
REVIEW Open Access

Research on recovery strategy in
embedded real-time main memory
databases
Tan Yonghong1* and Yin Xiangdong2

Abstract

In order to recover data from embedded real-time main memory databases effectively and efficiently, this paper
proposes a real-time log-based recovery approach. With respect to the real-time requirement in embedded
systems, we classify the consistency in real-time main memory databases into data and transaction consistencies,
analyze them theoretically, design rules for correct recovery strategy, and propose real-time log-based recover
algorithms for different types of transactions. The experiments show that the proposed approach is more effective and
efficient than methods in both traditional and eXtremeDB database systems.

Keywords: Embedded system, Real-time main memory database, Recovery strategy, Consistency

1 Review
With the development of embedded systems, the applica-
tion of databases in embedded systems [1] is a hotspot in
both industry and academia. Embedded systems work in an
environment without manual intervention, so when a fault
occurs in these systems, they need to diagnose the fault and
recover it automatically all by themselves [2]. The main
memory databases [3, 4] can reduce the I/O operations
greatly while running, and satisfy the real-time requirement
of embedded systems, so the databases implemented in em-
bedded systems usually work in the main memory.
In real-time main memory databases [5–7], the main

copy of database works in the volatile RAM, and the
data is very vulnerable, so the recovery is necessary.
Meantime, the I/O operations in real-time main mem-
ory databases are few, and recovery is the only part that
affects the I/O performance, so the performance of re-
covery is critical for real-time main memory databases
[8, 9]. While recovering from a fault, real-time main
memory databases need to satisfy multiple constraints
[10, 11], and this pose a huge challenge for designing
reasonable recovering strategies.

Checkpoint or memory snapshots [12, 13] is a com-
monly used program recovery strategy, but the overhead
of storing states of running program is very high, and it
is not suitable for embedded applications. In addition,
the logs in embedded systems record the behaviors of
embedded systems, and researchers use different logs to
design different recovery strategies, such as partition log
[14], real-time log [15], remote log [16], and operation
log [17]. However, these strategies only take the require-
ment of real-time into consideration, and ignore other
specific requirements in embedded systems, so they
cannot be applied to the embedded environment effi-
ciently. In addition, the method proposed in [13], stud-
ied the recovery strategy in main-memory, but the
method is based on virtual memory snapshots. In order
to improve real-time ability, Levy and Silberschatz [18]
proposed an incremental recovery strategy in main-
memory database.
In this paper, we analyze the consistency constraints

in embedded real-time main memory databases from
the perspectives of both data and transaction. Then
we design some rules that an efficient recovery strat-
egy must obey in embedded real-time main memory
databases. Finally, we propose corresponding recovery
algorithms for different tasks of embedded real-time
main memory databases.

* Correspondence: hunantanyonghong@sina.com
1Experimental Training Center, Hunan University of Science and Engineering,
YongZhou City, Hunan Province, China
Full list of author information is available at the end of the article

EURASIP Journal on
Embedded Systems

© 2016 Yonghong and Xiangdong. Open Access This article is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made.

Yonghong and Xiangdong EURASIP Journal on Embedded Systems (2016) 2016:9
DOI 10.1186/s13639-016-0030-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s13639-016-0030-1&domain=pdf
mailto:hunantanyonghong@sina.com
http://creativecommons.org/licenses/by/4.0/

2 Analysis of consistency in embedded real-time
main memory databases
In this section, we analyze the consistency of embedded
real-time main memory databases from the perspective
of both data and transaction.

2.1 Data consistency
The embedded real-time main memory databases in-
clude three types of data, i.e., image objects, derived ob-
jects, and invariant objects.
The objects of real world are sensed by sensors,

and their values are written into the databases. The
values written into the databases are image objects.
An image object is an image of a real world object
at some instant, and each image object has its own
sampling timestamp and external validity interval.
A derived object is calculated out by a group of

image objects during a transaction processing. The
timestamp of a derived object is the instant when the
transaction is finished, and the validity interval is the
intersection of all validity intervals of image objects
in the group.
An invariant object is a constant which is invariant as

time goes by. The validity of an invariant object is not af-
fected by time, so it is also called non-time series data
object.
As there is a validity interval for each image object

and derived object, both of them are time series data ob-
jects. The sampling time and computing time of time
series data are validate only in an interval starting from
the system’s current time.
Definition 1. If VI(X) is far less than AT(X), i.e.,

VI(X) < < AT(X), then X is short time-limited data.
The data consistency of embedded real-time systems

includes internal consistency, external consistency, and
mutual consistency.
Definition 2. X is internal consistent, if and only if it

satisfies the predefined integrity and consistency of trad-
itional database systems.
Here, the internal consistency is the internal

consistency in traditional database systems, and it only
refers to the internal world of database systems.
Definition 3. X is external consistent, if and only if it

satisfies t ≤ ST(X) +VI(X).
The external consistency requires that the sampling

data in a database lag the real world within a certain
time.
Definition 4. A group of related data used for decision

or deriving new data is a mutual consistent set R, and
each R is related to a corresponding mutual validity in-
ternal Rmvi.
Definition 5. Let R = {X1, X2,…, Xn}, then R is mutual

consistent, if and only if ∀ Xi ∈ R, ∀ Xj ∈ R and k ≠ i, such
that |ST(Xi) − ST(Xj)| ≤ Rmvi.

If R is used to generate new data, then the mutual
consistency is used to assure the values in R are gener-
ated within the common validity interval.

2.2 Transaction consistency
The embedded real-time main memory database sys-
tems interact with real world according to two behav-
iors. The first one is recording the states and events
of the real world into the databases, and the second
one is doing some acts to affect the real world. The
embedded real-time transactions can be classified into
data receiving transactions, data processing transac-
tions and manipulating transactions.
Data receiving transactions sample the external envir-

onment periodically and write it into the databases. This
kind of transaction generates an image object in one
period, and it is a read-only and non-blocking hard real-
time transaction.
Data processing transactions do read-only opera-

tions to image objects periodically or non-
periodically, and read and write deriving objects or
invariant objects. This kind of transaction does not
interact with the real world, and is a soft real-time
transaction.
Manipulating transactions read all kinds of data in

a database, and do a set of actions AS(T) = {Ai|1 ≤ i ≤
h} to control the embedded system. If this kind of
transaction exceeds the validity interval, disastrous
results will be generated, so it is also a hard real-
time transaction. Manipulating transactions are read-
only operations, and they do not affect the
consistency of databases, but they can change the
states of real world.
The same as data consistency, transaction consistency

in embedded real-time main memory database systems
also include internal consistency, external consistency,
and mutual consistency.
Definition 6. T is internal consistent, if and only if the

value it reads and/or writes satisfies the predefined in-
ternal integrity and consistency of traditional database
systems.
Definition 7. T is external consistent, if and only if

t ≤D(T) and ∀ Xi ∈DS(T), t ≤ ST(Xi) +VI(Xi).
The external consistency of embedded real-time trans-

actions requires that each transaction is in its validity
internal, and all read/write operations are within its val-
idity interval.
Theorem 1. Let MVI(T) be the minimum of all validate

terminal instants of T while reading/writing data objects,
then the final terminal instant of T is DR(T) =min(D(T),
MVI(T)).
Proof: If MVI(T) < t <D(T), then ∃ Xi ∈DS(T), such

that t > ST(Xi) + VI(Xi), that is, there exists some Xi,
which loses the external consistency, so this violates

Yonghong and Xiangdong EURASIP Journal on Embedded Systems (2016) 2016:9 Page 2 of 7

the external consistency constraint while T reads/
writes data objects. On the contrary, if D(T) <MVI(T)
and t >D(T), then T exceeds the validity interval, and
this violates the external constraint of T. So, we can
have DR(T) = min(D(T),MVI(T)).
Definition 8. T is mutual consistent, if and only if

∀ Xi, Xj ∈DS(T), and i ≠ j, such that |ST(Xi) − ST(Xj)| ≤
Rmvi.
The mutual consistency of embedded real-time

transactions means that the time interval between any
two data objects is not bigger than the given value
Rmvi(T).
With the same reason, when T is both external con-

sistent and mutual consistent, then it is time consistent.
A validate submit of transaction in embedded real-time
systems depends not only on the internal consistency,
but also on the time consistency. So, we have the follow-
ing corollary.
Corollary 1. T is consistent, if and only if the following

constraints satisfy at the same time:

(1)∀ Xi, Xi∈DS(T);
(2)CT(T) ≤DR(T);
(3)∀ Xi∈ RS(T), RTT(Xi) ≤ ST(Xi) +VI(Xi);
(4)∀ Xi, Xj∈ RS(T) and i ≠ j, such that |ST(Xi) −

ST(Xj)| ≤ Rmvi(T).

3 Rules for correct recovery strategy
Taking the internal consistency and time consistency of
transactions and data in embedded real-time main mem-
ory databases into consideration, we present some rules
for correct recovery strategies.

3.1 Non-time series data recovery rule
Rule 1. If T has not been submitted, then for ∀ Xi ∈
US(T) satisfying St(Xi) =UIT(Xi), execute the undo
operation.
Rule 2. If T has been submitted, then for ∀ Xi ∈US(T)

satisfying St(Xi) ≠UIT(Xi), execute the redo operation.
Rules 1 and 2 can recover the data such that they

satisfy the internal consistent constraint, and non-
time series data only have internal consistent con-
straint, so they can also be used to recover non-time
series data.

3.2 Time series data recovery rule
Rule 3. If ∃ Xi ∈US(T) satisfying St(Xi) =UIT(Xi) and
t ≤ ST(Xi) + VI(Xi), then whether or not T has been
submitted, there is no need to execute any recovery
operation for Xi.
Rule 4. If ∃ Xi ∈ US(T) satisfying St(Xi) ≠UIT(Xi)

and t ≤ ST(Xi) + VI(Xi), then execute the redo oper-
ation for Xi.

Rule 5. If ∃ Xi ∈US(T) satisfying t > ST(Xi) + VI(Xi),
then resample by starting the data receiving transac-
tion of Xi.
Theorem 2. Rules 3~5 can recover the internal and ex-

ternal state consistency of time series data.
Proof: The recovery of time series data Xi needs

to consider the consistency between its internal
state St(Xi) with its external state UIT(Xi), but not
whether or not the transaction has been submitted.
When t ≤ ST(Xi) + VI(Xi), if St(Xi) ≠UIT(Xi), i.e., the

internal and external states of Xi are not consistent,
then whether or not T has been submitted, the
redo operation should be executed according to
UIT(Xi) (Rule 4); and if St(Xi) =UIT(Xi), i.e., the in-
ternal and external states of Xi are consistent, then
whether or not T has been submitted, there is no
need to execute any recovery operation (Rule 3).
When t > ST(Xi) + VI(Xi), executing undo or redo

operation is meaningless, and data receiving transac-
tion should be restarted immediately to resample and
recover the consistency of Xi between its internal and
external states (Rule 5).

3.3 Real world state recovery rule
In embedded real-time applications, if the transactions
have been submitted and have changed the real world
states, there is no need to recover; and if the transac-
tions have not been submitted, then we should do
some compensation to recover the state changes of
real world.
Rule 6. If T has not been submitted, then for each ac-

tion that has happened, i.e., ∀ Ai ∈AS(T), execute com-
pensation or recovery task for Ai.
Theorem 3. Rule 6 can recover the consistency of real

world state.
Proof: Manipulating transactions is read-only, and they

do not violate the consistency of data objects. The atom-
icity of manipulating transactions is that, whether all ac-
tions of T, AS(T) = {Ai|1 ≤ i ≤ h}, are executed or none of
them is executed.
Let OAS(T) = {Aj|1 ≤ j ≤ h} be the set of actions that

has been executed in T when a fault occurs. Accord-
ing to Rule 6, when OAS(T) ≠ ∅ and OAS(T) ≠ AS(T),
we need to compensate and recover for ∀ Aj ∈OAS(T).
So, the real world states, that have been changed, can
be recovered correctly.

3.4 Transaction restart rule
No manual intervention is a typical feature of em-
bedded real-time databases, and thus, the database
systems should restart all kinds of transactions
automatically when faults occur. The transactions
needed to restart include two kinds. The first one
is that restarting period has passed by or running

Yonghong and Xiangdong EURASIP Journal on Embedded Systems (2016) 2016:9 Page 3 of 7

time has exceeded the running period, and the
second one includes non-periodic transactions, that
do not finish successfully but still satisfy all
consistencies.
Rule 7. For a periodic transaction T, if T does not

finish normally, or T finishes normally and satisfies
t ≥ BT(T) + P(T), then restart T.
Rule 8. For a non-periodic transaction T, that does

not finish normally, if the following conditions satisfy at
the same time, then restart T.

(1)t + EET(T) ≤DR(T);
(2)∀ Xi∈ RS(T), t ≤ ST(Xi) +VI(Xi);
(3)∀ Xi, Xj∈ RS(T), i ≠ j and 1 ≤ i, j ≤ n, |ST(Xi) −

ST(Xj)| ≤ Rmvi(T).

Rule 8 is the same as Corollary 1, i.e., when a fault
occurs, only when all consistencies of a transaction
have been satisfied, then we can restart the
transaction.

4 Log-based recovery strategy
In order to recover from faults, embedded real-time
main memory databases need to log the time and
triggered actions for each transaction and data. These
logs include real-time transaction logs, data logs, and
action logs. Taking the limits of CPU, storage and en-
ergy in embedded systems, we propose the following
data recovering strategies based on the rules in the
last section.
Strategy 1. If X is a series data with short limited time,

then there is no need to log the updates of data.

Strategy 2. If AFI Xið Þ−BFI Xið Þj j
BFI Xið Þ ≥δ Xið Þ, then log the current

data update operation; and otherwise, log nothing.
Strategy 3. Update the time series data objects imme-

diately. That is updating the states of database before a
transaction is submitted.
Strategy 4. Deferred update the non-time series data

objects. That is updating the states of database when a
transaction is submitted.
Strategies 1 and 2 can greatly reduce the overhead

of logging the updates of time series data, and also
accelerate the recovery speed. Rule 3 makes sure
that the latest states of time series data can be
written to the databases to reduce the redo opera-
tions of time series data. Rule 4 clears the logs of
non-time series data and their undo recovery, and
can further reduce the overhead of storage and
recovery.
Based on the above strategies, we propose corre-

sponding recovery algorithms for data receiving trans-
actions, control transactions, and data processing
transactions, and they are described as follows:

5 Experiments
5.1 Experimental setting
In the experiments, we implement the proposed log-
based recovery algorithm on the eXtremeDB em-
bedded database [19], and compare it with the

Yonghong and Xiangdong EURASIP Journal on Embedded Systems (2016) 2016:9 Page 4 of 7

traditional recovery method and the method in eXtre-
meDB. The experiments contain a small database, and the
operations include insert, delete, and modification. Query
operations are not in our experiments, because they do
not change the data in the database, and the recovery
strategy does not need to consider this situation. We
mainly compare the system overhead, overtime transac-
tion ratio (ratio of transactions that exceed the validity
interval), and rejecting service time (downtime). The
meanings and values of experimental parameters in eXtre-
meDB are in Table 1.

5.2 Experimental results
Firstly, we compare the CPU utilization and log buf-
fer utilization of the three approaches, and the results
are in Figs. 1 and 2, respectively. With respect to
CPU utilization, our proposed approach is higher than
the other two, and the reason is that the proposed
approach uses main memory to store data and it has
the highest throughput. With respect to the log buffer
utilization, the value of the proposed approach is the
lowest, which means that the proposed method only
logs necessary data and the usage of log buffer is the
most efficient.
Secondly, we compare the ratio of transactions exceed-

ing the validity interval in Fig. 3, and the average reject-
ing service time in Fig. 4. The ratio of transactions
exceeding the validity interval is also the ratio of missing
transactions. From Fig. 3, we can see that our proposed
approach has the least missing transactions. Rejecting
service time is also called downtime. Figure 4 illustrates
that the proposed approach has the lowest average
downtime.
Next, in our proposed approach, we observe the

changes of overtime transaction ratio under differ-
ent “per_short” (short time-limited data ratio) and

“threshold” (time series data state change threshold),
and the results are in Figs. 5 and 6, respectively. In
Fig. 5, the order of overtime transaction ratios for
different per_short is 0 > 0.5 > 0.1 > 0.3 > 0.2, which means
that we must carefully select per_short to optimize the
overtime transaction ratio. Here, per_short = 0.2 is the
best. In Fig. 6, the order of overtime transaction ratios for
different threshold is the same as that of per_short, so we
can have the same conclusion.
Finally, we observe the time series data ratio of the

proposed approach under different update modes, and
the results are in Fig. 7. From the figure, we can see
that the hybrid of deferred and immediate update
modes has the lowest time series data ratio, which
means that the hybrid update mode has canceled the
overhead of undo recovery for the invariant data ob-
jects, and thus reduces the ratio of transactions ex-
ceeding the validity interval.

Table 1 Parameter setting

Parameter Meaning Default value Domain

num_imo Image data object number 250 50~500

num_deo Derived data object number 250 50~500

num_ino Invariant data object number 500 200~1000

per_short Short time limited data ratio 20% 0~40 %

vi Time series data validate time 50ms 5ms~10s

δ Time series data state change threshold 10% 0~20 %

period Period of periodic transaction 50ms 5ms~10s

generation_ratio Periodic transaction generating ratio 20/s 5~50/s

trigger_ratio MT trigger ratio 5/s 2~10/s

update_number Update number 2 1~3

num_actions Action number 3 1~5

update_mode Update mode Hybrid Deferred/immediate/hybrid

Fig. 1 Comparison of CPU utilization

Yonghong and Xiangdong EURASIP Journal on Embedded Systems (2016) 2016:9 Page 5 of 7

Fig. 4 Comparison of rejecting service time

Fig. 3 Comparison of overtime transaction ratio

Fig. 5 Overtime transaction ratios for different “per_short”Fig. 2 Comparison of log buffer utilization

Fig. 6 Overtime transaction ratios for different “threshold”

Fig. 7 Time series data ratio for different update modes

Yonghong and Xiangdong EURASIP Journal on Embedded Systems (2016) 2016:9 Page 6 of 7

6 Conclusions
In this paper, we study the problem of data recovery
strategy in embedded real-time main memory data-
bases. Because of real-time requirement in embedded
systems, consistency of embedded real-time main
memory databases is different from traditional data-
bases. We analyzed both the data and transaction
consistencies in embedded real-time main memory
databases, designed rules for correct recovery strategy,
and proposed real-time log-based recover algorithms
for different types of transactions. The experiments
show that the proposed approach is more effective
and efficient than methods in both traditional and
eXtremeDB database systems. The proposed recovery
algorithm can be integrated into the eXtremeDB data-
base, and thus provide better recovery performance.
Integrating the proposed algorithm into other main
memory database will be our future work.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
The work was supported by the following funds: Hunan Provincial Natural Science
Foundation of China (Grant No.2015JJ6043); Hunan University of Science and
Engineering; Scientific Research Fund of Hunan Provincial Education
Department(Grant No.12A054); The Construct Program of the Key Discipline in
Hunan University of Science and Engineering(Circuits and Systems).

Author details
1Experimental Training Center, Hunan University of Science and Engineering,
YongZhou City, Hunan Province, China. 2School of Electronics and
Information Engineering, Hunan University of Science and Engineering,
YongZhou City, Hunan Province, China.

Received: 22 December 2015 Accepted: 20 April 2016

References
1. A Nori, Mobile and Embedded Databases[C]//Proceedings of the 2007 ACM

SIGMOD International Conference on Management of Data. ACM, 2007, pp.
1175–1177

2. V Narayanan, Y Xie, Reliability concerns in embedded system designs.
Computer 39(1), 118–120 (2006)

3. H Garcia-Molina, K Salem, Main memory database systems: an overview.
Knowl. Data Eng. IEEE Trans. 4(6), 509–516 (1992)

4. J Stankovic, SH Son, J Hansson, Misconceptions about real-time databases.
Computer 32(6), 29–36 (1999)

5. K Ramamritham, Real-time databases. Distrib. Parallel Databases 1(2),
199–226 (1993)

6. G Özsoyoğlu, RT Snodgrass, Temporal and real-time databases: a survey.
Knowl. Data Eng. IEEE Trans. 7(4), 513–532 (1995)

7. K Ramamritham, SH Son, LC Dipippo, Real-time databases and data services.
Real-time Syst. 28(2-3), 179–215 (2004)

8. KH Kim, HO Welch, Distributed execution of recovery blocks: an approach
for uniform treatment of hardware and software faults in real-time
applications. Comput. IEEE Trans. 38(5), 626–636 (1989)

9. RM Sivasankaran, K Ramamritham, JA Stankovic et al., Data Placement,
Logging and Recovery in Real-Time Active Databases[M]//Active and Real-Time
Database Systems (ARTDB-95) (Springer, London, 1996), pp. 226–241

10. Soparkar NR, Silberschatz A, Korth HF. Time-constrained transaction
management: real-time constraints in database transaction systems. Kluwer
Academic Publishers; 1996.

11. MI Seltzer, MA Olson, Challenges in Embedded Database System
Administration[C]//Proceeding of the Embedded System Workshop, 1999,
pp. 29–31

12. GM Liao, JP Li, Research on Timely Recovery Technology of Memory
Database[C]//Wavelet Active Media Technology and Information Processing
(ICWAMTIP), 2012 International Conference on. IEEE, 2012, pp. 268–271

13. A Kemper, T Neumann, HyPer: A hybrid OLTP&OLAP Main Memory Database
System Based on Virtual Memory Snapshots[C]//Data Engineering (ICDE), 2011
IEEE 27th International Conference on. IEEE, 2011, pp. 195–206

14. Lam KY, Kuo TW. real-time database systems: architecture and techniques.
Kluwer Academic Publishers; 2001.

15. LC Shu, JA Stankovic, SH Son, Achieving bounded and predictable recovery
using real-time logging. Comput. J. 47(3), 373–394 (2004)

16. T Niklander, K Raatikainen, Using Logs to Increase Availability in Real-Time
Main-Memory Database[M]//Parallel and Distributed Processing (Springer,
Berlin Heidelberg, 2000), pp. 720–726

17. N Malviya, A Weisberg, S Madden et al., Rethinking Main Memory OLTP
Recovery[C]//Data Engineering (ICDE), 2014 IEEE 30th International Conference
on. IEEE, 2014, pp. 604–615

18. E Levy, A Silberschatz, Incremental recovery in main memory database
systems. Knowl. Data Eng. IEEE Trans. 4(6), 529–540 (1992)

19. MC Majhi, AK Behera, NM Kulshreshtha et al., ExtremeDB: a unified web
repository of extremophilic archaea and bacteria [J], 2013

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Yonghong and Xiangdong EURASIP Journal on Embedded Systems (2016) 2016:9 Page 7 of 7

	Abstract
	Review
	Analysis of consistency in embedded real-time main memory databases
	Data consistency
	Transaction consistency

	Rules for correct recovery strategy
	Non-time series data recovery rule
	Time series data recovery rule
	Real world state recovery rule
	Transaction restart rule

	Log-based recovery strategy
	Experiments
	 Experimental setting
	Experimental results

	Conclusions
	Competing interests
	Acknowledgements
	Author details
	References

