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Abstract

For improving the system performance of mobile Internet, how to provide the Quality of Experience (QoE) guarantee
is an important factor. First, based on artificial neural network and adaptive cross-layer perceptron, we studied the cloud-
assisted QoE guarantee mechanism. Then, according to the power, we divided the distance and perceptron layers of
mobile Internet and cloud into three levels. We showed the state information definition of the mobile node on the basis
of the adaptive adjustment perceptron layers. Thirdly, the perceptron network topology would be updated according to
the customer service, which would be updated based on the perceptron learning rule for improving the training practice
efficiency. The above scheme would guarantee the QoE effectively. The experimental results show that the proposed QoE
guarantee mechanism has obvious advantages in terms of throughput, efficiency, and reliability.

1 Introduction
Mobile crowding networks can fully study the under-
lying data service node of the mobile communication
system, which could provide better quality assurance for
data communications and make full use of the sensing
region mobile node communication resources, and is
used in various fields, such as metro networks [1], or-
ganelle networks [2], and aqueous hydroxyapatite-gelatin
networks [3]. However, how to motivate users to actively
join the mobile-aware network [4] and update the net-
work mobile node [5] becomes the key issue.
One the hand, Oh Sang-Hoon [6] proposed an al-

gorithmic-level approach, which used the multilayer per-
ceptrons with higher order error functions. The class
imbalance problem in the context of multilayer perceptron
(MLP) neural networks was investigated by Castro
Cristiano et al. [7]. Chaudhuri et al. [8] developed a multi-
layer perceptron model and compared the forecast quality
with other neural networks. Mwale et al. [9] applied a com-
bination of self-organizing maps (SOM) and multilayer
perceptron artificial neural networks to the Lower Shire

floodplain of Malawi for flow- and water-level forecasting,
which was used to extract features from the raw data. The
use of multilayer perceptron neural networks to invert dis-
persion curves obtained via multichannel analysis of surface
waves (MASW) for shear S-wave velocity profile was
proposed by Caylak and Kaftan [10]. Ouadfeul et al. [11]
implanted a tentative prediction of daily geomagnetic field
and storms by analyzing the International Real-Time
Magnetic Observatory Network data using the artificial
neural network.
On the other hand, the improvement achieved in esti-

mating the volume of clay in the Shurijeh Reservoir
Formation is described in article [12], which dealt with
an application to a gas-producing well and another non-
producing well in a joint field between Iran and
Turkmenistan. Taravat et al. [13] introduced and evalu-
ated a multilayer perceptron neural network cloud mask
for Meteosat Second Generation SEVIRI images. The
radial basis function network and multilayer perceptron
networks were investigated in article [14] for modeling
urban change. Fan et al. [15] set up a multilayer percep-
tron neural network prediction model based on phase re-
construction, which is for carbon price to characterize its
strong nonlinearity.
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Thirdly, Patel Krishna et al. [16] investigate reward-loss
neural response differences among 42 current cocaine
users, 35 former cocaine users, and 47 healthy subjects with
a functional magnetic resonance imaging monetary incen-
tive delay task. A secure user-centric and social-aware
reputation-based incentive scheme for DTNs was proposed
in article [17]. The symbiotic architecture called cognitive
relaying with frequency incentive for multiple primary users
(CRFI-M) was studied by Nadkar et al. [18]. The design
challenges of incentive mechanisms for encouraging user
engagement in user-provided networks were analyzed by
Iosifidis et al. [19]. The Quality of Experience (QoE) guar-
antee was designed for cybersecurity [20].
However, the above research results ignored the rela-

tionship between the crowding network topology and
perceptron architecture of mobile nodes. Additionally,
the QoE guarantee scheme was not researched in depth.
Based on the results of the above researches, the cloud-
assisted QoE guarantee mechanism based on adaptive
cross-layer perceptron of artificial neural network was
proposed for mobile crowding networks.
The rest of the paper is organized as follows. Section 2

describes the adaptive cross-layer perceptron with artifi-
cial neural network. In Section 3, we design the cloud-
assisted QoE guarantee mechanism based on adaptive
cross-layer perceptron. Simulation results are given in
Section 4. Finally, we conclude the paper in Section 5.

2 Adaptive cross-layer perceptron with artificial
neural network
According to the deployment of n mobile nodes in the
mobile crowding network, the mobile node state is de-
fined as M (P, D, LN), where P denotes the transmit
power, D represents the distance, and LN represents the
perception layer of the mobile node.
T denotes the collection delay of mobile node trans-

mitting signals. The n mobile nodes are divided into k
groups based on a data signal transmission delay. Based
on the transmission power of the mobile crowding node,
the primary divide situation of mobile nodes is shown in
Fig. 1a. The formula (1) shows the relationship.
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Here, let NRT denote the retransmission time. Pe
denotes the packet error rate. Tsys denotes the system
delay. Psys denotes the total power of system. THsys

denotes the throughput of system. DPsize denotes the
packet size.
In space, according to the moving speed of the mobile

node and the distance between the base station and the
mobile node, the mobile crowding network are divided
secondly, as shown in Fig. 1b, and the relationship is
shown in formula (2).
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Here, let V denote the moving speed. The k * p matrix

denotes the relationship between the p groups of mobile
nodes after second division based on the k group with
power. dmax denotes the maximum distance between the
two mobile nodes. dj→ BS denotes the distance between
the mobile node and base station.
About the perceptron layer, to optimize the mobile

node perceptron learning efficiency and effectiveness of
the training, the layer number of perceptron is divided
based on the transmit power and spatial layout calcu-
lated within the same frequency band transmission with
different distances from the mobile node input vector
and perception, which satisfies the relationship of equa-
tion (3). The division is shown in Fig. 1c.

f T ¼
SM1

⋮
SMk

2
4

3
5 SM1

⋮
SMp

2
4

3
5 SM1

⋮
SMLN

2
4

3
5

Xk
i¼1

Xp
j¼1

XLN
l¼1

ek≤E etotal½ �

8>>>>><
>>>>>:

ð3Þ

Here, fT denotes the signal fusion which is obtained
from the transmission power, the distance, and the num-
ber of the sensor layer. The fusion is used to evaluate
the training effect. Let SM1 denote the signal of mobile
node. ek denotes the learning error. E[etotal] denotes the
total learning error of mobile crowding networks.
According to the sending power, distance and layer

of perceptron, and combining the network partition
and moving speed, the receiving signal is given by
equation (4).

xS ¼
Xk
i¼1

Xp
j¼1

XLN
l¼1

PiSj hdj j2 f T
E etotal½ � ð4Þ

Here, hd denotes the channel fading factor between
mobile node and user.
The receiving signal of neighbor mobile node is given

by equation (5).
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Fig. 1 Three level partition architecture. a Sending power. b distance. c layers of perceptron
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Here, hs→ user denotes the channel fading factor of
neighbor node and receiver. Pa denotes the sending
power of neighbor nodes. xa denotes the sending signal.
ne denotes the number of the neighbor node receiving
the feedback signal from the perceptron.
For optimizing the perceptron performance of mobile

crowding networks and encouraging users to join the
cooperation, based on artificial intelligence neural net-
work, the perceptron would be optimized according to
equations (6) and (7). This is to ensure that the trans-
mission power, distance, and layer number of the mobile
neighbor nodes could be optimized.
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np ¼ np
Xk
i¼1

Pipiwi ð7Þ

Here, P and W are the input vector and target vector, re-
spectively. np denotes the perceptron before optimization.
np denotes the perceptron after optimization.
The adaptive update of the cross-layer perceptron

state of the mobile node can be carried out in accord-
ance with equation (8), as shown in Fig. 2.
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Here, α, β, and γ are the adaptive updating incentive
weighting factors of sending power, distance, and layer
number of the perceptron, respectively. To trade off be-
tween the mobile swarm intelligence network global
communication performance and the user can control
resources as the goal, based on three-tiered architecture,
is that the cross-layer perceptron state would be adap-
tively updated. The analysis results of the performance
are shown in Figs 3 and 4.
From Fig. 3, we found that the fitness is smaller than

one with the without-adaptive update. As shown in
Fig. 4, after the adaptive adjustment and updating of the
sensor, the effect is better and the dividing line is clear.
These results show that the proposed algorithm can be
used to mobile crowding network, which has the advan-
tages of high reliability, fast convergence, and global
optimization.

3 Cloud-assisted QoE guarantee mechanism of
mobile internet
Based on the current demand for data services, the mobile
nodes of mobile crowding network can be adaptively ad-
justed, which would guarantee the Quality of Experience
of mobile nodes. Therefore, it is particularly important to

Fig. 2 Adaptive control flow of cross-layer perceptron

Silin EURASIP Journal on Embedded Systems  (2016) 2016:1 Page 4 of 9



study cloud-assisted QoE guarantee mechanism with ser-
vice awareness and dynamic update.
Based on the adaptive cross-layer perceptron, the

cloud-assisted QoE guarantee mechanism is shown in
Fig. 5. The service is launched by a base station and its

users with the wireless radio, which would be released
with the incentive information. The neighbor node re-
ceives the excitation signal with its state parameters. Then
the perceptron would be adaptively adjust and update for
constructing the service guarantee network. The initiated

Fig. 3 Fitness

Fig. 4 Partition of crowding networks
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and assembly processes are shown in Fig. 5. The data
transmission path is set up by the initialization, learning
training, and cross-layer interaction with the perceptron
of the motivated mobile nodes.
In order to effectively motivate the neighbor mobile

nodes to actively join the data communication, the per-
ceptron weights, thresholds, and perceptron layers should
be real-time updated, which could be completed accord-
ing to equation (9).

Δp ¼ α
Xk
i¼1

pi þ pNRT

Δw ¼ w k; p; LNð Þβ
ΔLN ¼ λetotal

Xp
k¼1

LNek

8>>>>>><
>>>>>>:

ð9Þ

Here, based on the data loss and weight factor, the
power, location information, and the layer numbers should
be updated in the next round, by broadcasting the full
effective incentive information in mobile crowding net-
works. At the same time, the data transmission error
should be mapped to the distance and layer number of the
perceptron, which is used to avoid the waste of resources
caused by data loss of the mobile node. This scheme could

provide the high resource utilization rate and avoid the
abandonment of the data service provider.
The mobile node state information without the cooper-

ation communication would be adjusted and updated
according to equation (10), and the perceptron would be
modified and trained, waiting for the next round of tasks
initiated as alternative cooperative nodes.

Δw ¼ w k; p; LNð Þ þ ΔwTaskβ
ΔLN ¼ ΔLN−Task þ λE eTask½ �
net ¼

Xq
i¼1

PEi p;w; LNð Þ

8>><
>>: ð10Þ

Here, PE(p,w,LN) denotes the mobile nodes of mobile
crowding networks. Let net denote the perceptron net-
works. The state of the mobile node is updated from the
space and the layer number of the perceptron. The per-
ceptron is updated by the q iteration. The mobile state
of users are random. The mobile data service nodes
could be different in each round. For guaranteeing the
system performance of the mobile crowding network,
based on updating the perceptron network, the mobile
nodes should be an effective incentive which should
satisfy the conditions and performance requirements.
In order to avoid the following limitations of static

perceptron:

Fig. 5 Cloud-assisted QoE guarantee model for mobile crowding networks
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1. The perceptron transfer function can only accept
unilateral incentives, not global optimization.

2. With nonlinear problems and classification, the
efficiency is low.

3. About the face of long-time data transmission ser-
vice, the number of learning iterations is higher, and
the training effect is poor.

4. When the input vector and the target vector are not
clear, the performance is not stable and it is easy to
fluctuate.

In the process of data transmission, the active state of the
mobile node creates a perceptron based on the network
state and service request, as well as the initialization trans-
fer function and learning function. A perceptron network
could be trained and created according to formula (11).

f IN ¼ Psys⊕PWk

f T ¼ f IN⊕PWp

f OUT ¼
XLN
i¼1

f iT

8>>><
>>>:

ð11Þ

Here, fIN denotes the input vector, which could be ob-
tained by the XOR operation of the system power and total
power of user mobile node after k division. fOUT denotes
the target vector of arriving at the station.
Therefore, based on the adaptive cross-layer percep-

tron of artificial neural network in mobile crowding net-
work, the cloud-assisted QoE guarantee mechanism can
be divided into the following four stages: initialization of
network state, division into three levels, creation of
perceptron network, and cloud-assisted QoE guarantee.
Among them, the creation of the perceptron network is
divided into perceptron initialization, perceptron learning,
and perceptron training. After the completion of the
cloud-assisted QoE guarantee, the mobile crowding net-
work is divided into active user nodes and alternative user
nodes, a round of data services to provide the process of
the above stages of the work flow as shown in Fig. 6.
In summary, based on a neural network and adaptive cross-

layer perceptron, the mobile crowding cloud-assisted QoE
guarantee mechanism (CAQG-ACL) is described as follows:

Algorithm: CAQG-ACL
Input: M(P, d, Ln),{α, β, γ},{p,w}, n, m, k

1 computing the value of Tsys,Psys,THsys

2 completing k group division with power
3 completing p group division based on primary

division
4 completing thr third division based on input vector,

layer number of perceptron
5 computing the value of xS,yn
6 while i < =n

7 completing the perceptron initialization of a mobile
node

8 i++
9 end
10 while i < =k, and j < =p and l < =LN
11 completing the initialization of net = newp[i, j, l]
12 i++, j++, l++;
13 end
14 Developing a perceptron learning rule as PW
15 while i < =k
16 Δw =w(k, p, LN) + ΔwTaskβ
17 ΔLN = ΔLN − Task + λE[eTask]
18 updating the perceptron network:

net ¼
Xq
i¼1

PEi p;w; LNð Þ
19 i++
20 end
21 end

4 Performance evaluation
Within a 20 km * 10 km wide rectangular area of mobile
Internet, 3 base stations are deployed and 50 mobile nodes
move randomly from 8 different angles to the region. The
moving speed is from 1 to 5 km/h. There are five clouds
in the assisted platform. The experimental time is 50 min,
the step size of the user-moving nodes in the region is 5,
and the number of rectangular area users reached the
maximum at 50 min every 10 min. In order to analyze
and verify the proposed user-incentive mechanism in a
mobile crowding network, we compared the throughput
rate, execution efficiency, and the symbol error rate of the
proposed scheme with the single-layer perceptron of QoE
guarantee mechanism denoted as QG-SP.

Fig. 6 Work flow
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Figure 7 shows the results of the performance compari-
son between CAQG-ACL and QG-SP in three ways.
Figure 7a gives the change of throughput rate in 50 min.
It is found that the throughput rate of the CAQG-ACL
maintains a high and obvious rising trend, which benefits
from a mobile node perceptron update process. The pro-
posed scheme not only reduced user channel contention
probability but also improved the success arrival rate of
packet. The throughput of QG-SP increased obviously in
20 min. But there is a big jitter after 20 min, and the
maximum throughput rate is still less than CAQG-ACL.
Figure 7b shows the result of execution efficiency with

mobile node scale. The execution efficiency of the pro-
posed CAQG-ACL is about two times of the QG-SP.
When the mobile node number is more than 20, execu-
tion efficiency reached 95 %, which further increased to
100 %. However, the execution efficiency of QG-SP is
always hovering at 70 %, and the jitter is serious. Execu-
tion efficiency is guaranteed by the user’s incentive mech-
anism in which the cross-layer interaction is updated in
real time and the adaptive adjustment mechanism of the
multilayer perceptron.
Figure 7c gives the reliability performance of the two

mechanisms with time. We found that the symbol error
of QG-SP decreased first and then rapidly increased
before 15 min, which maintained a high symbol error
rate. This is because the static sensor structure of QG-
SP cannot perceive the mobile node real-time status and
the topology of the dynamic network, which resulted in
a large number of users exiting the cooperative data
transmission. However, the proposed CAQG-ACL consid-
ered the real-time status of the base station, a mobile node,
and the task of initiating nodes through a three-grade
classification, which has the efficient implementation of
real-time optimization and updating perceptron network.
Hence, the proposed scheme is more effective to motivate
the user node and provide reliable data services.

5 Conclusions
The artificial neural network is applied to the mobile
swarm intelligence network, and a highly effective reli-
able cloud-assisted QoE guarantee mechanism is
studied. First, the crowding networks are divided with
three levels, which are the power of the mobile nodes,
the space location, and the number of the sensor layer.
Secondly, the creation process of the sensor network
was proposed, including the sensor initialization, the
perceptron learning, and the perceptron training.
After the completion of the cloud-assisted QoE guar-
antee, the mobile crowding network is divided into ac-
tive user nodes and alternative user nodes. According
to the user’s needs, the real-time state of the percep-
tron network, and crowding network, the cloud-
assisted QoE guarantee mechanism is put forward.
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Fig. 7 Performance analysis of the cloud-assisted QoE guarantee.
a Throughput rate. b Execution efficiency. c Symbol error rate
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Simulation results show that the proposed mechanism
can not only improve the execution efficiency but also
reduce the false symbol rate while maintaining high
throughput rate.
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