
Vincke et al. EURASIP Journal on Embedded Systems 2012, 2012:5
http://jes.eurasipjournals.com/content/2012/1/5

RESEARCH Open Access

Real time simultaneous localization and
mapping: towards low-cost multiprocessor
embedded systems
Bastien Vincke1*, Abdelhafid Elouardi1 and Alain Lambert2

Abstract

Simultaneous localization and mapping (SLAM) is widely used by autonomous robots operating in unknown
environments. Research community has developed numerous SLAM algorithms in the last 10 years. Several works
have presented many algorithms’ optimizations. However, they have not explored a system optimization from the
system hardware architecture to the algorithmic development level. New computing technologies (SIMD
coprocessors, DSP, multi-cores) can greatly accelerate the system processing but require rethinking the algorithm
implementation. This article presents an efficient implementation of the EKF-SLAM algorithm on a multi-processor
architecture. The algorithm-architecture adequacy aims to optimize the implementation of the SLAM algorithm on a
low-cost and heterogeneous architecture (implementing an ARM processor with SIMD coprocessor and a DSP core).
Experiments were conducted with an instrumented platform. Results aim to demonstrate that an optimized
implementation of the algorithm, resulting from an optimization methodology, can help to design embedded
systems implementing low-cost multiprocessor architecture operating under real-time constraints.

Introduction
Autonomous robots must be able to localize them-
selves. Simultaneous localization and mapping (SLAM)
algorithms aim to build an environment map while esti-
mating the robot pose. Many researches were conducted
to develop SLAM algorithms like extended Kalman filter
for SLAM (EKF-SLAM) [1,2], FAST SLAM [3], GRAPH
SLAM [4], DP-SLAM [5] which aim to improve consis-
tency, accuracy or robustness. Other algorithms derivate
from the EKF-SLAM, such as algorithms using unscented
Kalman filter (UKF) [6] which increases the localization
accuracy against the classical EKF algorithm based on a
linearizedmodel. Only fewworks deal with the implemen-
tation of low-cost SLAM embedded systems.
Most of SLAM implementations rely on the use of

accurate and dense measurements provided by expensive
sensors like laser rangefinder sensors [7] or time of flight
cameras [8]. High-priced smart sensors are not suitable to

*Correspondence: bastien.vincke@u-psud.fr
1 Univ Paris-Sud, CNRS, Institut d’Electronique Fondamentale, F-91405 Orsay,
France
Full list of author information is available at the end of the article

be integrated inmost of embedded systems in commercial
objectives or industrial applications.
Simultaneous localization and mapping systems using

low-cost sensors have been recently designed. Abrate
et al. [9] provide an implementation of the EKF-SLAM
algorithm on a Khepera robot. The robot hosts limited
range, sparse and noisy IR sensors. Experimental results
have shown the importance of the sensor characteristics,
the primitives (lines) extraction and data association. Yap
and Shelton [10] use cheap, noisy and sparse sonar sensors
embedded in a P3-DX robot. To cope with these low-cost
sensors, the implemented SLAM algorithm uses a multi-
scan approach and an orthogonality assumption to map
indoor environments.
Classical SLAM algorithms are too computationally

intensive to run on an embedded computing unit. They
require at least laptop-level performances. Gifford et al.
[11] present a low-cost approach to autonomous multi-
robot mapping and exploration for unstructured envi-
ronments. The robot hosts a Gumstix computing unit
(600Mhz), 6 IR scanning range arrays, a 3-axis gyroscope
and odometers. Running DP-SLAM alone on the Gumstix
with 15 particles takes on average 3 s per update. While

© 2012 Vincke et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Vincke et al. EURASIP Journal on Embedded Systems 2012, 2012:5 Page 2 of 14
http://jes.eurasipjournals.com/content/2012/1/5

using 25 particles, it takes more than 10 s per update.
Authors have underlined the difficulty to find the right
SLAM parameters to fit within the available computing
power and the real-time processing. Magnenat et al. [12]
present a system based on the co-design of a low-cost
sensor (a slim rotating scanner), a SLAM algorithm, a
computing unit, and an optimization methodology. The
computing unit is based on an ARM processor (533 Mhz)
running a FASTSLAM 2.0 algorithm [13]. Magnenat et al.
[12] use an evolution strategy to find the best configura-
tion of the algorithm and setting of the parameters.
As pointed out by [11,12], the first improvement of

a SLAM algorithm is an efficient setting of the various
parameters of the algorithm. Other modifications were
investigated to reach real-time constraints. These modifi-
cations are necessary due to the low computing power and
limited memory resources available on embedded sys-
tems. Features restriction for EKF-SLAM algorithm has
been implemented to decrease the processing time [14].
Schroter et al. [15] focused on reducing the memory foot-
print of particle-based gridmap SLAM by sharing the map
between several particles.
Robust laser-based SLAMnavigation has long existed in

robot applications, but systems implement sensors that,
in some cases, are more expensive than the final prod-
uct. Neato Robotics has developed a vacuum cleaner that
implements a navigation system using a SLAM algorithm.
The approach is based on a low-cost system implementing
a designed laser rangefinder [16].
This article presents an efficient implementation of the

EKF-SLAM algorithm on a multi-processor architecture.
The approach is based on an algorithm implementation
adequate to a defined architecture. The aim is to optimize
the implementation of the SLAM algorithm on a low-cost
and heterogeneous architecture implementing an SIMD
coprocessor (NEON) and a DSP core. The hardware
includes several low-cost sensors. As [17], we chose to
use a low-cost camera (exteroceptive sensor) and odome-
ters (proprioceptive sensors). Following [12], we efficiently
tune the parameters of the SLAM algorithm. We improve
on previous works by proposing an adequate implemen-
tation of the EKF-SLAM algorithm on a multiprocessing
architecture (ARM processor, SIMD NEON coprocessor,
DSP core). The specifications related to the NEON copro-
cessor and the DSP core improve the processing time and
the system performance. Results aim to demonstrate that
an optimized implementation of the algorithm, result-
ing from an evaluation methodology, can help to design
embedded systems implementing low-cost multiproces-
sor architecture operating under real-time constraints.
Section “EKF-SLAM algorithm” introduces the EKF-

SLAM algorithm. Section “Multiprocessor architecture
and system configuration” presents the embedded mul-
tiprocessor architecture and the system configuration.

Section “Evaluation methodology and algorithm imple-
mentation” details the evaluation methodology, provides
a first algorithm implementation and analyzes this imple-
mentation in terms of processing time. A Hardware–
software optimization is proposed and analyzed in Section
“Hardware–software optimization and improvements”. It
presents SIMD optimizations and DSP parallelization. A
performance comparison is then performed between the
optimized and non-optimized instances. Finally, Section
“Conclusion” concludes this article.

EKF-SLAM algorithm
Overview
Extended Kalman filter for SLAM estimates a state vector
containing both the robot pose and the landmark loca-
tions. We consider that the robot is moving on a plane.
The algorithm uses 3D points as landmarks. It uses pro-
prioceptive sensors to compute a predicted vector and
then corrects this state using exteroceptive sensors. In
this article, we consider a wheeled robot embedding two
odometers (attached to each rear wheel) and a camera.

State vector and covariancematrix
With N landmarks, the state vector is defined as:

x = (x, z, θ , xa1 , ya1 , za1 , . . . , xaN , yaN , zaN)T (1)

where:

• x,z are the ground coordinates (x-axis, z-axis) of the
robot rear axle center. We suppose that the robot is
always moving on the ground, so y = 0 (no elevation)
and y does not appear in Equation (1).

• θ is the orientation of a local frame attached to the
robot with respect to the global frame.

• xa1 , ya1 , za1 , . . . , xaN , yaN , zaN are the 3D coordinates
of the N landmarks in the global frame.

The state covariance matrix is defined as:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Pxx Pxz Pxθ Pxxa1 .. PxzaN
Pzx Pzz Pzθ Pzxa1 .. PzzaN
Pθx Pθz Pθθ Pθxa1 .. PθzaN
Pxa1x Pxa1 z Pxa1 θ Pxa1xa1 .. Pxa1 zaN
..

PzaN x PzaN z PzaN θ PzaN xa1 .. PzaN zaN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2)

Prediction
The prediction step relies on the measurements of the
proprioceptive sensors, the odometers, embedded on our
experimental platform. A non linear discrete-time state-
space model is considered to describe the evolution of the
robot configuration x:

xk|k−1 = f(xk−1|k−1,uk) + vk (3)

Vincke et al. EURASIP Journal on Embedded Systems 2012, 2012:5 Page 3 of 14
http://jes.eurasipjournals.com/content/2012/1/5

where uk is a known two-dimensional control vector,
assumed constant between the times indexed by k−1 and
k, and vk is an unknown state perturbation vector that
accounts for the model uncertainties. xk−1|k−1 represents
the state vector at time k-1, xk|k−1 represented the state
vector after the prediction step, xk|k represents the state
vector after the estimation step. The classical evolution
model, described in [18], is considered:

f(xk−1|k−1, δs, δθ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xk−1 + δs cos
(
θk−1 + δθ

2
)

zk−1 + δs sin
(
θk−1 + δθ

2
)

θk−1 + δθ

xa1,k−1
ya1,k−1
za1,k−1

..

..
xaN ,k−1
yaN ,k−1
zaN ,k−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)

where uk = (δs, δθ); δs is the longitudinal motion and δθ

is the rotational motion [19]:
(

δs
δθ

)
= g(ϕl,ϕr) =

(
wrδϕr+wlδϕl

2wrδϕr−wlδϕl
e

)
(5)

where:

• wr and wl are respectively the radius of the right and
left wheel.

• e is the length of the rear axle.
• δϕi = δpi 2πρ with i ∈ {r, l} (r=right, l=left), δpi:

number of steps, ρ: odometer resolution. δϕi is the
angular movement of the right/left wheel.

The state covariance matrix is defined as:

Pk|k−1 = ∂f
∂x

Pk−1|k−1
∂f
∂x

T
+ Qk (6)

where

• ∂f
∂x =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 −δs sin
(
θk−1|k−1 + δθ

2
)
0 .. 0

0 1 δs cos
(
θk−1|k−1 + δθ

2
)

0 .. 0
0 0 1 0 .. 0
0 0 0 1 .. 0
..
0 0 0 0 .. 1

⎤
⎥⎥⎥⎥⎥⎥⎦

• Q k is the covariance matrix of the process noise.

Estimation
The estimation of the state is made using the camera
which returns the position in the image (ui, vi) of the i-th
landmark.

The innovation and its covariance matrix: The pinhole
model is used to project a known landmark position into
the image:⎛

⎝ ui
vi
1

⎞
⎠ = pinhole(xcamai , ycamai , zcamai)

=
⎡
⎣ fku suv cu

0 fkv cv
0 0 1

⎤
⎦

⎛
⎜⎜⎝

xcamai
zcamai
ycamai
zcamai
1

⎞
⎟⎟⎠

(7)

where:

• (ui, vi) is the position of the i -th landmark in the
image.

• (xcamai , ycamai , zcamai) is the position of the i -th landmark
in the camera frame.

• f is the focal length.
• (ku, kv) is the number of pixels per unit length.
• suv is a factor accounting for the skew due to

non-rectangular pixels. In our case, we take suv=0.

Equation (7) can be written as the predicted observation
equation for a single landmark:

hi(xk|k−1) =
(
ui
vi

)
=

⎛
⎝ cu + fku

xcamai
zcamai

cv + fkv
ycamai
zcamai

⎞
⎠ (8)

The pose of a landmark in the camera frame is defined
from its pose (xai ,yai ,zai) in the global frame:

⎛
⎝ xcamai

ycamai
zcamai

⎞
⎠=

⎛
⎝

⎡
⎣ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦

⎛
⎝ xai − x

yai
zai − z

⎞
⎠

⎞
⎠−

⎛
⎝ 0

0
D

⎞
⎠
(9)

WhereD is the length between the camera and the robot
rear axle center.
During the observation step, the algorithm matches M

landmarks (M <= N) whose observations are added in

hk =
⎛
⎝ h0

..
hM−1

⎞
⎠.

Thus, the innovation is:

Yk = ẑk − hk(xk|k−1) (10)

where ẑk is the measurement for all the M predicted
observations.
The innovation covariance Sk is:

Sk = HkPk|k−1HT
k + Rk (11)

where Hk is the Jacobian of hk and Rk is the observation
noise covariance.

Vincke et al. EURASIP Journal on Embedded Systems 2012, 2012:5 Page 4 of 14
http://jes.eurasipjournals.com/content/2012/1/5

State estimation: The state is updated using the classical
EKF equations:

Kk = Pk|k−1HkS−1
k

xk|k = xk|k−1 + KkYk

Pk|k = (I − KkHk)Pk|k−1

(12)

Visual landmarks
The landmarks used in the observation equation are
extracted from images. Landmark initialization defines
the initial coordinates and the initial covariance of land-
marks localization (also called interest points or features).
In [20], we have evaluated the processing time of cor-
ner detectors like Harris, Shi-Tomasi or FAST. Harris and
Shi-Tomasi detectors were more time consuming than
the FAST detector and do not provide significantly better
localization results than FAST. Consequently, there is no
need to implement more sophisticated algorithms such as
Harris or Shi and Tomasi. FAST [21] (Features fromAccel-
erated Segment Test) corner detector relies on a simple
test performed for a pixel p by examining a circle of 16
pixels (a Bresenham circle of radius 3) centered on p. A
feature is detected at p if the intensities of at least 12 con-
tiguous pixels are all above or all below the intensity of p
with a threshold t. Even if this detector is not highly robust
to noises and depends on a threshold it produces stable
landmarks and is computationally very efficient [21].
The FAST detector [21] is related to the wedge-model

style of detector evaluated using a circle surrounding a
candidate pixel. To optimize the detector processing-time,
this model is used to made a decision classifier which is
applied to the image (Figure 1).

Matching based on zero-mean sum of squared differences
The EKF-SLAM matches the previously detected feature
with a new one using zero-mean sum of squared differ-
ences (ZMSSD).
The covariance of the projected feature localization

defines a searching area τ . This area includes the robot
localization uncertainty and the landmarks localization
uncertainty. We use the ZMSSD to find the best candidate

point inside τ . For each candidate point p : (px, py), theNp
value of the weighted ZMSSD is:

Np = w(px, py) × ZMSSD (13)

and

ZMSSD =
∑
i,j

(
(d(i, j) − md)

−
(
im

(
px + i − des

2
, py + j − des

2

)
− mi

))2

(14)

where:

• w(px, py) is the Gaussian weights defined by the
landmark covariance.

• i ∈[0; des − 1] and j ∈[0; des − 1] and des is the
descriptor size.

• d is the feature descriptor.
• md andmi are respectively the means of the pixel

values in the descriptor and in the image window.
• im is the image.

The observation pobs will be selected using p = (p ∈
τ |Np = min(Npj),∀pj ∈ τ).
The descriptor, used to identify the landmark dur-

ing the matching, is classically a small image window
of 9×9 pixels to 16×16 pixels around the interest point.
Davison [22] claims that this sort of descriptor is able to
serve as long-term landmark feature.

Landmark initialization based on davison method
Landmark initialization consists of defining the initial
coordinates and the initial covariance of landmarks (inter-
est points). Various methods exist and can be classified
as an undelayed or delayed method. Undelayed method
adds landmarks with only one measurement whereas the
delayed method needs two or more frames. We chose
to use the widely spread delayed method proposed by
[2] which is both efficient and adequate to implement.

Figure 1 Image (320 × 240Pixels) of the embedded camera and result of the FAST detector.

Vincke et al. EURASIP Journal on Embedded Systems 2012, 2012:5 Page 5 of 14
http://jes.eurasipjournals.com/content/2012/1/5

Furthermore the work of Munguia and Grau [23] shows
that the delayed method have the same performance as
the undelayed method.
In order to compute the 3D depth of a newly detected

landmark, as [2], we initialize a 3D line into the map
along which the landmark must lie. This line starts
at the estimated camera position and heads to infinity
along the feature viewing direction. The line is composed
of 100 particles which represent depth hypothesis. The
prior probability used is uniform and the range is 0.5 to
15 m. At subsequent time, each particle (a feature depth
hypothesis) is projected into the image, matched and its
probability is re-weighted.
When the ratio of the standard deviation of depth to

the expected value is below a threshold, the distribution
is approximated as a Gaussian and the landmark is initial-
ized. The landmark pose Ai = (xai , yai , zai) is added to x
and the Ai covariance is added into P.

Multiprocessor architecture and system
configuration
In order to test and validate the EKF-SLAM algo-
rithm, experiments were conducted with an instrumented
mobile robot calledMinitruck [24]. The platformwas tele-
operated during the experiments. For our first evaluation,
the experiment consists to operate inside a large corridor
of our research lab (see Figure 2).
We have developed a system architecture on the top of

a multi-processor board (Gumstix Overo) based on the
OMAP3530 chip (see Figure 3). The OMAP chip inte-
grate a RISC processors (ARM Cortex A8 500 Mhz) with
an SIMD NEON coprocessor, a DSP (TMS320C64x+ 430
Mhz) and a graphical processor unit (POWERVR SGX).
This board communicates with an additional processor
for control and data acquisition (Atmega168 16 Mhz).
Multiple sensors (odometers and a camera) are inter-

faced to this architecture (Figure 2). The variety of sensors
enables us to evaluate the SLAM algorithms with different
types of sensor data and take advantage of the information
complementary of these sensors. Our objective is to

Figure 2Minitruck in action embedding a multi-sensor system.

Figure 3 System architecture.

evaluate the implementation of SLAM algorithms using
land vehicles and sensors, like steering encoders and a
camera.
The use of wheel and steer encoders is obvious in

robotics and navigation. Simple kinematic motion mod-
els can be used to integrate velocity and heading mea-
surements from wheel and steer encoders to provide
an estimation of the mobile robot location and orien-
tation. Estimations are regularly subject to considerable
errors due to misalignment, offsets and wheels slippage.
It is possible to implement basic models to approxi-
mate and correct offset and slippage errors on-line lead-
ing to significant improvement of performances. We
chose two HEDS 5540 odometers for our experimental
vehicle.
The feature detection in SLAM application relies

on the embedded sensors. We chose to achieve this
extraction using a vision sensor (a cheap USB web-
cam, Philips SPC530NC, delivering 30 fps). We chose
to use all possible images (30 fps) because it is much
easier to perform point matching if the movement
is small. Conventional approaches for vision systems
design are usually based on general purpose com-
puters interfaced with cameras. The new comput-
ing technologies (SIMD, DSP, multi-cores) can greatly
accelerate algorithm processing, but require rethinking
these algorithms by optimizing the parallelism. This
parallel processing is pushed to integrate near the
sensors parallel computing units [25]. We have used
a Gumstix processing module based on OMAP3530
architecture. It is an heterogeneous architecture (ARM
Cortex-A8 500 Mhz processor with power consump-
tion less than 300 mW, SIMD NEON integrated
coprocessor, DSP C64x processor and a 3D graphics
accelerator) that communicates via a WLAN connection
(802.11 g).
The WLAN connection is used only to control speed

and direction of the vehicle. In the future, a dedicated
algorithm to autonomous navigation will be implemented

Vincke et al. EURASIP Journal on Embedded Systems 2012, 2012:5 Page 6 of 14
http://jes.eurasipjournals.com/content/2012/1/5

and thus the WLAN connection will be used to achieve
only the system monitoring. A coprocessor (ATMega168)
takes care of data acquisition. It controls the robot
speed and its direction using two pulse-width modula-
tion (PWM) signals. It decodes signals coming from the
odometers embedded in the rear wheels. It communi-
cates with the main board using an I2C interface. This
interface allows the main processor to retrieve odome-
ters data and to send instructions corresponding to speed
and direction.
To evaluate the designed system, an experiment was

achieved in a corridor of our lab. Frames have been
grabbed at 30 fps with 320×240 resolution. Odometer
data were sampled at 30Hz. During the experiment,
references are periodically drawn on the ground by an
embedded marker.

Evaluationmethodology and algorithm
implementation
Our evaluationmethodology is based on the identification
of the processing tasks requiring a significant computing
time. It is based on several steps: we analyze first the exe-
cution time of tasks and their dependencies on the algo-
rithm’s parameters. A threshold is fixed for each param-
eter. The algorithm is then partitioned in order to have
functional blocks (FBs) performing defined calculations.
Each block is then evaluated to determine its process-
ing time. Function blocks that require the most important
execution time are then optimized to reduce the global
processing time.
Algorithm 1 summarizes the main tasks of EKF-SLAM.

The algorithm is composed of two process: Prediction
and Correction. The correction process implements three
tasks: matching, estimation and initialization.

Algorithm 1 EKF-SLAM
1: χ ← Ø �List of Landmarks for initialization
2: Robot pose initialization
3: while localization is required do
4: DATA ← Sensors Data acquisition
5: if DATA = (ϕl,ϕr) then �Odometer’s data
6: PREDICTION
7: (δs, δθ) ← g(ϕl,ϕr) (see Eq (5))
8: xk|k−1 ← f(xk−1|k−1, δs, δθ) (see Eq (4))
9: Pk|k−1 ← ∂f

∂xPk−1|k−1
∂f
∂x

T + Qk (see Eq (6))
10: else if DATA = Camera then
11: FAST detector applied on the image
12: MATCHING:
13: for Each Landmark Ni ∈ xk|k−1 do
14: ui, vi, τi ← pinhole(xk|k−1,Ni) (see Eq (8))
15: if (ui, vi) ∈ Camera Frame then
16: ẑk ← ZMSSD(τi,Ni) (see Eq (13))

17: hk ← (ui, vi)
18: Yk ← ẑk − hk
19: Hk ← ∂hk

∂x

∣∣∣
xk|k−1

20: end if
21: end for
22: ESTIMATION:
23: Sk ← HkPk|k−1HT

k + Rk (see Eq (11))
24: Kk ← Pk|k−1HkS−1

k (see Eq (11))
25: xk|k ← xk|k−1 + KkYk (see Eq (12))
26: Pk|k ← (I − KkHk)Pk|k−1 (see Eq (12))
27: INITIALIZATION:
28: for Each L ∈ χ do �L: Aspiring new Landmark
29: Lobs ← ZMSSD(L) (see Eq (13))
30: Update the particles weight according Lobs

(see [2])
31: Compute σdepth, depth
32: if σdepth

depth < ε then
33: Compute L, PL
34: append(xk|k−1,L); append(Pk|k−1,PL)
35: remove(χ ,L)

36: end if
37: end for
38: if Lack of Landmark then �see [8]
39: append(χ , New Landmarks)
40: end if
41: end if
42: end while

Prediction process
This phase updates the mobile robot position (xk|k−1)
according to its proprioceptive data acquired from
odometers (ϕl,ϕr). The processing time of the predic-
tion process is constant. It just updates the 3D vector
containing the robot pose and its 3×3 covariance matrix.
During the prediction step, the landmarks localization
and uncertainties do not change: landmarks are defined in
the global frame.

Correction process
The processing time of the correction process is not con-
stant. The following of this section studies the processing
time of each task of the process and their dependencies.

Matching task Each landmark in the state vector must
be projected in the camera frame using the pinhole
model (see L. 2). The computing time of these projections
depends only on the number of landmarks in the state
vector (L. 2). For each projected landmark on the focal
plane, ZMSSD matches an observation. Both the size of
the descriptor and the size of the searching area τ will
affect the computing time (see Equation (13)).

Vincke et al. EURASIP Journal on Embedded Systems 2012, 2012:5 Page 7 of 14
http://jes.eurasipjournals.com/content/2012/1/5

The processing time of the matching task depends on
several parameters:

• The number of landmarks in the state vector.
• The number of visible landmarks on the focal plane.
• The size of the descriptor.
• Both the localization uncertainty of the mobile robot

and the landmarks.

In practice, all the previously defined parameters should
be set in order to bound the computing time. The first
three parameters can be set by the users. The uncertainty
depends on the followed path and cannot be bounded.

Estimation task The estimation task uses the classical
Kalman equations to update both the robot and land-
marks uncertainties. The processing time of the estima-
tion task is time-consuming and depends on:

• The number of landmarks in the state vector.
• The number of landmarks observed.

The size of the matrix and thus the computing cost
of the matrix multiplication in the Equations (11) and
(12) depend on the number of landmarks in the state
vector. Moreover, Equation (11) depends on the num-
ber of landmarks observed. As for the matching process,
these parameters (size of the state vector and number of
observations) should be bounded in order to achieve this
estimation task in a constant computing time.

Initialization task For each landmark under initializa-
tion, each particle (a feature depth hypothesis) is projected
into the image, matched and its probability is re-weighted.
If there is a lack of landmarks under initialization, we
add aspiring new landmarks. The processing time of the
initialization task depends on:

• The number of landmarks being initialized.
• The size of the descriptor.
• Both the localization uncertainty of the mobile robot

and the landmark.

The number of landmarks being initialized and the size
of the descriptors can be bounded. For each landmark
being initialized, we have to update the probability of
each localization hypothesis using a matching process. As
for the matching task, the computing time depends on
the localization uncertainty of the mobile robot and the
landmarks.

Thresholds definition
Previous section shows that the computation time of
each task of the EKF-SLAM algorithm depends on many

variables. For real-time implementation, it is important to
get a constant, or at least a bounded computation time. To
solve this constraint we have to:

• set the maximum number of landmarks in the state
vector. The size of the state vector will be fixed.
Therefore, no dynamic memory allocation will be
needed.

• set the maximum number of landmarks observed.
This keeps the computation time of the estimation
task constant using a fixed size matrix multiplication.

• set the maximum number of landmarks being
initialized in order to bound the computation time of
the initialization task. Unfortunately, it will not be
sufficient to keep the computation time of the
initialization task constant due to its internal
matching step.

• bound the computing time induced by the
uncertainties. The only solution to get a bounded
global-processing-time is to set a maximum
execution time for the matching task. Due to the
constant processing time of the prediction and the
estimation task, the execution time of both the
matching and initialization task can be bounded
(33 ms - (tprediction + testimation)). We chose to use all
possible images (30 fps).We set a maximum
execution time for the matching task. The algorithm
proceeds in a way to match a maximum of landmarks
in a bounded time. The initialization task has a
dynamic execution time depending on the real
processing time of the matching task and the number
of landmarks being initialized. The lower bound of
this dynamic execution allows at least a minimum
number of landmarks to be initialized.

Mapmanagement
To keep the size of the state vector constant, we need
to delete some landmarks when inserting new ones. The
new state vector includes new landmarks (whose initial-
ization has just been performed) and previously used
landmarks. Auat Cheein and Carelli [26] proposes an effi-
cient method to select landmarks for the estimation task.
It is based on the evaluation of the influence of a given
feature on the convergence of the state covariance matrix.
The method matches all possible landmarks and com-
putes (I − KkHk) from Equation (12). Unfortunately, we
cannot implement it exactly as proposed by [26] due to
the high computing time. We chose to add the landmarks,
based on the previous estimation step, by selecting the
previous landmarks which have the best previous influ-
ence on the convergence of the state covariance matrix.
At time k, we select the landmark which had the smallest
(I − Kk−1Hk−1).

Vincke et al. EURASIP Journal on Embedded Systems 2012, 2012:5 Page 8 of 14
http://jes.eurasipjournals.com/content/2012/1/5

Table 1 Functional block partitioning

Functional block (FB) Description Line

1 Prediction The entire prediction process 7, 8, 9

2 FAST The FAST corner detector application 11

3 Landmark projection The projection of one landmark on the camera plane 14

4 ZMSSD-M The correlation computation between one candidate point of the
image and one descriptor during the Matching Task

16

5 Hi Hi computation for one observation 19

6 Estimation The entire estimation task 23 to 26

7 ZMSSD-I The correlation computation between one candidate point of the
image and one descriptor during the Initialization Task

29

8 Weight updating The update of the particle weight for the initialization step 30, 31

9 Addition of a new landmark The insertion of a new landmark under initialization 39

Functional block partitioning
All the previously defined tasks do not have a fixed com-
puting time, their computing time depends on the experi-
ment. We have defined FBs which have a fixed computing
times to optimize the implementation. The computing
time of the FB do not depend on the experiment. Exper-
iments will only affect the number of iterations of some
FBs(3,4,5,6,7,8 and 9). From the previous algorithm, we
have defined 9 FBs and their runtimes are studied in below
Table 1.
Each FB has a fixed computing time and some FB can

occurmore than one time (Landmark projection, ZMSSD,
Hi, Weight updating, Addition of a new landmark).

Processing time evaluation
As an application scenario, the robot moves over a square
of 6 m side. At the end of the trajectory, it joined
the initial starting position. Using only odometers, the
final localization has an error of 1.6 m. With the EKF-
SLAM algorithm, the localization has been significantly
improved. The final error is approximately 0.4 m. EKF-
SLAM includes all viewed landmarks in the state vector.
Indeed, the localization result depends on the number of
landmarks but the size of the state vector and the number
of observations must be bounded to achieve a bounded
computing time. The overall accuracy of the EKF-SLAM
depends on the number of the landmarks in the state

vector and the matched observations. The accuracy of
the localization depends monotonically on the number of
processed landmarks.
The given EKF-SLAM (Algorithm 1) is processed

sequentially on the embedded ARM processor operating
at 500 MHz (no coprocessor is implemented). In the fol-
lowing, all times given correspond to times evaluated on
the embedded system using the ARM processor. The data
acquisition time is constant:

• The odometer data acquisition is achieved in 0.7 ms
(this processing time is due to the I2C
communication with the Atmega168 processor).

• Each image acquisition takes 1.8 ms (due to USB data
transfer).

The prediction step does not require significant process-
ing time, it takes only 0.093 ms per iteration. As for the
matching task, the estimation task cannot be achieved in
a constant processing time. Estimation task processing
time depends on the total number of landmarks and
the number of matched landmarks. Figure 4 shows the
processing time of the estimation task according to the
number of landmarks in the state vector. The estimation
task is entirely processed on the ARM processor (no
use of coprocessor). Obviously it will be impossible to
take into account all the landmarks detected when the
algorithm is processed: the computation time will be

Figure 4 Processing time of the estimation task.

Vincke et al. EURASIP Journal on Embedded Systems 2012, 2012:5 Page 9 of 14
http://jes.eurasipjournals.com/content/2012/1/5

higher than the 33 ms allowed. It is necessary to find a
compromise between the number of landmarks and the
processing time.

Experimental results
An experiment was conducted to evaluate the processing
time of the different blocks of the algorithm (including
tasks with unboundable processing time). For this exper-
iment, we set the size of the descriptor to 16 × 16 pixels
and we set the thresholds as follows:

• Maximum number of landmarks in the state
vector: 25.

• Maximum number of observed landmarks: 25.
• Maximum number of landmarks being initialized: 20.

First, we can analyze the runtime of the 8 previously
defined FBs of the algorithm. We have used the integrated
cycle counter register (CCNT) of the ARM processor to
compute the processing time of each FB. The prediction
process (FB1) occurs in 0.093 ms. Table 2 summarizes, for
the other FBs, the processing time per iteration, the mean
of the number of iterations and themean of the processing
time per correction process. The estimation task could not
be processed in some iterations of the correction process,
especially when there is no matched landmark.
The mean processing time by frame is approximately

80.8 ms which corresponds to the sum of all processing
times: prediction process (FB1) and correction process
(FB2 to FB9). The processing time of the estimation task
(FB6) is approximately 70.5 ms and it represents about
87% of the global processing time. The FAST detector
(FB2) represents 3.4 ms. The ZMSSD-M task (FB4) takes
2.63 ms per correction process. Finally, the initialization
task (FB7, FB8 and FB9) takes 3.9 ms. These six FBs rep-
resent 99.6% of the global processing time. We focused on
an efficient implementation of these FBs to enhance the
global processing time.

Hardware–software optimization and
improvements
OMAP3530 architecture description
The OMAP3530 is an heterogeneous architecture
designed by TI (Texas Instruments) and implements an
ARM Cortex-A8 500 MHz processor, a NEON coproces-
sor with SIMD instructions, a DSP C64x processor and a
3D graphics accelerator.
The NEON unit is similar to the MMX and SSE

extensions existing on an X86 processor. It is opti-
mized for Single Instruction Multiple Data (SIMD) oper-
ations. The NEON unit has two floating point pipelines,
an integer pipeline and a 128 bits load/store/permute
pipeline. An efficient implementation on the SIMD
NEON architecture improves the processing time. NEON
instructions perform “Packed SIMD” processing as
follows:

• Registers are considered as vectors of the same data
type elements

• Data types can be: signed/unsigned 8, 16, 32, 64-bits
or single precision floating point

• Instructions perform the same operation on multiple
data simultaneously as shown in Figure 5. The
number of simultaneous operations depends on the
data type: NEON supports up to 16 operations at the
same time using 8-bits data.

SIMD optimization results
In the Algorithm 1, the time-consuming FBs are: the
estimation block (FB6), the initialization blocks (FB7,
FB8 and FB9), the FAST detector block (FB2) and the
ZMSSD-M block (FB4). FAST detector is already an opti-
mized instance using machine learning [21]. Moreover,
FAST has been already implemented on an FPGA based
architecture [27]. We chose to optimize the other FBs.
The matching task computes ZMSSD which computes
the image correlation. It performs the same operation
(addition, subtraction, multiplication and comparison) on

Table 2 Processing time of the correction process FBs on themain processor (ARM)

Functional block (FB) Processing time per
iteration (μs)

Mean of the number of
iterations per correction
process

Mean of the processing
time per correction
process (μs)

2. FAST 3400 1 3400

3. Landmark projection 9 19 180

4. ZMSSD-M 11.29 233 2630

5.Hi 14.5 4.5 66

6. Estimation 88845 0.8 70568

7. ZMSSD-I 11.29 123 1388

8. Weight updating 638 4.0 2586

9. Addition of a new landmark 103 0.18 18

Vincke et al. EURASIP Journal on Embedded Systems 2012, 2012:5 Page 10 of 14
http://jes.eurasipjournals.com/content/2012/1/5

Figure 5 Data processing in a NEON architecture.

8 bits data. The computation of the ZMSSD can be opti-
mized using the SIMD NEON architecture. The estima-
tion task is based on floating point matrix multiplication,
it could efficiently be optimized using the SIMD NEON
coprocessor (the ARM Cortex A8 does not include any
floating point unit (FPU)). The initialization FBs will be
studied at Section “Parallel implementation on a DSP
processor”.

ZMSSD (FB4)
The EKF-SLAM matches features using ZMSSD. ZMSSD
is computed for each landmark using Equation 2. We
chose to use a descriptor with 16×16 8-bits pixels size due
to the efficiency of SIMD NEON architecture to deal with
128/64 bits vectors.

Basic implementation The basic implementation of the
ZMSSD function block computes the means of the pixel
values in a window mi (md can be precalculated when
the landmark is detected). Then the ZMSSD (ZMSSD) is
computed using loops (Algorithm 2).

Algorithm 2 Basic ZMSSD
1: mi ← 0
2: ZMSSD ← 0
3: for Each i ∈[0; des − 1], j ∈[0; des − 1] do
4: mi ← mi + im(px + i − des

2 , py + j − des
2)

5: end for
6: mi ← mi/(des × des)
7: for Each i ∈[0; des − 1], j ∈[0; des − 1] do
8: ZMSSD ← ZMSSD + ∑

i,j((d(i, j) − md) −
(im(px + i − des

2 , py + j − des
2) − mi))2

9: end for

This implementation takes 12.60 μs on the ARM
processor.

Efficient scalar implementation The second implemen-
tation aims to modify the calculation of ZMSSD in order

to avoid the use of two loops. Formally the ZMSSD is
written as:

ZMSSD =
∑
i,j

((d − md) − (im − mi))
2 (15)

where d = d(i, j) and im = im(px + i − des
2 , py + j − des

2)

By expanding the ZMSSD, we obtain:

ZMSSD=
∑
i,j

((d−md)
2−2(d−md)(im−mi)+(im−mi)

2)

(16)

=
∑
i,j

(d2−2d.md+m2
d−2d.im+2d.mi + 2md.im

− 2md.mi + im2 − 2im.mi + m2
i) (17)

Using md = ∑
kl

d(k,l)
des×des and mi =∑

kl
im(px+k− des

2 ,py+l− des
2)

des×des , we simplify the sum:

∑
i,j

md =
∑
i,j

∑
kl

d(k, l)
des × des

(18)

=
∑
kl

d(k, l) (19)

∑
i,j

mi =
∑
i,j

∑
kl

im(px + k − des
2 , py + l − des

2)

des × des
(20)

=
∑
kl

im
(
px + k − des

2
, py + l − des

2

)
(21)

The equation becomes:

ZMSSD =
⎡
⎢⎣2

∑
i,j

dim −
⎛
⎝∑

i,j
d

⎞
⎠

2

−
⎛
⎝∑

i,j
im

⎞
⎠

2
⎤
⎥⎦

/(des × des) +
∑
i,j

d2 +
∑
i,j

im2 − 2
∑
i,j

dim

(22)

Vincke et al. EURASIP Journal on Embedded Systems 2012, 2012:5 Page 11 of 14
http://jes.eurasipjournals.com/content/2012/1/5

Using the notation:

• Sd = ∑
i,j d(i, j) the sum of the descriptor pixels (this

sum can be precalculated).
• Si = ∑

i,j im(px + i− des
2 , py + j− des

2) the sum of the
image pixels.

• SSi = ∑
i,j im(px+i− des

2 , py+j− des
2)×im(px+i− des

2 ,
py + j − des

2) the sum of squared image pixel values.
• SSd = ∑

i,j d(i, j)×d(i, j) the sum of the squared
descriptor pixel values (this sum can be
precalculated).

• Sdi = ∑
i,j d(i, j)im(px + i − des

2 , py + j − des
2) the

sum of the product of the descriptor pixels and the
image pixels.

The final equation is:

ZMSSD =[((2Sd×Si) − Sd2 − Si2)/(des × des)]
+ SSi + SSd − 2Sdi (23)

The implementation of Algorithm 2 becomes
Algorithm 3:

Algorithm 3 Efficient scalar ZMSSD
1: Si ← 0
2: SSi ← 0
3: Sdi ← 0
4: for Each i ∈[0; des − 1], j ∈[0; des − 1] do
5: Si ← Si + im(px + i − des

2 , py + j − des
2)

6: SSi ← SSi + im(px + i − des
2 , py + j − des

2)

×im(px + i − des
2 , py + j − des

2)

7: Sdi ← Sdi + im(px + i − des
2 , py + j − des

2)×d(i, j)
8: end for
9: ZMSSD ←

(((2Sd×Si)−Sd2−Si2)/(des×des))+SSi+SSd−2Sdi

In this instance, we use only one loop. This reduces
memory access. Using this implementation, the comput-
ing time decrease from 12.60μs to 11.29μs.

Vector implementation SIMD NEON architecture
allows vector processing and performs the same operation
on all the vector processing-units. We have implemented
a vectorized instance of the ZMSSD functional block as
follows (Algorithm 4):

Algorithm 4 SIMD vectorized ZMSSD
1: V8x8 V image ← 0 � V8x8: 8×8 bits vector
2: V8x8 Vdescriptor ← 0
3: V16x8 VSi ← 0 �V16x8: 8×16 bits vector
4: V32x4 VSSi ← 0 �V32x4: 4×32 bits vector
5: V32x4 VSdi ← 0
6: for Each i ∈[0; des − 1], j = 0, 8 do
7: V image ← load8(im(px + i − des

2 , py + j − des
2))

�load 8 pixels

8: Vdescriptor ← load8(d(i, j))
9: VSi ← VSi + V image
10: VSSi ← VSSi + V image×V image
11: VSSi ← VSSi + V image×V image
12: end for
13: Si ← sum(VSi) �Sums the component of a vectors
14: SSi ← sum(VSSi)
15: Sdi ← sum(VSdi)
16: ZMSSD ←

(((2Sd×Si) − Sd2 − Si2)/256) + SSi + SSd − 2Sdi

This instance uses 8 pixels at time. SIMD NEON archi-
tecture allows computing eight addition or eight multipli-
cation simultaneously. The processing time of the vector
implementation decreases to 1.27 μs.

Computation time results Table 3 summarizes the
processing time of the three different implementations
of the ZMSSD functional block. The SIMD implemen-
tation is approximately 10 times faster than a basic
implementation.

Estimation (FB6)
ARM Cortex A8 do not integrate a FPU. That’s why
the processing time of the estimation FB is significant
(Figure 4). To optimize the matrix multiplication, we
have used the EIGEN3 library [28] which provides SIMD
NEON optimized functions. Figure 6 presents the results
of the processing-time of the estimation task implemented
on the ARM processor (non-optimized task) and those
using the SIMDNEON coprocessor (optimized task). The
processing time of the optimized task is approximately
eight times faster than those of the non-optimized one.
This gain is due to the lack of the FPU in the Cor-
tex A8 and to the efficiency of the NEON to evaluate
a multiply and accumulate instruction in only one CPU
cycle.

Parallel implementation on a DSP processor
Digital signal processors (DSP) are usually used in vision
systems [29]. They integrate a number of resources that
serve to enhance image processing versatility. The use of
digital signal processing with data sharing ensures that
image processing will be achieved in parallel. With a DSP
based image processing, it is possible to parallelize the

Table 3 ZMSSD processing time

Processing time Percentage of
the basic
implementation

Basic implementation 12.60 100

Scalar implementation 11.29 89.6

SIMD implementation 1.27 10.8

Vincke et al. EURASIP Journal on Embedded Systems 2012, 2012:5 Page 12 of 14
http://jes.eurasipjournals.com/content/2012/1/5

Figure 6 Processing time of the estimation task on the ARM and NEON coprocessor.

EKF-SLAM algorithm on the multiprocessor architecture
(ARM, NEON and DSP processors). This allows enhanc-
ing the global processing time especially whenwe consider
to operate in real-time constraints. The landmarks match-
ing (FB3 to FB5) and the robot position estimation (FB6)
tasks must be processed sequentially. Fortunately, the
initialization tasks (FB7, FB8 and FB9) can run simultane-
ously with the matching and estimation tasks.
Rethinking the implementation to obtain a parallel

implementation, the instance of Algorithm 1 with block
partitioning leads to the Algorithm 5.

Algorithm 5Multiprocessed EKF-SLAM
1: Robot pose initialization
2: while localization is required do
3: if DATA = Odometers then
4: PREDICTION
5: else if DATA = Camera then
6: FAST detector
7: ARM ProcessorMATCHING and ESTIMATION

(FB 3, 4, 5 and 6)
8: DSP Processor INITIALIZATION (FB 7, 8 and 9)
9: end if
10: end while

The architecture of the OMAP3530 can interface the
ARM and DSP processors using a shared memory.
Figure 7 shows the data transfer mechanism using a
shared DDR memory area. For each acquired image, the

ARM processor writes the image (320×240 pixels), the
robot position and its uncertainty on the shared mem-
ory. Data transfer between the ARM processor and DSP
processor for a 320×240 gray image is done in one mil-
lisecond. When the initialization of a landmark is com-
pleted, the DSP processor returns the position and the
uncertainty of possible new landmarks.

Global results
We have improved the EKF SLAM implementation using
the SIMD NEON coprocessor and the DSP processor.
We have implemented the matching and estimation tasks
on a NEON coprocessor and the initialization tasks on a
DSP processor. FAST corner detector is already an opti-
mized algorithm using machine learning [21]. For the
latest experiment, we set the same thresholds as Section
“Experimental results”.
Table 4 summarizes the processing time per iteration

and the mean processing time per Frame of each FB. The
computing time of the initialization task (blocks 7, 8 and
9) implemented on the DSP processor is approximately 4.0
ms. The DSP processor computes the initialization task
while the ARM-NEON processors compute the predic-
tion, FAST detection, matching and estimation tasks.
With this implementation and since the processing-time

of the initialization task (4.0 ms) is smaller compared
to the sum of the processing times of the matching and
estimation tasks (13.0 ms for blocks 3, 4, 5 and 6), the
overall computing time is reduced to the sum of the
processing-times of the prediction process (0.093 ms),

Figure 7 ARM-DSP interface with a shared memory.

Vincke et al. EURASIP Journal on Embedded Systems 2012, 2012:5 Page 13 of 14
http://jes.eurasipjournals.com/content/2012/1/5

Table 4 FBs processing times on ARM, NEON and DSP processors

Nonoptimized implementation (μs) ARM only Optimized implementation (μs)

Functional bloc (FB) Processing time
per iteration

Mean processing
time per frame

Processing time
per iteration

Mean processing
time per frame

Processing unit

1. Prediction 93 93 93 93 ARM

2. FAST 3400 3400 3400 3400 ARM

3. Landmark projection 9 180 9 180 ARM

4. ZMSSD-M 11.29 2630 1.27 295 NEON

5.Hi 14.5 66 14.5 66 ARM

6. Estimation 88845 70568 15690 12552 NEON

Initialization task (FB7, 8 and 9) 3992 3922 4025 4025 DSP

Total – 80859 – 16586 –

the FAST detector (3.4 ms), the matching and estima-
tion tasks (13.0 ms). The mean processing time per frame
with the optimized implementation is 17.6 ms (we add 1
ms for the ARM/DSP data transfer) whereas the nonop-
timized implementation has a processing time of 80.85
ms. The optimized processing time represents 22% of the
nonoptimized one. The processing time has been reduced
by 78%.

Conclusion
This article proposed an efficient implementation of the
EKF-SLAM algorithm on a multiprocessor architecture.
The overall accuracy of the EKF-SLAM depends on
the number of the landmarks in the state vector and
the matched observations. Both are linked to the time
allowed to the embedded architecture to compute the
robot pose. Based on the application constraints (real-
time localization) and an evaluation methodology, we
have implemented the algorithm in consideration of the
underlying hardware architecture. A runtime analyses
shows that the FBs and the initialization task represents
99.6% of the global processing time. We have used an
optimized instance of the FAST detector. Two FBs (in
matching and estimation tasks) have been optimized on
an SIMD NEON architecture. The initialization task has
been parallelized on a DSP processor. This optimization
required a modification of the algorithm implementation.
Using the optimized implementation, the global process-
ing time was reduced by a factor equal to 4.7. The results
demonstrate that an embedded systems (with a low-cost
multiprocessor architecture) can operate under real-time
constraints, if the software implementation is designed
carefully. To scale with larger environment, we are going
to include an approach of local/global mapping as pro-
posed by [30]. Using this approach, we will be able to
map larger environment. The map joining system will be
implemented on the GPU coprocessor integrated on the
OMAP3530.

Other future developments will be centered around a
Hardware–software co-design to improve the system per-
formances implementing a system-on-chip with a field
programmable gate array (FPGA). The use of a con-
figurable architecture accelerates greatly the design and
validation of a proof of real-time and system-on-chip
concept.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Univ Paris-Sud, CNRS, Institut d’Electronique Fondamentale, F-91405 Orsay,
France. 2 IFSTTAR, IM, LIVIC, F-78000 Versailles, France.

Received: 24 November 2011 Accepted: 16 June 2012
Published: 18 July 2012

References
1. M Dissanayake, P Newman, S Clark, H Durrant-Whyte, M Csorba, A

solution to the simultaneous localization and map building (SLAM)
problem. IEEE Trans. Robot. Autom. 17, pp. 229–241 (2001)

2. A Davison, I Reid, N Molton, O Stasse, MonoSLAM: real-time single camera
SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 29, pp. 1052–1067 (2007)

3. M Montemerlo, S Thrun, D Koller, B Wegbreit, in National Conference on
Artificial Intelligence, FastSLAM: a factored solution to the simultaneous
localization and mapping problem. Orlando, Florida, USA, 2002, pp.
593–598

4. J Folkesson, HI Christensen, in IEEE International Conference on Robotics
and Automation, Graphical SLAM-a self-correcting map. LA, New Orleans,
USA, 2004, pp. 383–390

5. A Eliazar, R Parr, in International Joint Conference on Artificial Intelligence.
DP-SLAM: fast, robust simultaneous localization and mapping without
predetermined landmarks. vol. 18. Acapulco, Mexico, 2003, pp. 1135–1142

6. S Thrun, Probabilistic robotics. Assoc. Comput. Mach. 45(3), pp. 52–57
(2002)

7. C Brenneke, O Wulf, B Wagner, in IEEE/RSJ International Conference on
Intelligent Robots and Systems, Using 3d laser range data for slam in
outdoor environments. Las Vegas, Nevada, USA, 2003, pp. 188–193

8. A Prusak, O Melnychuk, H Roth, I Schiller, Pose estimation and map
building with a time-of-flight-camera for robot navigation. Int. J. Intell.
Syst. Technol. Appl. 5(3), pp. 355–364 (2008)

9. F Abrate, B Bona, M Indri, in European Conference onMobile Robots,
Experimental EKF-based SLAM for mini-rovers with IR sensors only.
Freiburg, Germany, 2007

10. T Yap, C Shelton, in IEEE International Conference on Robotics and
Automation, SLAM in large indoor environments with low-cost, noisy, and
sparse sonars. Kobe, Japan, 2009, pp. 1395–1401

Vincke et al. EURASIP Journal on Embedded Systems 2012, 2012:5 Page 14 of 14
http://jes.eurasipjournals.com/content/2012/1/5

11. C Gifford, R Webb, J Bley, D Leung, M Calnon, J Makarewicz, B Banz, A
Agah, in IEEE International Conference on Technologies for Practical Robot
Applications, Low-cost multi-robot exploration and mapping. Woburn,
Massachusetts, USA, 2008, pp. 74–79

12. S Magnenat, V Longchamp, M Bonani, P Rétornaz, P Germano, H Bleuler, F
Mondada, in IEEE International Conference on Robotics and Automation,
Affordable SLAM through the co-design of hardware and methodology,
Anchorage, Alaska, 2010, pp. 5395–5401

13. M Montemerlo, S Thrun, D Koller, B Wegbreit, in International Joint
Conference on Artificial Intelligence, FastSLAM 2.0: An improved particle
filtering algorithm for simultaneous localization and mapping that
provably converges. Acapulco, Mexico, 2003, pp. 1151–1156

14. S Rezaei, J Guivant, E Nebot, in IEEE/RSJ International Conference on
Intelligent Robots and Systems, Car-like robot path following in large
unstructured environments. Las Vegas, Nevada, USA, 2003, pp. 2468–2473

15. C Schröter, H Böhme, H Gross, in European Conference onMobile Robots,
Memory-efficient gridmaps in Rao-Blackwellized particle filters for SLAM
using sonar range sensors. Freiburg, Germany, 2007, pp. 138–143

16. K Konolige, J Augenbraun, N Donaldson, C Fiebig, P Shah, in IEEE
International Conference on Robotics and Automation, A low-cost laser
distance sensor. Pasadena, California, USA, 2008, pp. 3002–3008

17. P Pirjanian, N Karlsson, L Goncalves, E Di Bernardo, Low-cost visual
localization and mapping for consumer robotics. Indust. Robot. 30(2),
pp. 139–144 (2003)

18. E Seignez, M Kieffer, A Lambert, E Walter, T Maurin, Real-time
bounded-error state estimation for vehicle tracking. IEEE Int. J. Robot. Res.
28, pp. 34–48 (2009)

19. R Siegwart, I Nourbakhsh, Introduction to AutonomousMobile Robots (The
MIT Press, London, 2004)

20. B Vincke, A Elouardi, A Lambert, in IEEE/SICE International Symposium on
System Integration, Design and evaluation of an embedded system based
SLAM applications. Sendai, Japan, 2010, pp. 224–229

21. E Rosten, R Porter, T Drummond, Faster and better: a machine learning
approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32,
pp. 105–119 (2009)

22. A Davison, in IEEE International Conference on Computer Vision, Real-time
simultaneous localisation and mapping with a single camera. Nice,
France, 2003, pp. 1403–1410

23. R Munguia, A Grau, in European Conference onMobile Robots, Freiburg,
Germany, 2007, pp. 1–6

24. E Seignez, A Lambert, T Maurin, in IEEE International Conference On
Information And Communication Technologies: From Theory To Application,
An experimental platform for testing localization algorithms. Damascus,
Syria, 2006, pp. 748–753

25. A Elouardi, S Bouaziz, A Dupret, L Lacassagne, JO Klein, R Reynaud, in
International Journal on Computer Science and Applications, A smart
architecture for low-level image computing. 2008, pp. 1–19

26. F Auat Cheein, R Carelli, Analysis of different feature selection criteria
based on a covariance convergence perspective for a SLAM algorithm.
Sensors. 11, pp. 62–89 (2010)

27. M Kraft, A Schmidt, A Kasinski, in International Conference on Computer
Vision Theory and Applications, High-speed image feature detection using
FPGA implementation of fast algorithm. Funchal, Madeira, Portugal, 2008,
pp. 174–179

28. Eigen, (2012). http://eigen.tuxfamily.org/
29. K Gunnam, D Hughes, J Junkins, N Kehtarnavaz, A vision-based DSP

embedded navigation sensor. IEEE Sens. J. 2(5), pp. 428–442 (2002)
30. P Piniés, J Tardós, Large-scale slam building conditionally independent

local maps: application to monocular vision. IEEE Trans. Robot. 24(5),
pp. 1094–1106 (2008)

doi:10.1186/1687-3963-2012-5
Cite this article as: Vincke et al.: Real time simultaneous localization and
mapping: towards low-cost multiprocessor embedded systems. EURASIP
Journal on Embedded Systems 2012 2012:5.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://eigen.tuxfamily.org/

	Abstract
	Introduction
	EKF-SLAM algorithm
	Overview
	State vector and covariance matrix
	Prediction
	Estimation

	Visual landmarks
	Matching based on zero-mean sum of squared differences
	Landmark initialization based on davison method

	Multiprocessor architecture and system configuration
	Evaluation methodology and algorithm implementation
	Algorithm 1 EKF-SLAM
	Prediction process
	Correction process
	Matching task
	Estimation task
	Initialization task

	Thresholds definition
	Map management
	Functional block partitioning
	Processing time evaluation
	Experimental results

	Hardware–software optimization and improvements
	OMAP3530 architecture description
	SIMD optimization results
	ZMSSD (FB4)
	Basic implementation

	Algorithm 2 Basic ZMSSD
	Efficient scalar implementation

	Algorithm 3 Efficient scalar ZMSSD
	Vector implementation

	Algorithm 4 SIMD vectorized ZMSSD
	Computation time results
	Estimation (FB6)

	Parallel implementation on a DSP processor
	Algorithm 5 Multiprocessed EKF-SLAM
	Global results

	Conclusion
	Competing interests
	Author details
	References

