,
Santiago de Chile, Chile. An Artificial Hormone System for Self-organization
of Networked Nodes (IFIP, Santiago de Chile, 2006)

20. G Weiss, M Zeller, D Eilers, R Knorr, in Autonomic and Trusted Computing,
Brisbane, Australia. Towards Self-organization in Automotive Embedded
Systems (Springer, Brisbane, 2009), pp. 32–46

21. MH Garzon, H Yan (eds.), DNA Computing, 13th International Meeting on
DNA Computing, DNA13, Memphis, TN, USA, June 4-8 2007, Revised Selected
Papers, volume 4848 of Lecture Notes in Computer Science (Springer,
Heidelberg, 2008)

22. JY Lee, S-Y Shin, TH Park, B-T Zhang, Solving traveling salesman problems
with dna molecules encoding numerical values. Biosystems. 78(1–3),
39–47 (2004)

23. GS Hornby, H Lipson, JB Pollack, in Robotics and Automation, 2001.
Proceedings 2001 ICRA. IEEE International Conference on. volume 4,
Evolution of generative design systems for modular physical robots (IEEE,
Seoul, 2001), pp. 4146–4151

24. EA Lee, S Neuendorffer, MJ Wirthlin, in Journal of Circuits, Systems and
Computers. Actor-Oriented Design Of Embedded Hardware And Software
Systems (World Scientific, Singapore, 2003)

25. G Nicolescu, PJ Mosterman,Model-Based Design for Embedded Systems.
(CRC Press, Boca Raton, London, 2010)

26. A Sangiovanni-Vincentelli, G Martin, in IEEE Design and Test, Vol 18, No. 6.
Platform-Based Design and Software Design Methodology for Embedded
Systems (IEEE, New York, 2001), pp. 23–33

http://www.enolagaia.com/RW-ACM95-Main.html
http://www.enolagaia.com/RW-ACM95-Main.html
http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
https://www.gi.de/fileadmin/redaktion/Presse/VDE-ITG-GI-Positionspapier_20Organic_20Computing.pdf
https://www.gi.de/fileadmin/redaktion/Presse/VDE-ITG-GI-Positionspapier_20Organic_20Computing.pdf
https://www.gi.de/fileadmin/redaktion/Presse/VDE-ITG-GI-Positionspapier_20Organic_20Computing.pdf
http://gepris.dfg.de/gepris/projekt/5472210
http://gepris.dfg.de/gepris/projekt/5472210
http://www.neuroinformatik.rub.de/thbio/project/oc
http://www.neuroinformatik.rub.de/thbio/project/oc
https://cordis.europa.eu/ist/fet/co.htm
https://www.natureindex.com/institution-outputs/australia/csiro-centre-for-complex-systems-science-css/563ab1fe140ba0097e8b4574
https://www.natureindex.com/institution-outputs/australia/csiro-centre-for-complex-systems-science-css/563ab1fe140ba0097e8b4574
https://www.natureindex.com/institution-outputs/australia/csiro-centre-for-complex-systems-science-css/563ab1fe140ba0097e8b4574

	Abstract
	Keywords

	Introduction
	Related work
	Conception of the artificial DNA
	System composition model
	Artificial DNA
	Building the system from its artificial DNA

	Prototypic implementation
	Evaluation
	A first example
	More DNAs
	Real-time behavior

	Conclusions
	Competing interests
	References

