Scavongelli and Conti EURASIP Journal on Embedded Systems (2017) 2017:10

DOI 10.1186/513639-016-0047-5

EURASIP Journal on
Embedded Systems

RESEARCH Open Access

FPGA implementation of JPEG encoder

@ CrossMark

architectures for wireless networks

C. Scavongelli” and M. Conti

Abstract

implemented in a FPGA.

Due to its relative simplicity, the JPEG compression algorithm requires less hardware or software resources with
respect to new compression algorithms, for example the JPEG2000 and the JPEG XR. This makes it suitable
for low-power applications. Moreover, features embedded in the JPEG2000 and the JPEG XR, such as the
scalability of the image stream, can be added to the main JPEG core, making an encoder useful for example
in a video surveillance wireless network. Nevertheless, actual JPEG dedicated hardware realizations do not
implement many features of the compression standard. In this work, we developed several JPEG encoder architectures
with full real-time reconfigurability and support for the restart intervals and, for a simple scalability mechanism, the
scan scheme. These features make the architectures suitable for the use in low-bandwidth, low-power wireless
networks. The JPEG encoder architectures have been developed starting from a SystemC model and then

Keywords: FPGA, SystemC, JPEG architecture, Wireless networks

1 Introduction
In today’s world, every day we get a newer, faster, and
cheaper technology. This is particularly true for process-
ing and communication devices and any kind of sensors
and networks. Wireless sensor networks become every
day more powerful and ubiquitous, and it is becoming
possible to design a network for every purpose. Among
the others, video surveillance is becoming one of the most
promising applications of wireless sensor networks [1-6].
Wireless sensor networks are flexible and ready-to-
use: to install a network, we simply have to deploy the
sensors where we want to. But this flexibility comes with
three main prices: high sensitivity to the noise in the
channel, limited bandwidth, and limited power supply.
In a wireless image sensor network, this means that we
have to compromise among the quality of the image to
be transmitted, the number of images per second that
can be transmitted, and the power dissipated for image
processing and transmission. To find the optimum solu-
tion for the particular application we are working with,
image processing and compression algorithms, sensor
node architecture, wireless protocol from application

* Correspondence: c.scavongelli@univpm.it
Department of Information Engineering, Universita Politecnica delle Marche,
1-60131 Ancona, Italy

@ Springer Open

layer to physical layer, and network topology must be
analyzed and all the parameters of the sensor network
should be tuned with system level simulations.

In this paper, we focus on the usual solution to the
bandwidth limitations: the image compression. Image
compression is used to reduce the data amount to be
transmitted, but usually, this reduction comes with a loss
in the image quality and a greater sensitivity to channel
noise. Moreover, the image compression algorithm in-
troduces complexity and, hence, higher power consump-
tion. From this point of view, it is important to design
architectures with a good compromise between perfor-
mances and complexity.

Nowadays, the JPEG is the most used image compres-
sion algorithm, mainly because of its relatively easy im-
plementation and of its fair compromise between
complexity and compressed image quality. The PSNR of
a JPEG image is only a few dB lower than that of the
same JPEG 2000 image, while the compression time of
the former is seven times lower than the latter [7].
Moreover, the noise resilience of a JPEG image is compar-
able to that of a JPEG 2000 one in many cases [7], and the
advanced features defined by the JPEG 2000 standard (i.e.,
the scalability and the Region-Of-Interest) are defined by
the JPEG standard and its extensions too. While these

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13639-016-0047-5&domain=pdf
mailto:c.scavongelli@univpm.it
http://creativecommons.org/licenses/by/4.0/

Scavongelli and Conti EURASIP Journal on Embedded Systems (2017) 2017:10

extensions to the JPEG main core may be less efficient
than those of the JPEG 2000, in many applications (espe-
cially the battery-powered ones), the low complexity of
the JPEG can effectively balance this lower efficiency.

Several research have been devoted to the design of ar-
chitectures for a JPEG encoder. In [8], for example, an
architecture for a single-chip JPEG codec is described, in
[9, 10], an architecture for VLSI implementation, and in
[11, 12], another architecture for the implementation in
FPGA. The architectures described in [9, 11] are similar
and very efficient, and they are designed to maximize
the throughput by the extensive use of the pipeline,
while the architecture in [8] presents limitations due to
the poor DCT implementation. Another noteworthy
architecture for VLSI implementation is presented in
[13], which also takes into account for the acquisition of
the image to be compressed from a CMOS sensor. All
these architectures have several limitations: the imple-
mentations are limited to the very basic functionality of
the JPEG algorithm, which is the mode of operation
known as “JPEG Baseline” [14, 15]. This choice is moti-
vated by the fact that the JPEG Baseline is the “version”
of the JPEG most widely supported by free and commer-
cial software.

However, besides these basic functionalities, there are
many features that the standard defines and anyone im-
plemented. These features are useful and sometimes in-
dispensable in a wireless network: in particular, but not
only, the restart markers can be used to improve the
image noise resilience, and the scan mechanism as a
simple way to add scalability to the image stream, useful
for adaptive bandwidth utilization.

Moreover, the architectures reported in [8, 9, 11, 13]
have low reconfigurability: basically, they use small
ROMs to implement the tables and matrices required,
and they do not let the encoders to be reconfigurable
with other compression parameters. For example, no
architecture has been proposed that let the user to
choose the chroma subsampling factors or the scan
scheme, or even the compression quality (in the best
case, in [13], no more than four quality factors can be
chosen). This means that the user cannot choose the
compression parameters which best fit its network
needs, neither can he adapt those parameters while the
network is working: this can be a crucial functionality if
(for example) the noise in the channel suddenly
increases.

On the contrary, in a wireless network, it could be
crucial to adapt some parameters, such as the compres-
sion factor (lower if the network has a low number of
nodes or if the traffic is reduced, higher if the network is
congested), or the length of the restart intervals (shorter
interval when the noise is high, and higher otherwise).
In a wireless network, it could be useful to dynamically

Page 2 of 19

adapt these parameters using real-time measurements of
packet error rate or of the number of packets sent per
time unit.

The ability to reconfigure the system then leads to an-
other problem ignored by the literature: the change of
the format of the file, allowed by the JPEG standard. The
change of the parameters implies the change of the
marker segments containing them, so that the receiver
can correctly interpret the received files. In the architec-
tures proposed in the literature, it is assumed that the
structure of the file is always the same and therefore the
marker segments, being always constant, can be loaded
from a ROM.

From the complexity point of view, particular atten-
tion must be devoted to the realization of one of the
main blocks of the JPEG compression: the DCT. The
DCT is the bottleneck of the system due to the presence
of multiplications. It makes sense, therefore, to look for
“fast” versions of this algorithm, with the least number
of multiplications as possible.

In [16], the authors present a wide number of fast
methods for the calculation of the DCT, each with its
strengths and weaknesses. Among them, two interesting
algorithms for the calculation of a scaled version of the
DCT use:

a) the “rows-columns” method, that calculates a two-
dimensional DCT (on a square block of pixels) as
two one-dimensional DCTs. The algorithm is used
in [9, 11] and it is described in detail in [17].

b) the direct calculation of two-dimensional DCT. This
algorithm uses less multiplications with respect to
the previous one and about the same number of
additions, but at a price of a more complex
architecture.

More sophisticated approaches are presented in [18-20].

The architectures we propose in this work address
all these problems. Moreover, our encoder is fully
real-time reconfigurable and supports the restart
intervals and the scan mechanism. For the DCT, we
use the implementation (a), used in [9, 11]. This
architecture is very efficient, but it pays this efficiency
with the use of a high number of logical resources, so
we propose an alternative architecture slower but
consuming much less resources. Moreover, we present
several solutions for the module that packs the
variable-length Huffman codes into bytes, because this
module has a strong impact on the performances of
the whole encoder.

Section 2 presents an overview of JPEG compression
algorithm. The proposed architecture is reported in
Section 3. Section 4 reports the performances results
and details of the implementation on FGPA.

Scavongelli and Conti EURASIP Journal on Embedded Systems (2017) 2017:10

2 The JPEG algorithm

The compression of the image to be transmitted is fun-
damental for a low data rate network. For example, a
half-frame in an interlaced PAL transmission (720 x
288 pixels) would require about 622 kbytes in raw for-
mat, and therefore, the transmission of a single half-
frame in a channel with, for example, 125 kbps data rate
would take about 40 s: too much for a video surveillance
network with many sensors. Some kind of image com-
pression must be performed in order to reduce the
dimension of the image, and the JPEG compression al-
gorithm is one of the best choices. The encoding process
consists of several steps, as indicated in Fig. 1.:

Color transformation. The representation of the colors
in the image is converted from RGB to YCbCr. During
this pre-processing step, the resolution of the chroma
data can be reduced. The reason is that the human eye
is less sensitive to color details than to brightness
details, so this subsampling can further increment
the compression factor without affecting the quality
of the compressed image.

Down sampling. The image is partitioned in blocks of
8 x 8 pixels called data units (DUs). According to the
scan scheme chosen, the DUs may be further grouped
in the so-called Minimum Coded Units (MCUs).

DCT. The discrete cosine transform (DCT) is applied
to each data unit.

Quantization. The compressor divides each DCT
coefficient by a “quantization coefficient” and rounds
the result to an integer, in order to compress data
discarding a small amount of information. The
complete quantization tables actually used are recorded
in the compressed file, so that the decoder knows how
to reconstruct the DCT coefficients.

Huffman coding. The resulting data for all the 8 x 8
DUs are further compressed with a lossless algorithm,
the Huffman encoding. The Huffman encoder produces
variable-length codes, so, as final step, these codes are
packed into fixed-length bytes.

Page 3 of 19

The compressed data units are then inserted in a JPEG
file. The most used JPEG file format is the JPEG File
Interchange Format (JFIF) [14, 15]. In general, a JPEG
file consists of a sequence of segments, each beginning
with a marker (2 bytes). Some markers consist of just
those 2 bytes; others are followed by two additional
bytes indicating the length of the payload data and by
the payload data themselves. The first marker must be
the Start of Image (SOI) and the last one the End of
Image (EOI), while the other segments may appear
wherever in the final file. The JFIF format adds con-
straints on the place in the file where the markers must
be inserted.

The marker segments in a JPEG file contain informa-
tion on the image coding parameters (for example the
quantization and Huffman tables). The marker segments
can be grouped together in an image header that consists
of about 300 bytes and that can be contained for example
in three packets of the ZigBee standard (which maximum
payload size is 102 bytes). If the bytes of the header are
corrupted, the image cannot be decompressed on the re-
ceiver end. Therefore, this header must be protected, espe-
cially when transmitted in a wireless network: the header
can be fixed and transmitted only once during the cre-
ation of the network, in a secure way and with protection
in case of transmission errors, or retransmitted for each
image in a secure way. Obviously, if the compression pa-
rameters would change during the operations, the marker
segments must necessarily be retransmitted. Conversely,
errors during the transmission of the image data introduce
simply a degradation of the reconstructed image, but the
file will be always readable.

The presence of an error in 1 bit of a single Huffman
code will make impossible the decoding of the whole
image. To alleviate this problem, optional restart
markers (DRI and RSTn) [15] can be inserted in the data
stream. They are used to partition the data stream in a
numbered sequence of MCUs so that, if one or more
MCUs are lost during the transmission, the decoder is
able to understand in which part of the codestream data

Color
Transform

Down

> samplig

—p DCT p—» Quant.

——=> Encoding

Fig. 1 JPEG algorithm block scheme

Scavongelli and Conti EURASIP Journal on Embedded Systems (2017) 2017:10

are lost and skip to the next group of MCUs. With a
short restart interval, the damage on the image is lim-
ited, while the quality decreases rapidly increasing the
restart interval. From this consideration, the importance
of the use of restart markers is clear in a wireless
network, in which noise and interferences may be
relevant. The drawback is that the insertion of RST
markers decreases the compression factor, as we will
see in Section 4.

As an example of the noise protection performances
of the RST markers, Fig. 2a shows a JPEG image cor-
rupted with 2 % noise, Fig. 2b—d shows the same image
with the same noise but with restart markers and restart
interval equal to 16, 4, and 1 MCU, respectively. Many
works have been developed on the image protection
against noise. For example, in [21], the authors try to
correct the error in the image, while in [22], the authors
re-design the entropy encoder to make it error-resilient.
These approaches anyway are very complex. The noise
protection introduced simply by the RST markers can
be enough for a low-power application.

While the number of the DUs in a MCU depends on
the chroma subsampling factor, the type of the DUs, i.e.,
from which component they are taken, depends on the
scan scheme chosen. The DUs from the various compo-
nents are coded within several scans across the image,
and during each scan, the JPEG standard let us to freely
decide which component is in each DU. For example, in
a three-component YCbCr image, we can decide to en-
code the three components in a single scan, or we can
decide to encode the three components in three differ-
ent scans. In this last scenario, we would encode (and so

Page 4 of 19

transmit) first the whole grayscale component, then the
whole first chroma component, and finally, the whole
second chroma component. Figure 3 shows an ex-
ample of image transmission in this scenario. This
feature can be very useful in a band-limited transmis-
sion channel, because it can help to optimize the
band utilization.

3 The proposed architecture
The methodology used for the design of the JPEG
encoder is the following:

1) We developed a system level C++ code of the JPEG
encoder wrapped in a SystemC module.

2) We refined the SystemC description until we
reached a synthesizable model. We added to it the
features ignored in the literature but useful in a
wireless network, i.e., the restart markers, the
mechanism of scanning and file formatting, and we
made it dynamically reconfigurable according to the
actual needs of the network. We simulated the
system, taking advantage of the high speed of
SystemC simulations, to verify the performances of
the encoder in terms of clock cycles and complexity
and to see how these performances change with the
compression parameters.

3) We developed a VHDL version of the JPEG encoder
with a FPGA target implementation, and we verified
speed and logic resources required. We paid
particular attention to the DCT module design,
trying to find a compromise between performances
and resource utilization.

Fig. 2 Reconstructed image corrupted by 2/100-bit error. a Without restart markers. b With restart markers, restart interval length of 16 MCU.
¢ With restart markers, restart interval length of 4 MCU. d With restart markers, restart interval length of T MCU

Scavongelli and Conti EURASIP Journal on Embedded Systems (2017) 2017:10

Fig. 3 An example of scalable image transmission using the scan
mechanism. a After the transmission of the grayscale component.
b After the transmission of the first chroma component. ¢ After the
transmission of the second chroma component

The SystemC model of the proposed architecture with a
deep system level power analysis is reported in [23-25].

The highest level of the proposed architecture is pre-
sented in Fig. 4. The Sensor module models an imaging
device from Micron Technology Inc., and its role is to
send continuously images to the JPEG encoder. The
image sensor sends color (YCbCr) images with 4:2:2
subsampling and 27 MHz sampling frequency, following
the CCIR-601 [26] standard for video broadcast, to the
Acquisition_Interface module. This module captures the
data, and it passes them to the Memory_Controller, that
saves them in an internal buffer. Essentially, the Acquisi-
tion_Interface is a FIFO used to cross the clock domains.
The Memory_Controller contains three buffers used to

Page 5 of 19

store the three components of the image and some
control logic to read and write these buffers.

We made the encoder reconfigurable, saving the infor-
mation needed for the compression (such as the
quantization matrices and the Huffman tables) in several
registers or RAMs spread over the whole encoder and
the Memory_Controller. These registers are filled by the
Coordinator module. The Coordinator module in Fig. 4
appears in the testbench because its final implementa-
tion depends on the specific system it will work in and
on the particular way the information on the compres-
sion will be passed to the encoder.

Figure 5 shows the idea beneath the reconfigurability
feature. The parameters of the compression are saved in
a RAM or in an array of registers (according the needs
of the particular module). A multiplexer controls which
module writes the buffer, and the select input of the
multiplexer is controlled by the Coordinator. When the
Coordinator wants to update the contents of a particular
memory, it activates the appropriate Write Enable (WE)
signal, therefore accessing to the buffer. Once the update
is completed, the Coordinator releases the WE, letting
the internal logic to access to the memory. This internal
logic never rewrite the buffer, so its WE is always tied to
logic 0 and shown only for sake of clarity.

Using this scheme, the reconfiguration can occur in
real-time, in any particular time the user choose, but a
better solution is to reconfigure the encoder after a reset
of the system at the end of the compression of the
current image. The reason is simply the compatibility of
the final image with the JPEG standard: changing, for ex-
ample, the quantization matrix when the compression of
a particular component is occurring will lead to a non-
standard image. However, the real-time reconfiguration
is possible if the decoder and the transmission protocol
are modified accordingly.

The encoding can be done either once the entire
image is captured or in real-time during capture. The
main encoder consists of seven blocks, reported in
Fig. 4, that will be described in the following
subsections.

3.1 Bridge_Buffers

The Bridge Buffers are intermediate buffers, which
contain the DUs to be compressed. The Bridge_ Buffers
module is able to store three DUs, so that loading, DCT
and encoding modules can work in parallel on different
DUs.

3.2 Get_A_DU

The Get_A_DU module requires the DU to be com-
pressed from the Memory_Controller, it stores this DU
in the buffers, and it requests another DU.

Scavongelli and Conti EURASIP Journal on Embedded Systems (2017) 2017:10

Page 6 of 19

v

Compressed "data

Fig. 4 Encoder architecture

o L T T T T T T T T T T T T T T T T ey~ — = =227
I 1
1N . :IAcquisition_InterfaceI :
1 GC) 1 : :
LB -
! 1
I 1
! ! : I Memory_Controller I :
|) |
1 1 ‘ 1
1 1 1
1 1 1
: : 1 v 1
1 — 1
ST c o » Get ADU [=» |
1 OC) 1 > (0] ™ :
-1 S 5 1) !
@l m 1
e]
E e %l %' - Scan_Manager % !
1 1
1 - S n
! i Q o f’ 210
11 » - -
s | Huffman_Coding a '
| s | — 31
1 % 1 : © :
I [11 1
| 81! Init_JPEG !
1] O i 1
: 11 1
1
| ___!WPEGEncoder | __________________________ :

3.3 Scan_Manager

Figure 6 shows the internal high-level architecture of the
Scan_Manager module. This module calculates the off-
set, from the top left corner of the image, of the new
DU to be loaded. It calculates this offset depending on
how the system is configured: size of components, sub-
sampling factors, restart intervals, number of scans, and
so on. These calculations are done using the three-
module pipeline showed in the figure. The Init_Scan

components that will be compressed in that scan and
the length of the restart interval, according to the sub-
sampling factor and of the number of components in
the scan. The Code A _Scan module creates the offset
from the top left corner of the image of the current
MCU, according to the scan scheme. Finally, the
Get_A_MCU module creates the offset for the DUs in-
side the current MCU. These offsets are passed to the
Get_A_DU module that will load the image pixels from

module initializes the current scan, setting the the main memory and apply the DC level shift before
Image data
parameter
Parameters
Coordinator [We_ [~ ofthe | parameter
- compression)
adr adr (RAM or Processing
adr MUX | Registers) Module
WE
/
WE
Image data
Fig. 5 The reconfiguration mechanism of a generic module
J

Scavongelli and Conti EURASIP Journal on Embedded Systems (2017) 2017:10

Page 7 of 19

Code_A

init Init_Scan
_Scan

Get_A_

MCU to Get_A_DU

i

Add_EOI
_Marker

to Output_Stage

Add_SOS

Fig. 6 The Scan_Manager module (links to Coordinator not shown)

—-

_Marker to Output_Stage

storing these pixels in the Bridge Buffers. Moreover, the
Scan_Manager generates, where appropriate, the SOS and
EOI markers.

3.4 Init_JPEG

The other markers are generated (again depending on
the image and encoding parameters) by the Init JPEG.
This module simply consists of a series of daisy-chained
submodules that assembles the marker segments starting
from the compression parameters saved in them by the
Coordinator.

3.5 Hufmann_Coding

The Huffiman_Coding module executes three operations
in parallel: DC coefficient coding, AC coefficient coding,
and possibly insertion of the restart marker, depending
on the restart interval length, according to the scheme
showed in Fig. 7. The DC_Coding takes care of the DC
coefficient coding, the AC_Coding of the AC coefficient
coding, and the RST _Marker_Manager of the restart
marker insertion. We have to use two different modules
for the DC and AC coefficients because the standard de-
fines to different styles of coding for them. Hence, while
the DC_Coding performs the differential DC coding, the
AC _Coding performs the ZRL coding. All these three
modules have an output buffer where the coded DCT
coefficients are stored, ready to be requested by the out-
put stage. The output stage triggers all of them, and the
AC_Coding decides when it is time to emit a DC coeffi-
cient, an AC coefficient, or a RST marker. The output
buffers allow the three modules to work in parallel, im-
proving the performances.

3.6 DCT_and_Quant

The DCT_and_Quant module, shown in Fig. 8, executes
the 8 x8 2-D DCT transform, applying two successive
1-D DCT transforms (the classical row-column method),

quantization and rounding. The algorithm used for the
1-D DCT transform is the one reported in [17], with six
pipelined stages, and with each pair of stages separated
by a buffer. The architecture described in [17] uses, for
these buffers, a pair of registers array to feed the next
stage and to collect the data from the previous one. In
our architecture, with the Bridge Buffers in the middle
we need a sixth array before the first stage. This ap-
proach is easy to understand, but it requires a lot of lo-
gical resources. For example, using 20-bit fixed-point
arithmetic and eight registers for array (one register for
each element in a row of a DU), we would need about
20 x 8 =160 flip-flops for array, hence 160 x 2 = 320 FFs
for buffer, hence 320 x 6 =1920 FFs for 1-D DCT, and
hence about 4000 FFs for the whole DCT. To this num-
ber, we have to add the other resources needed for the
coefficient transformation and for the control of the
reading/writing of the buffers.

The limited bandwidth of a wireless network can help
us to find a more resource-efficient architecture. If the
data rate is limited, it does not make sense to implement
an ultra-fast architecture if the data have to wait in a
buffer some time before being transmitted. We can relax
the specifications on the speed trying to build up a more
area efficient architecture. The proposed solution is
shown in Fig. 9. It uses three buffers implemented with
dual-port (DP) RAMs, used in round-robin fashion. In
order to decide which buffer to use each time, the in-
ternal control logic simply adds an offset to the address
passed by the stage that requests a read or a write. To
synchronize the accesses and to avoid possible buffer
overflows, the buffer control logic also manages a simple
challenge-response handshaking: the read or write oper-
ation will occur only after that the requesting stage trig-
gered a request and only after the buffer control logic
activated an enable signal. We will see in Section 4 how
this approach considerably reduces the logic resources

Scavongelli and Conti EURASIP Journal on Embedded Systems (2017) 2017:10

Page 8 of 19

Scan_Manager _Manager

from/to «—| DC_Coding [m==p>|
Bridge_Buffers
Gt ——| AC_Coding [= [t
ridge_Buffers to Output_Stage
from RST_Marker_>

Fig. 7 The Huffman_Coding module (links to Coordinator not shown)

| —

required by the design with a small decrease from the
speed point of view. In the following, we will call this
architecture “RAM DCT.” For the sake of comparison,
we also re-implemented the double registers array ap-
proach described in [17], which we will call “FF DCT” in
the following.

3.7 Output_Stage

Finally, the coded DCT coefficients are feed into the
Output_Stage module. This module assembles in bytes
the variable-length Huffman codes, alternating, if ne-
cessary, with marker segments, and executes the bit
and byte stuffing. During the simulations, we noted
that this output stage is the bottleneck of the overall

performances of the system, so we developed three
architectures for it:

1) The first approach consists, as shown in Fig. 10,
of two shift registers, the first of 16 bits and the
second of 8. The Huffman code to be packed in
the bytestream is loaded in the first register and
then shifted out 1 bit every clock cycle in the
second register. When the second register is
filled, its contents are added to the output
bytestream. A finite state machine controls the
flushing of the first register in the second, and
the emission of the final byte. We will call this
approach “FR output stage (OS).”

DCT_8 |mssps| Buffer pmsp] DCT_8 |ums Q - R .
from Coordinator
Stage 1 [=»| Buffer = Stage 2 |wp| Buffer p=p- =p-| Stage 6 |[ap-
Fig. 8 The DCT_and_Quant module

Scavongelli and Conti EURASIP Journal on Embedded Systems (2017) 2017:10

RAM 1
data data
adr adr
RAM 3
Buffer

Fig. 9 RAM-based approach for the DCT buffers

2) The second approach consists, as shown in Fig. 11,
of a shift register (SR) with parallel loading capabilities
and an output register. The first register is a 24-bit
up-down SR, while the output register is an 8-bit
“normal” register. The Huffman code is loaded in the
first register and then aligned to the contents possibly
already present in the output register. Then, the code
bits are transferred in parallel from the first register to
the second. A finite state machine controls the align-
ment, the transferring, and the emission of a complete
byte. A careful design of this control logic guarantees
that the maximum number of shifts needed to

Page 9 of 19

perform the alignment is 4. The idea is simple: we can
substitute a left shift operation with a shorter right
shift operation. For example, a 6-bit shift on the left
can be substituted with a 2-bit shift on the right. We
will call this approach “SR output stage.”

3) This approach is similar to the second. The only
difference is that the 24-bit shift register is replaced
by a 24-bit barrel shifter (BS). The control logic is
almost the same as in the SR approach, and the
limited number of shifts needed for the alignment
reduces the complexity of this kind of shifter. We
will call this approach “BS output stage.”

4 Simulation results

The developed model allows us to evaluate the perfor-
mances (PSNR, clock cycles for encoding, latency...) of
the system as a function of hardware parameters (such as
the bit resolution of the fixed-point representation of the
DCT data), or of parameters that can be reconfigured,
such as the scan scheme or the length of restart intervals.
Before considering these performances, we have to digress
and consider a problem brought in by the restart interval
mechanism. The length of the restart intervals affects ob-
viously the compression time but also the compression
factor, introducing a serious overhead problem.

First of all, we will consider this overhead problem in-
troduced by the restart intervals. Then, we will examine
the performances as a function of the reconfigurable and
hardware parameters. Finally, we will present the results
of the hardware implementation of the encoder. The com-
pression efficiency strongly depends on the particular
image to be compressed and on the correlation degree of
its contents, so all the data presented in the graphs are an
average over 20 images. In the simulations reported in
Section 4.1, the color (YCbCr) images coming from the
camera are 468 x 356 with 4:2:2 subsampling and 27-MHz
sampling frequency. In Sections 4.2 and 4.3, we used, in

16 bits
Shift
Register

Shift
direction

Fig. 10 The idea behind the FR output stage

\

Shift direction
——

8 bits Shift Register

Scavongelli and Conti EURASIP Journal on Embedded Systems (2017) 2017:10

Page 10 of 19

Shift direction

ﬁ

8 bits Register

Fig. 11 The idea behind the shifter output stages

24 bits Shift Register

order to speed up the simulations, smaller 64 x 32 images,
keeping the subsampling and the sampling rate the same.

4.1 Restart markers overhead

The restart markers introduce an overhead in two ways.
The first way is obviously the insertion of the 2 bytes of
the markers themselves for each RST interval. This over-
head is fixed: 2 bytes are introduced every n MCU,
where 7 is the length of the restart interval, no matter
how long is the encoded data for each MCU. The sec-
ond way is the bit stuffing the encoder must insert be-
fore each RST marker. The JPEG standard requires that
each marker segment to be byte-aligned, while the
variable-length nature of the Huffman codes rarely pro-
duces this alignment. So, the encoder must insert fake
bits before the markers, in order to byte-align the code-
stream. This insertion translates in an increase in the
length of the encoded data. Obviously, the more are the
restart markers (i.e., the shorter the restart interval
length) and the more bits are wasted, and therefore, the
lower is the compression efficiency.

The overhead as a function of the quality factor Q for
different values of the restart interval and normalized to
the length of the final byte stream is shown in Fig. 12. In
the images used for these tests, the three components
are grouped into a single scan. Observe how this over-
head decreases increasing the restart interval length and
increasing the quality factor. The former is the result we
expected, the latter depends on the fact that increasing
the quality factor increases the length of the whole code-
stream too, and so decreases the relative weight of the
RST markers overhead.

This overhead depends also on the scan grouping. In a
three-component image, four scan organizations are
possible:

13: a single scan with all the three components

31: three scans with a single component each one
212: two scans with one component in the first scan
and two in the second

221: two scans with two components in the first scan
and one in the second

Figure 13 shows the overhead as a function of the restart
interval for the different scan organizations; in this case, Q
is equal to 50. As you can see, the overhead grows signifi-
cantly with the number of scans, reaching a peak of more
than 40 % in the case of three scans. The reason is related
to the number of DUs that are in a MCU. Using a single
scan with 4:2:2 subsampling, each MCU contains four
DUs; using three scans each MCU contains one DUj;
hence, in the latter scheme, the number of restart markers
is higher and therefore the overhead too.

This is a real problem. If we want to use the progres-
sive transfer in a wireless network (that is if we want to
send first the grayscale version of the image, and then
later, if possible, the colors), we must use the 212 (first
scan with grayscale and two colors in the second scan)
or 31 (first scan with grayscale and the two colors in the
second and third scan) coding. In this case, as can be
seen from Fig. 13, the use of 212 is preferable to 31, due
to the reduced overhead.

4.2 Encoder performance: clock cycles required for encoding
The overall performances depend heavily on the coding
and on the DCT modules [8, 9, 11, 13]. However, the
number of clock cycles of the coding depends on the
image and on the quality factor Q, while the time re-
quired for the DCT is independent on these parameters.
This is obvious, because the operations the DCT module
needs to perform are always the same, while the

Scavongelli and Conti EURASIP Journal on Embedded Systems (2017) 2017:10

Page 11 of 19

IS
o

\

w
(6]

w
o

\ Restart Interval Length [MCU]

N
[&)]

//

Overhead (%)
N
o

0N

40

Quality Factor

Fig. 12 Restart markers overhead as a function of the quality factor Q for different values of the restart interval length

60 80 100

encoding depends on how many coefficients it has to en-
code. If we are heavily quantizing the DCT coefficients,
many of them will be almost zero, and they will be
coded as a single coefficient. For example, if we have
four zeros in a row, the encoder will produce a single
encoded value. If we have four small—but not zer-
0—DCT coefficients, the encoder will produce four dif-
ferent encoded values, and it will require many more
clock cycles to end its duties.

This is clear from Fig. 14, that gives the number of
clock cycles required to perform the JPEG encoding as a

function of the quality factor, for the different architec-
tures: the three output buffers and the FF and RAM ap-
proach to the DCT, described in previous section.

The three architectures for the output buffers, so dif-
ferent when the quality factor is maximum (when
quantization is not used), rapidly become equivalent de-
creasing it. The lower the quality factor and the more
correlated the image, the higher the compression ratio
and therefore the smaller the size of the coded image.
Therefore, the importance of coding tends to decrease
with the quality factor, and the time required for the

45

Scan scheme
40

35

w
o

N
[

N
o

Overhead (%)

—_
(6]

10

1 2
Restart Interval Length [MCU]

Fig. 13 Restart markers overhead as a function of the restart interval length for different scans grouping

4 8 16

Scavongelli and Conti EURASIP Journal on Embedded Systems (2017) 2017:10

Page 12 of 19

Flushing Register Output Stage

\

35000
30000 Shift Register Output Stage
7]
3 Barrel Shifter Output Stage 7/
8, 25000 arre P g
X
(&)
(®]
O 20000
15000
RAM-based DCT
FF-based DCT
10000 ** e
50 60 70

Quality Factor

Fig. 14 Number of clock cycles required to perform the JPEG encoding as a function of the quality factor

80 90 100

JPEG encoding is dominated by the DCT. Hence, redu-
cing the quality of the compressed image, the number of
clock cycles needed to perform the coding becomes less
than the number of cycles needed to perform the DCT.
When this happens, the coding module (and hence the
output stage) spends a lot of time waiting for the ending
of the DCT of a DU, and the time needed to compress a
transformed DU is far less than the time needed to
transform the next DU.

When the performances begin to be dominated by the
DCT, the number of total cycles of the FF-DCT architec-
ture becomes about 25 % lower than the RAM-DCT.
The reason is that the latter takes two cycles to load the
coefficients to be input to the arithmetic unit (adder/
subtractor or multiplier, depending on the stage of the
pipeline), while the former takes just one cycle to load
both coefficients. To make a comparison, if the FE-DCT
works at 60 MHz, the RAM-DCT must work at 75 MHz
to reach the same throughput. This slowdown, though
not excessive, is the price to pay for the savings in terms
of logic resources obtained by the RAM-based architec-
ture that will be shown in Section 4.3.

The consequence is that the best architecture depends
strongly on the application. If we want to work with
highly quantized (and compressed) images, the choice of
the output stage is completely irrelevant, and we can
choose the architecture that uses less hardware re-
sources. From the DCT point of view, maybe we should
use the faster architecture, even if it requires more re-
sources. If we can tolerate that 25 % increase in the
clock cycles number, however, we could keep using the
RAM-DCT.

On the contrary, if we want to work with high-quality
images, the DCT architecture choice is irrelevant, while
the output stage becomes critical. In this case, we could
save resources using the RAM-DCT and choose the fas-
ter (and more resource-consuming) output stage.

Let us consider now the dependency of the number of
clock cycles required by the JPEG compression on the
restart interval. We have seen in Fig. 14 that the number
of clock cycles depends on the quality factor only for
high Q and that the overhead due to the restart markers
is low for high Q, as shown in Fig. 12.

Therefore, we expect that the number of clock cycles
is almost independent from the length of the restart
interval. This is confirmed in Fig. 15, which shows the
number of clock cycles required to perform the JPEG
encoding with Q =100 as a function of the restart inter-
val, for the different architectures for the output stage
and for the DCT. Figure 15 reports the results of each
one of the 20 images considered and the average value.
The variability over the 20 images is relevant, but the
number of clock cycles is almost independent on the
length of the restart interval for each image and for the
average value. The architecture that uses the Barrel
shifter output stage requires less clock cycles to perform
the compression.

Finally, we can consider the performance dependency
on the scan scheme. This dependency is illustrated by
Fig. 16. We can see in this figure how the number of
clock cycles needed to compress an image is almost in-
dependent from the scan scheme chosen, while we
might expect an increment in the clock cycles with the
number of scans. The reason is that the pipeline used to

Scavongelli and Conti EURASIP Journal on Embedded Systems (2017) 2017:10

Page 13 of 19

45000
average o) o [e] o] [e]
40000 8 8 8 8 8
\ R
35000 %ﬁ:Q:G=§
@ 8 (@) €] e
E_ o 0 g 8 8
G 30000 . 8 8§ § g g
g g 8 5 8
2 = . @] e 8 8
S 25000 8§ § 8 § B -~ ~ ° ° 8 e ¢
g 8 8 g 8§ ° e ¢ o©
20000 8 8 8 8 8
° Barrel Shifter hift Regi Flushing Regi
15000 arrel Shifter Shift Register ushing Register

Output Stage

Output Stage

Output Stage

1 2 4 8 16 1

Restart Interval Length [MCU]

Fig. 15 Number of clock cycles required to perform the JPEG encoding as a function of the restart interval

4 8 16 1 2 4 8 16

create the offsets and the particular marker segments that
bound the beginning of a scan hides the additional cycles
needed to manage the scans. Therefore, in our architec-
ture, neither the restart interval nor the scan mechanisms
alter in any way the time needed to compress an image.
As we will see in the next section, however, the scan
mechanism comes with a significant need for hardware re-
sources. Figure 16 reports the results of each one of the
20 images considered and the average value. As in Fig. 15,
the variability over the 20 images is relevant, but the num-
ber of clock cycles is almost independent on the scan
scheme for each image and for the average value. The

architecture that uses the Barrel shifter output stage re-
quires less clock cycles to perform the compression.

4.3 Encoder performance: image quality versus number
of bit in the fixed-point implementation

We talked about the quality of the image and about the
so-called “quality factor.” Usually, the quality factor is an
empirical parameter, between 1 and 100, which the user
can choose in order to decide, in a heuristic way, the
quality of the compressed image. This parameter is used
to select a scaling factor that in turn can be used to scale
all the quantization steps in the quantization matrices.

45000
40000
35000
(%]
Q@
o
S 30000
35
E :
© 25000 g
g 8 8
20000 8 e 8 8
° Barrel Shifter
arre itter
15000 Output Stage
13 31 212 221 13

Shift Register
Output Stage

average 6o 6 o o
8 8 8 8
O O O
e 8 8
g\é__g_g
8 6 ©
(@] (@] (@] (@]
(e}]]]
= o 8 8
o
6 © 6 o

Flushing Register
Output Stage

31 212 221 13 31 212 221

Scan Scheme

Fig. 16 Number of clock cycles required to perform the JPEG encoding as a function of the scan scheme

Scavongelli and Conti EURASIP Journal on Embedded Systems (2017) 2017:10

The JPEG standard does not define a particular way to
do this association—it is completely application depen-
dent—so that the particular mathematical law used to
extract the scaling factor is not important. The reasons
behind the loss of quality in the compressed image are
the quantization, which reduces the precision of the
DCT coefficients, and the rounding errors in the calcula-
tion of the DCT and of the quantization. When the cal-
culations are performed in floating-point arithmetic (i.e.,
in a C++ computer program), rounding errors can be
neglected, and the image quality is dominated by the
quality factor. When the calculations are performed with
a dedicated hardware, however, they are usually imple-
mented in fixed-point arithmetic, to simplify the cir-
cuitry. In this case, a key concern is the choice of the
number of bits to be allocated for the data.

Now, the DCT applied to 8-bit samples produces coeffi-
cients that cannot require more than 11 bits for the inte-
ger part. The fast DCT we implemented, however, is a
scaled version of the DCT standard row-column algo-
rithm. In this scaled algorithm, several arithmetic manipu-
lations are performed that isolate and collect the more
multiplicative coefficients they can, and a single scaling
coefficient is applied at the end of the calculations. These
manipulations are done to reduce the number of multipli-
cations and to speed up the final algorithm. Nevertheless,
this implies that, even though the final precision (for the
integer part) is 11 bits again, the intermediate calculations
require a higher precision. Since the maximum scaling
factor is 16, these intermediate calculations require 15 bits
for the integer part. The choice of the number of bits of
the fractional part will affect the quality of the final com-
pressed image: obviously, the higher is the precision, the

Page 14 of 19

higher is the quality, but the higher is the complexity of
the circuitry also. So it is important to find some kind of
“optimum” precision, which minimizes the design com-
plexity while keeping the highest as possible quality of the
compressed image. A statistical description of the round-
ing errors and of the quantization noise in the DCT is pre-
sented in [27, 28], respectively.

The measure that is normally used for the measure of
the quality of image processing is the PSNR:

22/(
PSNR = 101 —
SN 0810 {M SE} ,
where k is the number of bits representing each pixel
and MSE is the mean square error, defined as

m

MSE =5 (1))~ ha(i)))

i—1 j=1

where 7 and m are the dimensions of the images and I;
and I, are the images to be compared.

In order to find out this optimum, we evaluated the
PSNR between an image compressed using floating-
point arithmetic and an image compressed using fixed-
point arithmetic, changing the precision of the fractional
part. The higher is this PSNR, the more similar is the
fixed-point image to the floating-point image. Figure 17
shows the PSNR as a function of the total number of
bits (15 for the integer part and the rest for the decimal
part) used for DCT and quantization with different qual-
ity factors. As we could expect, the quality falls down
decreasing the precision of the calculations and the
quality factor. When the Q is low and the precision is

50

N

40 -

PSNR (dB)
w
o

N
o

32 28 24

DCT and quantization precision (bit)
Fig. 17 PSNR as a function of the resolution of the DCT and quantizer for different values of the quality factor Q

22 20 19 18

Scavongelli and Conti EURASIP Journal on Embedded Systems (2017) 2017:10

high, however, the quality of the image increases redu-
cing the Q. The reason is that, when the Q decreases,
the quantization masks the decrease in the precision of
the calculations. This means again that the “optimum”
we are looking for depends on what we want to do: if we
want to work with highly compressed images, we can
sacrifice arithmetic precision, obtaining almost the same
quality but with less hardware resources. If we want to
work with high-quality images, however, we have to use
higher precision (and hence bigger) arithmetic circuits.

To be more specific, we investigated the relevance of
the precision of the single modules DCT and
quantization. In Fig. 18, obtained under the same condi-
tions of Fig. 17, a smooth dependency of the PSNR on
the accuracy in the calculations of the DCT is reported.
The PSNR remains almost constant with precision down
to 22 bits (with only 7 bits for the fractional part),
and it remains quite high even at 19 bits (4 bits for
the fractional part).

For the choice of the optimum precision, we can use
the PSNR of a compressed image obtained with floating-
point calculations relative to the original image, shown
in Fig. 19. The PSNR is 30 dB in the absence of
quantization, when the image is compressed to its max-
imum quality and virtually indistinguishable from the
original. So, a PSNR of 30 dB between a floating-point
image and a fixed-point image means that the fixed-point
image is virtually indistinguishable from the floating-point
one. Therefore, using this value of 30 dB as a reference,
we note that the PSNR in Fig. 16 is higher than 30 dB
using 18 or more bits of precision (3 bits for the fractional
part), which means that an image compressed using this

Page 15 of 19

reduced accuracy is substantially identical to an image
compressed with floating-point arithmetic. To allow for a
design margin, we can choose for example a 20-bit preci-
sion for the DCT calculations.

More delicate is the situation for the quantization. As
shown in Fig. 20, the performances get worse rapidly
decreasing the number of bits used for the quantizer,
and this is more evident decreasing the quality factor.
The reason is that the quantizer uses small coefficients
and a multiplier to scale the DCT results. We preferred
to use small coefficients and a multiplier instead of big
coefficients and a divider because the divider circuits are
very slow. However, if we encoded small coefficients
with just a handful of bits, chances are that those coeffi-
cients would end up being almost zero, hence quantizing
too heavily the DCT results. Using the same criterion
seen for the precision of the DCT, we have to use more
than 28 bits (thus reserving 13 bits for the fractional
part). This is the precision we chose in our design for
the quantization.

In summary, we can expect better performances by
sacrificing the accuracy of the DCT, but keeping high
the precision of the quantization, especially if our en-
coder is expected to work at low-quality factors.

4.4 FPGA implementation

Finally, we report, in Table 1, the results of the hardware

implementation of the architecture in a Xilinx Virtex5

XC5VLX50T. The DCT arithmetic precision chosen is

20 bits, and the quantization precision chosen is 28 bits.
As mentioned in the literature [8, 9, 11, 13], for other

architectures, the DCT_and_Quant module requires the

50

40

w
o

PSNR (dB)

N
o

50

1 2 3

DCT precision (bit)
Fig. 18 PSNR as a function of the resolution of the DCT for different values of the quality factor Q

4 5 6 7

Scavongelli and Conti EURASIP Journal on Embedded Systems (2017) 2017:10

30
_20
m
Z
o
=
o
o
10
0
50 60 70 80 90 100
Quality Factor Q
Fig. 19 PSNR between floating-point compressed image and original
image as a function of the quality factor Q

\

greatest part of the resources. However, the decision to
build the buffers with arrays of RAM instead of registers
limits this occupation. In fact, a strong reduction of
hardware resources is evident, comparing the results of
the DCT block in Table 1 with Table 2, which reports
the implementation of this module using flip-flops. This
conclusion is emphasized by Table 3, which shows a
comparison among our architectures and some previous
works. It must be pointed out that all the architectures
presented in the literature do not allow reconfigurability
and restart interval and scan mechanisms. On the con-
trary, these features are allowed by the proposed archi-
tecture. Moreover, the DCT FF-architecture works at a

Page 16 of 19

lower frequency (79 MHz) with respect to the RAM-
architecture (172 MHz). The FF-DCT can work at
double frequency (158 MHz) introducing a two-level
pipeline between the multiplier and the array of registers,
but this will introduce an additional increment in hard-
ware resources and latency. Essentially, using the RAM-
DCT, we can get comparable frequency performances to
those achievable with a double array of registers, but with
an occupancy of logical resources far below.

Table 1 shows that the Scan_Manager is, surprisingly,
the second block in terms of required resources. As we
noticed in the previous section, the reconfigurability and
the mechanism of the scans are responsible of the com-
plexity of the Scan_Manager. Giving up the reconfigur-
ability, we could also eliminate almost the entire block
Init_JPEG, the fourth in terms of employment of logical
resources. The block that inserts the restart markers,
RST_Marker_Manager, however, requires only a small
amount of resources.

The bottleneck for the maximum operating frequency
is the Scan_Manager, and particularly the sub-module
that takes care of initializing the scan, due to the pres-
ence inside it of a MAC used to calculate the number of
DUs that fall in a restart interval. However, this is not a
serious problem. The performances can be increased
considering that this block is an initialization module
and that it is executed only once per scan. So, we can
speed up its operating frequency implementing the
MAC with a shift-and-add approach: this will require
more clock cycles to generate the restart interval, but
this increment will be masked by the pipeline where the

50
40
=30
=
2
=
P 20
h 70
10 D
N
0
32 28 24 22 20

Quantization precision (bit)

Fig. 20 PSNR as a function of the resolution of the quantizer for different values of the quality factor Q

Scavongelli and Conti EURASIP Journal on Embedded Systems (2017) 2017:10

Table 1 Hardware resources and maximum frequency of the
blocks of the JPEG encoder for a FPGA implementation on a
XilinxVirtex5

Page 17 of 19

Table 2 Hardware resources and maximum frequency of the
with flip-flop-based architecture for the DCT and quantizer
blocks in a FPGA implementation on XilinxVirtex5

FF LUT F_max FF LUT F_max
Logic RAM (MHz) Logic RAM (MH2)
Acquisition_Interface 33 8 28 527,259 DCT_and_Quant (RAM) 4384 1870 18 79,273
Memory_Controller 216 191 16 235,383 DCT_8 2243 783 79,273
Memory_Read 117 57 16 235,383 Intermediate_Buffer 21 9 911,328
Memory_Write 99 134 422,995 Quantizer 313 366 18 171,851
JPEG_Compressor 3716 2846 1638 87,129 Rounding 25 -
Bridge_Buffers 100 241 36 396,362
Init_JPEG 433 82 451 207,708 to pass through a multiplier. Again, this is not a time-
Add SOl Marker 5 5 ss7e13 critical path, since the data are passed through only once
Ad d: APP_OJ\/\arker 3 30 % 277,024 during the initialization, and we could implement that
multiplier with a shift-and-add approach, slower in
Add_DQT_Marker 106 108 18 301223 terms of clock cycles, but faster if we look at the propa-
Add_DHT_Marker 144 162 32 207,108 gation delay'
Add_DRI_Marker 23 24 540,482 As for the output stages, the two architectures that
Add_SOF_Marker 93 105 16 283736 use up/down shifters (sliding or barrel) are those that re-
Scan_Manager 735 5 834 87120 quire more resources, because the control state machine
Init_Scan 24 100 g 87129 is far more complex that in the FR approach. The max-
imum frequency is higher in the case of shift registers,
Code_A_Scan 373 404 19 147007 while the other is limited by the propagation delays. The
Get_A_MCU 202 225 16 24119 maximum operating frequency of the FR approach is
Add_SOS_Marker 82 102 % 263,630 slightly lower than that of the BS approach.
Add_EOI_Marker 4 4 587,613 Finally, in the encoder, there are several modules that
Get A DU 2 21 344970 ~work around 150 MHz. This limit is due to asynchron-
DC;_a;d_Quant (RAM) — 186 178 17185 OuS accesses to small‘RAM inside them and can be in-
creased simply making these accesses synchronous.
DCT_8 746 >3 80 28625 Those RAMs are used as internal buffers to store coeffi-
Intermediate_Buffer 2 9 911328 cients while other modules are working: for example, to
Quantizer 313 366 18 171851 store DC coefficients while the AC coefficients encoding
Rounding 25 - is still going. Making synchronous the access will simply
Huffman_Coding 529 615 129 146542 add a clock cycle of latency.
DC_Coding 198 182 78 154,223 R
5 Conclusions
AC_Coding 247 348 > 146542 1 this paper, we designed a dedicate hardware imple-
RST_Marker_Manager 8 62 430246 mentation for FPGA of a JPEG encoder with high real-
BS Output_Stage 120 230 10 179404 time reconfigurability, paying particular attention to the
SR Output_Stage 166 191 10 199936 problems of wireless networks, i.e., the limited data rate
FR Output_Stage 107 142 10 176466 and the sensitivity to noise.

Scan_Manager works in. In fact, the scan initialization
occurs while the Init JPEG module is emitting the
marker segments, and so before the compression can
start.

The limit to 171 MHz in the quantizer is due to the
multiplication of the quantization steps for the scaling
factor during the module initialization phase. In our sys-
tem, the Coordinator maintains the “base” quantization
matrix and loads it into the quantizer making the steps

Table 3 Hardware resources comparison with previous works

Technology Logical blocks ~ F_max

(MHz)

JPEG_Compressor (proposed) Virtex 5 1939 87,129

DCT_and_Quant (RAM) Virtex 5 659 171,851

JPEG_Compressor (proposed) Virtex 5 2689 79,273

DCT_and_Quant (FF) Virtex 5 1715 79,273
JPEG_Compressor ([9]) FLEX 1OKE 5432 396
DCT FLEX 10KE 3962 36.2

JPEG_Compressor ([11]) 0.18 um 40,000 (gates) 54

Scavongelli and Conti EURASIP Journal on Embedded Systems (2017) 2017:10

With regard to the limited data rate, we made our
encoder able to support different scans patterns, i.e., dif-
ferent groupings for the components of the input image.
This allows, for example, to encode first the Y compo-
nent of a YCbCr image, which is the grayscale version of
the image, and therefore contains all the information
necessary for its correct understanding, and then the
chrominance components, that can be transmitted only
when it is possible.

As for the noise protection, we added to the encoder
the restart interval feature that makes the encoder able
to recover from decoding errors introduced by the noise
on a transmission channel.

In addition, we designed a completely reconfigurable
system, through a series of buffers in the architecture,
containing all the data necessaries for the compression
and close to the modules that need to use them. These
buffers can be changed on the fly depending on the re-
quirements of the wireless channel. This can be useful
for example to change the quality factor depending on
the congestion of the network, or the length of the en-
tire restart interval depending on the amount of noise
measured on the network.

The project has been implemented on a Xilinx Virtex
5 FPGA. The architecture has been investigated in deep,
and the performances in terms of overhead, latency,
PSNR, hardware resources required, and maximum fre-
quency for different values of the parameters of the
architecture and of the JPEG standard parameters have
been examined. Particularly, we implemented three dif-
ferent solutions for the output stage, and an architecture
for the DCT module slightly slower than the fastest
architecture we can find in literature, but far more
resource-efficient.

We saw how the restart interval mechanism reduces
the compression ratio of the final codestream, and we
analyzed the dependency on the quality factor and on
the scan scheme chosen. To reduce this overhead, the
best solution is to keep the quality the highest as pos-
sible and to reduce the number of scans.

We saw then how the impact of the output stage
architecture on the throughput is high when the quality
is the highest and inexistent when the Q falls below 50.
We saw also how the proposed DCT architecture is
equivalent, from the throughput point of view to the so-
lutions presented in the literature when the quality is
the highest, and 25 % slower when the Q falls below 50.
The throughput is moreover independent from the re-
start interval length and from the scan scheme chosen.

Finally, we analyzed the effect on the quality of the
image of the fixed-point hardware precision used inside
the DCT module. We saw how we can obtain better
performances using a higher number of bits for the
quantization and a lower one for the DCT.

Page 18 of 19

Competing interests
The authors declare that they have no competing interests.

Received: 28 February 2016 Accepted: 31 July 2016
Published online: 11 August 2016

References

1. GL Foresti, C Micheloni, L Snidaro, P Remagnino, T Ellis. (2005). Active
video-based surveillance system: the low-level image and video processing
techniques needed for implementation. IEEE Signal Processing Magazine
22(2), 25-37

2. Kleihorst R, Abbo A, Choudhary V, Schueler B. (2006). Design Challenges for
Power Consumption in Mobile Smart Cameras, Proc. Cognitive systems with
interactive Sensors (COGIS 2006).

3. M Bramberger, A Doblander, A Maier, B Rinner, H Schwabach. (2006).
Distributed embedded smart cameras for surveillance applications. IEEE
Computer Magazine 39(2), 68-75

4. Hengstler S, Prashanth D, Fong S, Aghajan H. (2007). MeshEye: a hybrid-
resolution smart camera mote for applications in distributed intelligent
surveillance, information processing in sensor networks
(IPSN-SPOTS).

5. Pieretti A, Scavongelli C, Orcioni S, Conti M. (2010). Performance analysis of
JPEG 2000 over 802.15.4 wireless image sensor network. Proc. of the IEEE
8th Int. Workshop on Intelligent Solutions in Embedded Systems, WISES10,
pp. 55-60, Heraklion, Crete, Greece.

6. Conti M, Orcioni S. (2009). “Smart wireless image sensors for video
surveillance”, in the book “Intelligent Technical Systems” Springer
series’Lecture Notes in Electrical Engineering’, vol 38, pp.3-16

7. Santa-Cruz D, Grosboise R, Ebrahimi T. (2002). JPEG 2000 performance
evaluation and assesment, Signal Processing: Image Communications, (17)
113-130.

8. Chen M, Chen T, Chen Y, Pan J, Weng Y. (1993). VLSI Implementation of
Single Chip JPEG Codec, 1993 International Symposium on VLSI
Technology, Systems and Applications, pp. 189-193.

9. Kovac M, Ranganathan N. (1995). JAGUAR: a fully pipelined VLS| architecture
for JPEG image compression standard. Proceedings of the IEEE, 83(2), 247-258

10. S Sun, S Lee. (2003). A JPEG chip for image compression and
decompression. Jurnal of VLSI Signal Processing 35, 43-60

11. Agostini L, Bampi S, Silva I. (2003). High throughput architecture of JPEG
compressor for color images targeting FPGAs, 13th IEEE International
Conference on Electronics, Circuits and Systems, pp. 180-183.

12. Quazi H, Qader F, Rasheed M, Mansoor H. (2005). An optimized architecture
implementing the standard JPEG on FPGA, in Student Conference on
Engineering Sciences and Technology.

13. Min K, Chong J. (2004). A real-time JPEG encoder for 1.3 megapixel CMOS image
sensor SoC, 30th Annual Conference of the IEEE Industrial Electronics Society.

14. E Hamilton, (1992). JPEG file interchange format, v. 1.02

15. Reccomendation [TU-TT.81: Digital compression and coding of continuous-
tone still images—requirements and guidelines, (1992)

16. Feig E, Winograd S. (1992). Fast algorithms for the discrete cosine transform.
IEEE Transactions on signal Processing, 40(9), 2174-2193

17. Agostini L, Silva I, Bampi S. (2001). Pipelined fast 2-D DCT architecture for
JPEG image compression, 14th Symposium on Integrated Circuits and
Systems Design, pp. 226-231.

18. YT Chang, CL Wang. (1995). New systolic array implementation of the 2-D
discrete cosine transform and its inverse. IEEE Transactions on Circuits and
Systems for Video Technology 5(2), 150-157

19. TS Chang, CS Kunge, CW Jen. (2000). A simple processor core design for
DCT/IDCT. IEEE Transactions on Circuits and Systems for Video
Technology 10(3), 439-447

20. A Madanayake, RJ Cintra, D Onen, VS Dimitrov, N Rajapaksha, LT Bruton, A
Edirisuriya. (2012). A row-parallel 8 x 8 2-D DCT architecture using algebraic
integer-based exact computation. IEEE Transactions on Circuits and Systems
for Video Technology 22(6), 915-929

21. YH Han, JJ Leou. (1998). Detection and correction of transmission errors in
JPEG images. IEEE Transactions on Circuits and Systems for Video
Technology 8(2), 221-231

22. R Chandramouli, N Ranganathan, SJ Ramadoss. (1998). Adaptive quantization
and fast error-resilient entropy coding for image transmission. IEEE
Transactions on Circuits and Systems for Video Technology 8(4), 411-421

Scavongelli and Conti EURASIP Journal on Embedded Systems (2017) 2017:10

23. S Orcioni, M Giammarini, C Scavongelli, GB Vece, M Conti. (2016). Energy
estimation in SystemC with Powersim. Integration, the VLSI Journal-
Elsevier 55(1), 118-128

24. Scavongelli C, Giammarini M, Conti M, Orcioni S. (2012). Computational cost
estimation of a RTL JPEG architecture with Powersim, Proc. of the 10th Int.
Workshop on Intelligent Solutions in Embedded Systems WISES 2012,
Klagenfurth, Austria, pp. 9-14

25. Giammarini M, Orcioni S, Conti M. (2011). "Powersim: power estimation with
SystemC: computational complexity estimate of a DSR front-end compliant
to ETSI Standard ES 202 212", Chap. 20 in the book “Solutions on
Embedded Systems’, Springer Netherlands, series: Lecture Notes in Electrical
Engineering, Dordrecht, pp. 285-300

26. Reccommendations [TU-R BT. 601-5—Studio encoding parameters of
digital television for standard 4:3 and widescreen 16:9 aspect ratios.

27. 1D Yung, SU Lee. (1993). On the fixed-point error analysis of several fast-DCT
algorithms. IEEE Transactions on Circuits and Systems for Video Technology
3(1), 27-41

28. MA Robertson, RL Stevenson. (2005). DCT quantization noise in compressed
images. IEEE Transactions on Circuits and Systems for Video Technology
15(1), 27-38

Page 19 of 19

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

	Abstract
	Introduction
	The JPEG algorithm
	The proposed architecture
	Bridge_Buffers
	Get_A_DU
	Scan_Manager
	Init_JPEG
	Hufmann_Coding
	DCT_and_Quant
	Output_Stage

	Simulation results
	Restart markers overhead
	Encoder performance: clock cycles required for encoding
	Encoder performance: image quality versus number of bit in the fixed-point implementation
	FPGA implementation

	Conclusions
	Competing interests
	References

