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Abstract

Big data of biological engineering and mobile control increase the complexity of system control. In order to resolve
the above problems and improve biological engineering system performance, this paper proposes a large data-driven
and mobile crowd embedded opportunistic control mechanism. First of all, the measurement model of established big
data-driven biological embedded engineering was proposed based on the research of biological engineering with
non-linear and unpredictability. Based on the characteristics of the mobile crowd terminal perception outside
interference, we proposed the mobile crowd biological engineering optimization opportunities control mechanism.
The experimental results show that the established control mechanism in a long-term, large-scale performance still has
high performance and high temperature. In addition, under different pressure, the rate of convergence of the scheme
established is superior to the biological engineering control scheme based on coordination control.
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1 Introduction

How to combine biological engineering with computer
technology, software engineering, and a control engin-
eering application has become a research hotspot in re-
cent years [1]. At the same time, biological engineering
multi-objective optimization [2] has gradually brought
many challenges, such as the control strategy of bio-
logical reaction resistance to interference [3]. It has be-
come the research key issue that how to improve the
control precision of biological engineering [4] and pro-
vide a performance guarantee for large-scale biological
engineering [5].

Regarding biological big data, Nounou et al. used
Wavelet-based multiscale filtering to mine the import-
ant features in measured biological data [6]. Steg-
mayer presented a novel integrated computational
intelligence approach for biological data mining that
involves neural networks and evolutionary computa-
tion [7]. Chatziioannou et al. presented the web-based
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grid application that could exploit grid infrastructures
for distributed data processing and management
through a generic, consistent, computational analysis
framework [8]. Nguyen et al. presented an alternative
conception for local data integration based on a hy-
brid flat file, a generic data model, and configuration
rules [9]. Carpendale et al. studied biological data
visualization [10].

Mobile computing is closely associated with bio-
logical response. Atakan et al. proposed the biological
foraging-inspired communication algorithm for the
energy-efficient and spectrum-aware communication
requirements [11]. Lin proposed the wireless power
transfer scheme for cell phones or other mobile com-
munication devices and biological implications [12].
Liu et al. studied the biological characteristic authen-
tication and multimedia signal fast encoding over 5G
for improving the security level of the Internet [13].
Lin designed the wireless power transfer for mobile
applications and health effects [14]. Tsompanas pro-
posed a CA model used as a virtual, easy-to-access,
and bio-mimicking laboratory emulator, which would
economize large time periods [15].

© 2016 Wang and Dong. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13639-016-0034-x&domain=pdf
mailto:haichaowwang@sina.com
http://creativecommons.org/licenses/by/4.0/

Wang and Dong EURASIP Journal on Embedded Systems (2016) 2016:13

Regarding the relation of system control and bio-
logical engineering, Qian et al. analyzed and simulated
an infinite-horizon optimal feedback control model,
with linear plants, that contains both control-
dependent and control-independent noise and opti-
mizes steady-state accuracy and energetic costs per unit
time [16]. Chowdhury et al. demonstrated the effective-
ness of the approach by transporting a yeast cell using
four different types of gripper formations along
collision-free paths on our OT setup. We analyzed the
performance of the proposed gripper formations with
respect to their maximum transport speeds and the
laser intensity experienced by the cell that depends on
the laser power used [17]. Yao et al. proposed a newly
developed all-solid-state nanosecond pulse generator
based on the Marx generator concept for this applica-
tion [18]. Chen et al. presented a novel approach for
the automated transportation of multiple cells by using
robotically controlled holographic optical tweezers [19].
Nakano et al. discussed the issues concerned with
transmission rate control in molecular communication,
an emerging communication paradigm for bio-nan ma-
chines in an aqueous environment [20].

Based on the results of the above research, we pro-
posed the big data services drive mobile crowd embed-
ded opportunistic control mechanism for biological
engineering.

The rest of the paper is organized as follows. “Sec-
tion 2”7 describes the big data-driven biological em-
bedded engineering measurement model. In “Section
3, we design the mobile crowd biological engineering
opportunistic optimization control mechanism. Per-
formance evaluations are given in “Section 4.” We
conclude the paper in “Section 5.”

2 Big data-driven biological embedded engineering

measurement model

Biological engineering is non-linear and unpredictable,
and is composed of a series of large-scale physical reac-
tions and the coupling reaction. Biological engineering
of large data sources is an iterative cell. There are some
problems in a survey of biological engineering, such as
the non-linear objects, the coupling of data, and time-
varying data source problems. In real-time measure-
ments of biological engineering, the characteristics of
the embedded outside objects would be obtained by
measuring the object’s environment in the measure-
ment model.

Therefore, we designed an embedded project measure-
ment model. The model can obtain the bioengineering
embedded external factors and the influence of the
normal reaction of biological engineering. The impact
model have to obtain the reverse metabolism energy
consumption of embedded biological.
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We have therefore designed an embedded biological
engineering piece of equipment. The equipment out-
side of biological data should embed the required
amount of energy. The device can obtain a biological
engineering survey object scale. The equipment size
and embedded objects of the reproduction life cycle
would be compared by measuring the parameters of
biological engineering. According to the measurement
parameters, embedded devices for biological embed-
ded engineering guarantee stability. There are some
peripheral terminal interfaces in the embedded de-
vices. These interfaces are used to establish the high
coupling reaction environment for the intrinsic bio-
logical reproduction. The biological response module
was designed in the embedded equipment.

Embedded devices meet the conditions as shown in
Fig. 1. The equipment added some buffer function of
the embedded terminal. This embedded terminal can
sense the driving factors of the external environment
of biological engineering. These driving factors
include embedded species, embedded data volume
and biological reaction cycle, embedded device anti-
interference ability, etc.

In order to weaken the biological engineering data
source degeneration, we designed a data buffer in the
embedded device. At the same time, we put forward the
principle of biological embedded engineering reaction
conditions with the best match, such as equations (1),
(2), and (3).

N
Xi

N M)

Xmax ~¥min

dy =

Here, d;, is the embedded biological engineering re-
sponse data. X denotes the iteration of the embedded
data volume. X,,,, denotes the largest amount of data.
Xmin denotes the smallest amount of data. N is the em-
bedded biological scale of biological engineering.
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Here, t,, is the embedded biological engineering reac-
tion cycle. « is the impedance coefficient of embedded
devices. W is the intrinsic biological response module
and embedded biological response module angle with
the outside world. T is the iteration biological reaction
cycle. T; is the biological iteration reaction cycle.
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Here, i, is embedded equipment ability of immunity.

(3)
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Matching

Data buffer can effectively reduce the jitter of the
data. For equations (1), (2), and (3) to establish the
best matching principle can be a real-time perception
biological engineering response to environmental
changes. This principle can be applied to establish the
effective matching between the data source and the
data quantity.

The embedded equipment shown in Fig. 1 can ensure
the normal response level of biological engineering and
improve the time variability and the unpredictable na-
ture of the data. When the data process and data size
leveled off, the large data-driven bioengineering will
further improve the quality of biological engineering.
The measurement model of biological embedded engin-
eering was constructed based on datadriven. N denotes
the biological engineering response of By vector, as
shown in equation (4).

BM = {(bl,b27 ,bk)|k = 1,2, ,Lt}
= N kv W
U= \/ﬁ,k <v

Here, k is the active biological response scale of sam-
ple points, u is embedded devices activated sample
points, and v is the biological response data buffer factor
for embedded devices.

Biological engineering embedded equipment feed-
back characteristics of big data are linear weighting of
Ly, embedded weight Ev, and buffer weight By. The
above big data characteristics have to meet the rela-
tionship shown in equation (5).

Bpc = {bpc|bpce(Lw,Ew,Bw)}
RN—>RM

Here, Bpc is the business data catalog comprehen-
sive weight vector. The empty Ly vector and Ey vec-
tor intersection is embedded in order to ensure the
equipment does not affect the big data linear trans-
formation. The change from RY to R" showed that N
sample points of non-linear space would be mapping
with the actual space biological response.

To sum up, the biological engineering big data-
driven embedded measurement architecture is shown
in Fig. 2.

3 Mobile crowd biological engineering
opportunistic optimization control mechanism

In the biological engineering optimization method, we
mainly considered the random interference factors on
biological engineering and presented a biological en-
gineering control mechanism based on mobile crowd
and its architecture. The architecture can solve the
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Fig. 2 Data-driven embedded measurement architecture for biological engineering

problem of the random interference and time variabil-
ity of biological engineering by moving the crowd and
big data.

The mobile crowd terminal inputs and outputs the
parameters of mobile data model. The data model is
used to define the control process of biological engin-
eering. The data model of the sample set as shown in
equation (6).

Dinpur = {dinput|inpute[m, n}
Doutput = {doutput|0utpute[ma }’l}}

dinputeRm*n
doutput ERm*n
. y '
{(doinput s Aouspur ) linput, outputeR}

Here, dinpue is the input data parameters, doyepue iS
the output data parameters, m is the data port num-
ber, n is the output port number, and R™" is the
port matrix space.

Let t denote the data generation time of biological en-
gineering. The non-linear calculation of mobile crowd
data was shown in equation (7).

y(t) :f(dinpuh doutput)

L (7)
y(t-k) :f(dinputvdoutput) Zy(l)

For the mobile crowd to find the best time to control
biological engineering, the mobile crowd terminal and

biological engineering data processing must meet the
following conditions:

(1)To keep the mobile crowd nonlinear characteristics,
the function f (dinput doutput) have to be the Multi -
order Guide. The guide can be shown in equation

(8).
d(f)

Z—; 2yavg
d(t—k) 2V avg (8)
k

s
Yarg = =1

(2) The model of biological engineering in the matrix
mapping relationship as shown in equations (9)
and (10).

t
Y(t) |t = DiT< (3’11)3’1‘)) )
=1
N I T(y1,9,)
Vit 7 Vi | T = T(yt7ym+z’—l) (10)
Ye o " Vel T(ytvym+t—1)

Here, the matrix T denotes the measurement model.
(3)Biological response of mobile crowd wisdom kernel
function as shown in equation (11). The kernel function
must be non-linear after dealing with equation (12) to
achieve perception of biological engineering control.
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Table 1 Experiment settings

Parameters Value Parameters Values
Tank capacity 50L Glutamic acid 0.1-0.5%50 L
dosage
Time 28-50 h Interference strains  Lysine
Tank pressure 0.01-0.1 Mpa  Experimental 20-40 °C
temperature
Number of mobile ~ 2-5 Number of sample 20
embedded devices
Sampling interval 20 min Interference 1-5 per min
frequency
Opportunity control  0.2-0.8 Interference 02-08 L
weight capacity
Kp = ||yry:-k||2 \/i
B (11)
Ty = y(%)]xr
t
y(t) = ZT(\/ (yi—lvyi))KB
— (12)

KpTy2/y(t)]t—c0

To sum up, we can obtain the optimization control
probability of the mobile crowd biological engineering
such as equation (13). The weighting factor would be
changed through optimization control probability. Bio-
logical engineering optimization would be linear by con-
trolling the probability. The opportunistic selection
progress would be non-linear with the linear optimization,
as shown in equation (14).
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Fig. 5 Jitter
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Here, the matrix G is the weighting factor matrix. O¢
is the control matrix.

On the basis of the above model and probability calcula-
tion, Fig. 3 shows the mobile crowd biological engineering
optimization opportunities to control architecture. Among
them, the architecture of different biological engineering
reactions was taken into account in the top categories.
The top of the next layer is used to distinguish between
data sources and data types. The mobile crowd upper layer
is used to provide interface parameter data and the meas-
urement model. The middle layer also provides data for
lower linear programming and non-linear characteristics.

4 Performance evaluation

To analyze and validate the proposed scheme in the
biological engineering control effect, we designed two
sets of biological experiments. In order to verify the
proposed scheme to the performance of the control
mechanism and performance of embedded devices,
there were two crowds of biological experiments in
different experimental environments. The two test
crowds adopted different experimental material.

The first set of experiments was the glutamic acid
fermentation as the core of biological engineering as
the experimental object. A biological fermentation ex-
periment tank was used to provide the same experi-
ment environment, which is shown in Fig. 4. In the
experiment, the embedded mobile devices are a one-way
data transmission between the tanks. Mobile crowd mod-
ule control is two-way between tanks with the experiment.
The biological reaction process of glutamic acid was con-
trolled by the opportunistic center control equipment.

Experimental parameters from five batches of field
experimental data are shown in Table 1. Figure 5 is
verified by increasing the embedded mobile terminals
that can effectively improve the jitter of biological re-
action engineering. In Fig. 6, the biological response
data error is analyzed, the proposed BE-SCOC
scheme can effectively guarantee the stability of the
data. Figure 7 shows the proposed BE-SCOC scheme
under different temperature conditions of biological
response delay. Based on the big data driven and
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opportunistic control, the glutamic acid fermentation
reaction of the proposed scheme has the best per-
formance. This control furthers optimization in mo-
bile crowd biological engineering control.

In the second experiment, the iterations number of
the proposed BE-SCOC solution and the biological
engineering control scheme based on the collaborative
control (BE-CC) required were evaluated and studied
in experiment 2 with the different air pressure
environments. Figure 8 proves that the proposed BE-
CC scheme is obviously better than the control
optimization effect. It also benefited from embedded
mobile terminals and the advantages of mobile crowd
biological engineering.
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5 Conclusions

Large-scale biological engineering data increases the sys-
tem control complexity. At the same time, there is a de-
crease in the mobile biological reaction control system
performance. In order to solve the above problems, this
paper puts forward a big data-driven and mobile crowd
embedded chance control mechanism. On the one hand,
the proposed data-driven larger embedded engineering
measurement model can meet the demand of non-linear
bioengineering and solve the problem of low accuracy. On
the other hand, the embedded terminal actively eliminate
random factors interference by sensing external interfer-
ence factors. We proposed the mobile crowd biological
engineering optimization opportunities control mechan-
ism. Based on biological reaction time, experiment equip-
ment size, and temperature of the experimental
conditions, the established control mechanism can
smooth the biological data jitter, reduce data error, and
shorten the response delay. At the same time, the bio-
logical reaction scheme established by the convergence
speed of pressure sensitivity is significantly lower than the
biological engineering control scheme based on coordin-
ation control.
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