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Over the past few years, the realm of embedded systems has expanded to include a wide variety of products, ranging from digital
cameras, to sensor networks, to medical imaging systems. Consequently, engineers strive to create ever smaller and faster products,
many of which have stringent power requirements. Coupled with increasing pressure to decrease costs and time-to-market, the
design constraints of embedded systems pose a serious challenge to embedded systems designers. Reconfigurable hardware can
provide a flexible and efficient platform for satisfying the area, performance, cost, and power requirements of many embedded
systems. This article presents an overview of reconfigurable computing in embedded systems, in terms of benefits it can provide,
how it has already been used, design issues, and hurdles that have slowed its adoption.
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1. WHY USE RECONFIGURABLE HARDWARE
IN EMBEDDED SYSTEMS?

Reconfigurable hardware (RH) provides a flexible medium
to implement hardware circuits. The RH resources are con-
figurable (and generally reconfigurable) post-fabrication, al-
lowing a single-base hardware design to implement a va-
riety of circuits. The hardware itself is composed of a set
of logic and routing resources controlled by configuration
memory. This memory is frequently implemented as SRAM
cells, though flash RAM and other technologies are also pos-
sible. (Some FPGAs employ anti-fuses as a configuration
medium [1, 2]. However, because these devices are essen-
tially one-time programmable, they are not reconfigurable,
and are thus not the focus of this article.) These memory cells
(and their stored values in particular) affect the functionality
of both routing and logic. In the routing architecture, a cell
may control whether or not two wires are electrically con-
nected, or provide a multiplexer select input. In logic, the
cell may control the function of an ALU, or implement logic
equations in the form of a lookup table (LUT), which is the
most common logic resource in field-programmable gate ar-
rays (FPGAs).

Essentially, circuits are decomposed into small subfunc-
tions implemented in LUTs or other logic resources in the
RH, and the routing resources are configured to electrically
connect the logic resources to match the structure of the tar-
get circuit. Writing a new set of values into the configuration,

memory reconfigures the hardware to implement a different
circuit. Complex RH designs may also contain communica-
tion structures and processor cores that may or may not be
reconfigurable.

Embedded systems often have stringent performance
and power requirements, leading designers to incorporate
special-purpose hardware into their designs. Hardware-
based implementations avoid the instruction fetch/decode/
execute overhead of traditional software execution, and use
resources spatially to increase parallelism. In many embed-
ded applications, such as multimedia, encryption, wireless
communication, and others, highly repetitive parallel com-
putations well-suited to hardware implementation represent
a significant fraction of the overall computation required by
the system [3, 4].

Unfortunately, application-specific integrated circuit
(ASIC) implementation is not feasible or desirable for all cir-
cuits. One key problem is that the non-recurring engineering
costs (NREs) of ASICs have been increasing dramatically. A
mask set for an ASIC in the 90 nm process cost about $1M
[5]. Previously, using FPGAs as ASIC substitutes was only
cost-effective in low-volume applications. FPGAs have high
per-unit costs, which are essentially an amortization of the
FPGA NREs themselves over all customers for those chips.
However, as ASIC NREs rise and FPGAs sell in higher vol-
umes, the ASIC NREs begin to outweigh the per-unit cost
of FPGAs for higher-volume applications, shifting the bal-
ance towards FPGAs [6]. Especially considering the flexibility
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FIGURE 1: Reconfigurable computing implements compute-intensive application kernels (a) as hardware in RH and the remaining code in
software on a CPU (b). Run-time reconfiguration allows RH to implement circuits that would otherwise not fit simultaneously (c).

of RH to accommodate new circuitry for bugfixes, protocol
updates, or new advances, expensive and fixed-design ASIC
technology becomes less appealing.

Furthermore, devices traditionally categorized as embed-
ded systems, such as PDAs (personal digital assistants) and
cellular phones, are becoming increasingly multipurpose.
These systems may implement a very diverse set of appli-
cations that require the performance and power benefits of
hardware implementation, such as wireless communications,
cryptography, and digital audio/video. Including a fixed cus-
tom hardware accelerator for each possible application type
is generally infeasible, particularly if one or more of the ap-
plications is not known at designtime. RH can act as a “gen-
eral” hardware accelerator, implementing a variety of differ-
ent computations within or across applications. Compute-
intensive sections of applications can be swapped into the
hardware when needed, and later swapped out to make room
for other computations, a process called reconfigurable com-
puting. Figure 1 illustrates a case where, after computations
A and B are complete in hardware, they can be replaced
with computation D—potentially while computation C is
still running. In effect, run-time reconfiguration allows RH
to act as a virtual hardware accelerator, with capacities and
capabilities beyond its actual physical structure.

Low-power operation is critical to many embedded sys-
tems to improve battery life, reduce costs of operation, and
even improve reliability [7]. Computations implemented in
RH often dissipate less power than equivalent software run-
ning on embedded processors, since they typically can be im-
plemented at lower clock rates and avoid the overhead asso-
ciated with fetching, decoding, issuing, and committing in-
dividual instructions [8—12]. However, they also often have
higher power dissipation than fixed ASIC solutions [10, 13].

Finally, the flexibility of RH can also be used to increase
the fault-tolerance of designs. RH can be reconfigured to
avoid hardware faults [14], whether they result from fabri-
cation or the environment. If the fault is from fabrication,
this increases product yield, decreasing costs. If the fault de-
velops after deployment, this allows a faulty device to poten-

tially continue normal operation. The new configuration can
even be deployed remotely [14, 15] to avoid inconveniencing
the consumer or allow updates for a device that cannot be
physically accessed (systems deployed in space, on the ocean
floor, or at other remote or unsafe locations). Extra reconfig-
urable logic in a design can also allow a system to compensate
if a fault occurs in a nonreconfigurable resource [16]. The
fault-tolerance of RH can even extend to design faults, allow-
ing bug fixes or even upgrades for emerging standards to in-
crease device lifespan. Fault-tolerance advantages and tech-
niques are discussed in greater depth in Section 4.2.

This article discusses the benefits and issues of employ-
ing RH in embedded systems designs. Section 2 lists a variety
of applications implemented in embedded systems with RH.
Section 3 discusses basic architectural aspects, and describes
several example systems. Other design issues critical to many
embedded systems are discussed in Section 4. Section 5 ad-
dresses configuration overhead, and Section 6 discusses de-
sign tools. Future issues in reconfigurable embedded com-
puting are discussed in Section 7 For more specific technical
information on RH and reconfigurable computing, as well as
their use outside of embedded systems, please refer to one or
more of the following surveys: [10, 17-22].

2. WHAT APPLICATIONS BENEFIT FROM RH?

Initially, smaller reconfigurable devices such as PLDs and
PALs were used as board level glue logic. Similarly, RH can
now be used as chip-level glue logic on systems-on-a-chip
(SoCs) [23]. In particular, RH can act as a flexible communi-
cation fabric for different cores on the SoC [24-26]. This al-
lows hardware design to proceed even if the intercomponent
communication methods have not yet been finalized. This
approach also improves time-to-market and design costs be-
cause the testing of a single reconfigurable communication
fabric is faster and less costly than the testing of separate
communications fabrics for many different SoC designs. Fur-
thermore, the configurable communication fabric can poten-
tially be reconfigured if necessary to circumvent design errors
in other SoC components [23, 27].
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RH can also perform computations in a capacity be-
yond simple ASIC replacement. By reconfiguring the hard-
ware at runtime, one or more RH structure can be reused for
many different computations over time (Figure 1) [10, 20—
22]. Since many embedded systems must be both high-
performance and low-power, yet may also have size or flex-
ibility constraints preventing fixed-ASIC implementation,
RH provides a valuable implementation method. Further-
more, computational cores used in many applications are
available as predesigned intellectual property (IP), simplify-
ing the design process.

Software-defined radio

Telecommunications industries employ constantly evolving
wireless technologies. Companies under significant pressure
to deliver products before their competitors sometimes even
release products before standards are finalized. Software-
defined radios (SDR) are programmable to implement a va-
riety of wireless protocols, potentially even those not yet in-
troduced [28-35]. Custom hardware allows many embed-
ded systems to meet stringent power and performance re-
quirements, particularly for small battery-powered mobile
devices, but in this case the system must also be extremely
flexible. A system with RH can implement parallel DSP oper-
ations with a higher degree of both performance and power
efficiency than a software-only system, plus an RH system
can be reconfigured for different protocols as needed.

Medical imaging

Recently, several RH-based systems and algorithms have
been proposed for medical imaging [36, 37]. The ECAT
HRRT PET scanner from CTI PET Systems, Inc. [36] de-
tects abnormalities in organ systems, helping to find can-
cerous tumors and assisting in monitoring ongoing patient
treatment. This system can dynamically reconfigure itself
for setup, detection, and equipment self-diagnosis modes.
One project implementing a parallel-beam backprojection
for medical computer tomography on RH was able to ac-
celerate the application 100x over a 1 GHz Pentium by im-
plementing a custom design in RH and performing a thor-
ough bit-precision analysis [37]. This system also scales well
with additional hardware (4x more hardware leads to 4x bet-
ter performance).

Networking

RH is commonly used in network processors [38—42] which
have high performance demands and inherently parallel
workloads. Furthermore, networks can use many different
routing protocols, and different system administrators may
have varying needs at different times. RH has been used in
network devices to run tasks such as packet classification
[38], dynamic routing protocols [39, 40], and intrusion de-
tection systems [42] among others. RH can also accommo-
date emerging network protocols through reconfiguration.

Encryption

Many encryption algorithms are well-suited to hardware im-
plementation. Operations are generally highly parallel and
repetitive, with the same series of operations performed
on each piece of data. Furthermore, these algorithms fre-
quently use exclusive-or operations, which do not require
the area and delay overhead of a complete ALU. As en-
cryption research continues to evolve, RH can be reconfig-
ured to implement new standards. For these reasons, encryp-
tion algorithms are a popular choice for RH implementation
[9, 43, 44].

Scientific data acquisition and analysis

Scientific data-acquisition systems receive and preprocess
vast quantities of data before archiving or sending the data off
for further processing. These systems may be remote or inac-
cessible, operating on battery or solar power, yet requiring
extremely high performance to handle the required volume
of data. These systems are increasingly using RH to provide
this performance in a flexible medium that can be changed
as new approaches to data aggregation and preprocessing are
researched. RH has been used in systems proposed or created
for weather radar [45], seismic exploration [46], and adap-
tive cameras for solar study [47]. RH is also used to compress
the massive volume of data prior to transmission [48].

Spacecraft

RH’s low-volume costeffectiveness and hardware flexibil-
ity make it particularly applicable to space applications,
where it has been used for several missions, including Mars
Pathfinder and Surveyor [49, 50]. These devices can be re-
configured to add functionality for updated mission objec-
tives or fix design errors without requiring a space mis-
sion for repair. Spacecraft require special radiation-hardened
devices that are not produced in the same volume (due
to higher cost and lower demand) as standard microchips,
leading designers to incorporate the functionality of many
different discrete components into one or a few radiation-
hardened FPGAs. Fault-tolerance issues are discussed in
more depth in Section 4.2. More experimental research ex-
amines the use of genetic algorithms to design evolvable RH
that can automatically adapt to needed tasks [51].

Robotics

Robotic control systems often consist of a mix of hardware
and software solutions to meet strict size and power de-
mands. One military system prototype uses RH to control
unmanned aerial vehicles [46]. These vehicles cannot sup-
port large payloads, and must execute heavy-duty image pro-
cessing algorithms. Other research focuses more generally on
developing algorithms and hardware cores for robotic con-
trol and vision [46, 52, 53]. An overview of RH in robotic
applications appears in [53].
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Automotive

The automotive industry has embraced RH because it can
implement the functionality of many different parts, reduc-
ing repair inventories. Its programmable nature also simpli-
fies product recalls. Furthermore, FPGAs are well-suited to
the increasingly complex informational and entertainment
systems in newer automobiles [54, 55]. IP companies such
as Drivven provide cores for many engine control systems
(such as fuel injection) required by modern automobiles
[56], which can be implemented in one of several FPGAs
rated for automotive use.

Image and video

Digital cameras often need to implement many different
image-processing operations that must operate quickly with-
out consuming much battery power. With RH, the hardware
can be reconfigured to implement whichever operation is
needed [57, 58]. For systems requiring secure image trans-
mission, the RH can also be reconfigured to perform encryp-
tion and network interfaces [57]. Some systems can also be
configured to accelerate image display [57, 58], video play-
back [35, 59], and 3D rendering [59-61].

3. WHAT DO THESE SYSTEMS LOOK LIKE?

This section discusses the RH design and system-level inte-
gration, examining different design aspects and how they re-
late to embedded systems design. These topics are covered
more generally in several FPGA and reconfigurable comput-
ing survey articles [10, 17-22]. Finally, the end of this section
presents several specific embedded systems with RH.

3.1. Reconfigurable logic

Although commercial RH tends to contain LUT-based or
sum-of-products compute structures, these are not neces-
sarily ideal for many embedded systems. Each configuration
point in these structures contributes some level of area, de-
lay, and power overhead, and significant flexibility of these
structures may not be required if computations are limited to
a particular domain. In these cases, a more specialized recon-
figurable fabric can provide the necessary level of flexibility
with lower overhead than a fine-grained bit-level logic struc-
ture [62—66]. However, some applications, including cer-
tain encryption algorithms, cyclic redundancy check, Reed-
Solomon encoders/decoders, and convolution encoders, do
require bit-level manipulations. A number of reconfigurable
architectures combine fine- and coarse-grained compute
structures to accommodate both computation styles [67—
69]. Most frequently this involves embedding coarse-grained
structures, such as multipliers and memory blocks, into a
conventional fine-grained fabric [70], or designing the fine-
grained fabric specifically to support coarse-grained compu-
tations [63, 71].

To implement a needed circuit in RH, a CAD flow trans-
forms its descriptions into an RH configuration. First, the
circuit is synthesized, converting the circuit schematic or

hardware design language (HDL) description into a struc-
tural circuit netlist. Then a technology mapper further de-
composes that netlist into components matching the capa-
bilities of the RH’s basic blocks (LUTs, ALUs, etc.). Next, the
placer determines which netlist components should be as-
signed to which physical hardware blocks, and a router de-
cides how to best use the RH’s routing fabric to connect those
blocks to form the needed circuit. Finally, the CAD flow de-
termines the specific binary values to load into the configura-
tion bits for the determined implementation. More details on
generic CAD issues for RH can be found elsewhere [21, 72].

Like fixed hardware design, the CAD flow can target dif-
ferent area/delay/power tradeoffs through resource selection,
resource sharing, pipelining, loop unrolling, wordlength op-
timization, precision estimation, and others [73-81]. CAD
issues particularly applicable to embedded systems, however,
include heterogenous CAD topics [82-84], CAD tools for
nonsquare RH designs incorporated into SoCs [25], power-
aware CAD [84-91] (discussed further in Section 4.1), and
fast CAD algorithms [92-97]. Fast CAD algorithms can move
configurations to new locations on RH at run-time or make
small modifications to circuits based on run-time conditions
to increase efficiency [98, 99], based on available resources
[75], or potentially to provide fault-tolerance.

3.2. System-level integration

Embedded systems typically couple a traditional proces-
sor (the “host”) with custom hardware specifically to han-
dle compute-intensive highly-parallel sections of application
code [100]. The processor controls the hardware, and exe-
cutes the parts of applications not well-suited to hardware.
Reconfigurable computing systems also frequently couple
RH with a processor, for the same reasons as well as to control
the configuration processor of the RH [10, 20-22, 101]. RH-
processor coupling styles can be divided into three basic cat-
egories: RH as a functional unit on the processor data path,
RH as a coprocessor, and RH as an attached processor in
a heterogeneous multiprocessor system. The coupling meth-
ods are best differentiated by how and how often the RH and
host processors(s) interact.

Reconfigurable functional units (RFUs) are very tightly
coupled with a host processor. Input and output data are
generally read from and written to the processor’s register
file [66, 71, 102-106]. These units essentially provide new
instructions to an otherwise fixed instruction set architec-
ture (ISA). In some cases, the processor itself may be imple-
mented on reconfigurable logic, allowing significant proces-
sor customization [106, 107]. In Section 6.2 we will examine
some of the design tools that help simplify the process of cre-
ating these custom-ISA processors.

If the circuits on the RH can operate for some time in-
dependently of the host processor, a coprocessor or even het-
erogeneous multiprocessor coupling may be more appropri-
ate [3, 4, 108-112]. A coprocessor may or may not share
the data cache of the host processor but generally shares
the main memory. Figure 1 shows an example of a reconfig-
urable coprocessor that has its own path to a shared memory
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structure. A heterogeneous multiprocessor may contain one
or more reconfigurable units, one or more embedded or gen-
eral purpose processors, and possibly other special-purpose
processing elements [33, 109, 113]. Like homogenous mul-
tiprocessor systems, heterogeneous multiprocessors may use
shared memory for communication between compute nodes
[24], a communication bus, or even a network architecture
[113]. Synchronization and scheduling issues of these sys-
tems are similar to those of homogenous multiprocessors.

In some cases, using one or more separate FPGA chips
(plus the other system circuitry) would violate the area, per-
formance, or power constraints of the embedded system.
However, FPGA capacities are always increasing, so to ad-
dress this problem, designers can now use platform FPGAs
or systems on programmable chips (SoPCs), which are large
and complex enough to contain entire SoC designs, and fre-
quently include fixed communication structures and other
commonly-needed circuitry [67-69, 114]. Alternately, recon-
figurable logic can be embedded within an SoC [62, 64, 115,
116] to implement one or more computations. This pro-
vides for domain-specific SoCs that can be customized to the
actual application(s) needed by programming the reconfig-
urable logic appropriately. Domain-specific SoCs therefore
provide higher performance and lower power consumption
than a traditional FPGA structure, with some parts of the
hardware implemented as standard cells or even full custom.
The RH itself can even be customized to the applications
needed [117]. Domain-specific SoCs facilitate highly efficient
embedded systems, but with NREs that are amortized over all
applications within the domain [118].

3.3. Example systems

Embedded systems with RH span a range of sizes and com-
plexities, some using many discrete RH components, with
others primarily contained in an SoPC. Many of these sys-
tems use Linux or a modified lighter-weight Linux as an op-
erating system because the source code is freely available for
recompilation to the custom platform. This section presents
the high-level design details of a number of systems to pro-
vide a flavor of the range of systems using RH. However, this
list is by no means exhaustive, as there are a great many in-
teresting RH-based embedded systems.

One large system was designed for 3D vision [60]. This
system contains an image acquisition board connected to a
matrix of 36 Xilinx XC4005 FPGAs used for low-level image
processing (such as edge detection and edge tracking). Im-
ages preprocessed by the FPGAs are then sent to a board con-
taining 16 DSPs for high-level image processing. This board
also contains four more FPGAs used to create a reconfig-
urable interconnection network between the DSP chips.

Cam-E-leon (Figure 2) is another image-related embed-
ded system, designed in particular as a dynamic web cam-
era [57]. This system is capable of downloading new image
processing algorithms from a networked server and incorpo-
rating them into the system, implemented in RH. However,
it is significantly smaller than the 3D vision system, using
a custom FPGA board with two Xilinx Virtex XCV800 FP-
GAs. The FPGA board is responsible for the image process-
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FIGURE 2: Cam-E-leon is a dynamically reconfigurable web camera
platform from IMEC [57].
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F1GUre 3: Block diagram of CASA: an embedded radar-based haz-
ardous weather detection system using RH [45].

ing computations. A processor board running a Linux vari-
ant is responsible for network communication and reconfig-
uring the FPGAs. The camera itself is a 1.3 megapixel image
sensor, directly connected to the FPGA containing the cam-
era interface. This FPGA is also responsible for image pro-
cessing, while the other FPGA encrypts the image for secure
transmission. All circuitry would normally have fit in one of
the two FPGAs, but bandwidth concerns necessitated design
partitioning between two chips.

CASA is a weather radar data acquisition and process-
ing system used to detect hazardous conditions [45]. A block
diagram is given in Figure 3. Like Cam-E-leon [57], one of
the two FPGAs in CASA is dedicated to signal processing
(the left FPGA in both figures), and can be updated with
new functionality remotely by a networked server. In CASA,
the other FPGA is responsible for communication of result
data, but may also process data depending on the configu-
ration. An ARM-based microcontroller running Linux man-
ages the FPGA resources. CASA also contains multibanked
memory, multiple Ethernet interfaces, and analog-to-digital
(A/D) converters to digitize incoming radar data. CASA can
process data at sustained rates of 88.3 Mb/s.

The Linux-based SDR application described in [35] uses
a single Xilinx Virtex-4 FX FPGA, in conjunction with an
analog RF card, memory, and an output device (frame
buffer and audio). The FPGA contains two hard embedded
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FIGURE 4: Block-level diagrams of the system-level design (a) and
the FPGA design details (b) of a facial-recognition system [119].

PowerPC cores, and several soft-core components: a demod-
ulation core, a memory controller, and an IDCT. The analog
board receives the data over a wireless network and sends it
to the first processor. The first processor, coupled with the
demodulation core, processes the data and writes it to main
memory. The second CPU then decodes the data from mem-
ory using the IDCT core, and the resulting video and au-
dio stream is then written to the output device. A Linux-
based reconfigurable encryption processor system also uses
embedded PowerPC devices, but instead in a Virtex-II Pro
[44]. In this system, the RH contains a memory controller,
a bus bridge to communicate with the on-chip peripheral
bus (OPB), which in turn connects to an Ethernet controller,
a UART, the cryptographic engine itself, and control logic
to manage the reconfiguration of the cryptographic engine.
The on-chip PowerPC core communicates with these struc-
tures using the built-in processor local bus (PLB). This sys-
tem can be reconfigured to implement different encryption
algorithms.

One project compared several systems implementing a
face tracking algorithm, including a Xilinx Spartan-II 300
FPGA-based system, a custom ASIC-based hardware system,
and a software-based DSP implementation [119]. The FPGA
implementation is shown in Figure 4, including a system-
level block diagram (a) and details of the FPGA design (b).
The FPGA contains multiple interfacing controllers for the

sensors, the parallel port, and the network, and also imple-
ments a 15-node radial basis function (RBF) neural network
to detect faces and recognize facial expressions. The cus-
tom hardware system also used an FPGA, but as glue logic,
not a compute engine. As typically expected when compar-
ing ASIC, FPGA, and software implementations, the soft-
ware implementation had the lowest throughput (one-fifth
of the ASIC), and the custom hardware had the highest. The
FPGA implementation had half the throughput of the ASIC
version. However, the recognition rates were higher for the
more flexible solutions, with the programmable DSP achiev-
ing the highest, demonstrating a throughput/accuracy trade-
off. Both the FPGA and DSP implementations also have the
benefit that they can be modified post-deployment to imple-
ment new algorithms.

Several embedded systems use RH as custom functional
units on a processor’s data path. One example of this system
type is a 3D facial recognition program [120] using a Stretch
S5 processor [66]. This system beams an invisible light pat-
tern on a user’s face, which is then detected by cameras in-
terfaced with the processor. By examining differences in the
projected and detected light patterns, the system reconstructs
a 3D model of the target face in real time. The system also
contains an Ethernet link to allow the data to be sent over a
network. The embedded design implemented on a 300 MHz
S5 processor matched the performance of a 3 GHz PC by us-
ing RH as an application accelerator. However, this applica-
tion was designed entirely in software and compiled by the
Stretch compiler to a mix of software and hardware—a pro-
cess completed in five person-months. Design tools for this
development style are discussed further in Section 6.2.

4. WHAT ARE OTHER IMPORTANT DESIGN ISSUES?

Beside the basic choices of RH logic design and RH inte-
gration, low power, fault-tolerance, and real-time issues are
also critical to embedded systems designers. Understanding
the interaction between these topics and RH is important
whether the designer is choosing off-the-shelf components
to include in a system, choosing between completed systems,
or designing a new RH fabric specifically for a particular em-
bedded system.

4.1. Low power

Many embedded devices are battery powered, increasing
the importance of power efficiency. Computations on FP-
GAs typically consume less power than equivalent software
running on embedded processors, but more power than
ASICs [10]. Studies examining the data-per-watt efficiency
of FPGA-based implementations have found that they can
process just under 20x more data-per-watt than a RISC-
style processor for both the IDEA encryption algorithm [9]
and an FIR filter operation [8]. Yet another study shows the
use of RH yielding performance increases of 4.3x to 13.5x,
while simultaneously reducing power consumption by up to
93% over a very-long-instruction-word-style (VLIW-style)
processor [11]. To further improve RH power-efficiency,
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FiGure 5: Two different layout patterns for fixed-distribution dual-Vdd FPGA fabrics [88].

researchers have investigated energy-efficient architectures,
the use of multiple supply voltages or threshold voltages,
and energy-efficient mapping techniques to implement algo-
rithms on RH.

Several energy-efficient reconfigurable architectures have
been specifically developed to reduce power dissipation. The
FPGA interconnect and clock networks are responsible for
most of the power dissipation in traditional FPGA architec-
tures [121]. One proposed fine-grained FPGA structure im-
proves energy efficiency through a hybrid interconnect struc-
ture using nearest-neighbor connections, a symmetric mesh
architecture, and hierarchical connectivity to shorten and re-
duce the number of necessary wires [121]. This FPGA ar-
chitecture also uses low-voltage circuit swing techniques and
dual edge-triggered flip-flops to reduce the power dissipation
from clock distribution. MONTIUM is an energy-efficient
coarse-grained reconfigurable architecture designed for 16-
bit DSP applications [122]. It improves power efficiency by
reducing interconnect and configuration overhead, provid-
ing access to small, local memories, and optimizing the RH
for word-level DSP applications. The MONTIUM reconfig-
urable processor can implement an adaptive Viterbi algo-
rithm using 200 times less energy than an ARM9 processor
[12].

Multiple supply voltages (Vdd) or threshold voltages (Vt)
can also improve energy-efficiency in RH. Reducing Vdd de-
creases dynamic power, while increasing Vt decreases leakage
power. Since changes to Vdd and Vt also affect noise mar-
gins and circuit speed, appropriate values for Vdd and Vt
must be carefully selected. Proposed fabrics with predefined
dual-Vdd and dual-Vt fabrics use low-leakage SRAM cells
and dual-Vt lookup tables that do not penalize performance,
but reduce total power dissipation by 13.6% and 14.1% on
average for combinational and sequential circuits, respec-
tively [88]. An example fixed dual-Vdd FPGA layout is given
in Figure 5. In dual-Vdd architectures, timing-critical circuit
paths are assigned to high-Vdd logic and routing, while the
remaining parts of the circuit are assigned to low-Vdd re-
sources. Level converters preserve a signal’s value when tran-
sitioning between Vdd levels. Programmable dual-Vdd ar-

chitectures can provide an average power savings of 61%
across various Microelectronics Center of North Carolina
(MCNC) benchmarks [87]. Multiple-Vt architectures, com-
bined with low-leakage multiplexer and routing structures,
gate biasing, and redundant SRAM cells can reduce leakage
current by roughly 2X to 4X over FPGA implementations
without any leakage reduction techniques [89]. Finally, many
commercial FPGAs contain multiple clock domains to allow
designers to clock critical circuit sections at fast rates, and
noncritical sections at slower rates, lowering overall power
consumption of the design [67-69].

Dual-Vdd and dual-Vt architectures require a CAD flow
to choose between fast but power-hungry resources or slower
but lower-power resources for circuit components [87—89].
However, CAD algorithms can also affect circuit power-
efficiency in existing RH designs. For example, resource se-
lection, module disabling, parallel processing, pipelining,
and algorithmic selection together improved energy effi-
ciency of FFT and matrix multiplication algorithms [85].
A dynamic programming-based approach to map beam-
forming applications on a Xilinx Virtex-II Pro reduces en-
ergy dissipation by 52% on average over a greedy algorithm
[86]. Considering power implications of embedded memory
blocks can reduce embedded memory dynamic power by an
average of 21% and overall core dynamic power by an average
of 7% [84]. Power information can also be incorporated into
cost functions used for existing CAD processes. Adding an
FPGA power model [91] and using power-aware algorithms
throughout the CAD flow can provide 26.5% power-delay
product savings [90].

4.2. Faulttolerance

Faults can be divided into two categories: permanent and
transient. Fabrication faults and design faults are among
the permanent faults. Transient faults, commonly called sin-
gle event upsets (SEUs), are brief incorrect values result-
ing from external forces (terrestrial radiation, particles from
solar flares, cosmic rays, and radiation from other space
phenomena) altering the balance or locations of electrons,
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FIGURE 6: Faults (black) can be overcome by remapping affected
configurations (gray) to nonfaulty areas of reconfigurable hardware.

usually in a small area of the system. We discuss both cate-
gories of faults as they relate to RH in this section.

Tolerating permanent faults is critical to maximizing de-
vice and system yields to decrease costs, and to increasing the
lifespan of deployed devices. Lifespan is of particular con-
cern when a system has been deployed to a location difficult,
dangerous, or impossible to reach for repair or replacement.
Space-deployed unmanned systems, for example, must be
extremely fault-tolerant, as replacement/repair would be ex-
pensive, and at worst, impossible. RH can increase tolerance
of permanent physical faults because the hardware is modi-
fiable to potentially compensate for these faults (from fabri-
cation or other sources) within the RH (Figure 6) [14, 123]
or even elsewhere in the system [16]. Yields of “static” FPGA
devices (chips used for a single, nonchanging configuration)
can be increased by using application-specific test vectors to
determine if a particular faulty chip is capable of implement-
ing a particular configuration, allowing designers to success-
fully use otherwise faulty chips [124, 125]. Finally, design
faults are among the easiest to fix in RH, as these devices
can be reprogrammed with corrected versions of the faulty
circuits.

Unfortunately, although RH’s value is in its flexibility,
and that flexibility can increase RH’s tolerance to perma-
nent faults, it can also increase its underlying susceptibil-
ity to faults. The flexibility of RH results from the ability to
control its resources based on configuration bit values, fre-
quently stored in SRAM. These SRAM bits, along with any
other hardware used to provide flexibility, such as multiplex-
ers, tri-state buffers, and pass transistors, are additional fail-
ure points not present in ASIC-equivalent circuit implemen-
tations, and increase the chip area to present a larger target to
radiation particles. Furthermore, unless the underlying RH
design prevents multiple drivers to a wire (instead of rely-
ing on the design tools to prevent it), a fault in configuration
memory could cause a short-circuit, damaging the device.

Using properly-shielded radiation-hardened devices can
minimize SEU errors. Unfortunately, these devices are ex-
pensive, difficult to find, and generally use less advanced
technologies than their unshielded counterparts [14, 123].
Triple modular redundancy (TMR) can detect and correct
faults in circuits implemented in FPGAs [126]. In TMR three
copies of all routing and logic resources perform the same
computation, and the three “vote” on the correct result. The
downsides of this technique include area, power, and per-

formance overheads that are generally unacceptably high for
embedded devices, and the fact that TMR cannot accommo-
date simultaneous errors in multiple copies [14, 127]. Other
fault-tolerance techniques focus only on the configuration
structure. Scrubbing reads back all of the configuration bits,
compares them to the correct values, and re-writes the cor-
rect values if a discrepancy is found [127, 128]. Checksums
can also be used to detect errors in subsets of configuration
information (such as a single logic block), but requires addi-
tional resources to store the checksum values in the hardware
[127]. Los Alamos has researched methods to decrease SEU-
susceptibility of RH destined for spacecraft use [129], with
the goal of tolerating and recovering from SEUs without a full
system restart. Continuous configuration bit polling, com-
bined with circuit mapping techniques to make SEUs more
easily visible allow easier detection of errors in configuration
data [129]. Similar work uses an SEU watchdog to reset RH
after SEUs in high-radiation environment [130].

Self-testing can also be applied to RH, with the hardware
split into multiple self-testing areas (STARs). Periodically,
each STAR is isolated from the rest of the system for test-
ing, while the remainder of the system continues operation.
Detected faults cause the system to reconfigure the applica-
tion to avoid the fault without interrupting system function,
and partial or entire STAR blocks can be marked as unus-
able [131]. This approach requires partitioning the hardware
to match the STAR structure and ensuring each block is suf-
ficiently computationally independent. Besides testing itself,
RH can act as a built-in reconfigurable tester for other parts
of the system, particularly for SoC devices [132].

Any fault-tolerance technique will impose additional
overhead in terms of area, delay, power, or some combination
of the three. One way to reduce this overhead is to ap-
ply fault-tolerance techniques selectively within the system.
Hardware where faults could cause catastrophic failure (im-
proper levels of anesthesia to be delivered, improper nitro-
gen/oxygen mix in a pressurized vehicle, etc.) receive the
most protection, while hardware where faults cause less criti-
cal errors (momentary glitch in an LCD display) receive less.
The COFTA project uses an automatic approach to deter-
mine where duplicate-and-compare hardware and assertions
should be added to provide the same level of fault tolerance
as TMR but with 60% less area overhead [133].

4.3. Real-time support

Many embedded systems require real-time operation. Gen-
erally, there are two types of real-time deadlines: deadlines
that must always be met (hard deadlines), and deadlines that
must be met the majority of the time (soft deadlines) [134].
Hard deadlines represent tasks critical to system operation,
causing system failure if missed. Soft deadlines are used for
tasks such as video playback, where as long as the video pro-
cessing generally keeps up, a few dropped frames are not crit-
ical. These requirements shift the focus of the real-time op-
erating system (RTOS) to consider both deadline times and
types, and concentrate on optimizing worst-case task execu-
tion times instead of average-case times.
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In dynamically reconfigurable systems, the RTOS must
take into account not only task types, deadlines, and deadline
types, but also RH/task resources and task configuration time
[135-137]. If multiple tasks reside on the RH simultaneously,
the RTOS must also consider their locations in the hardware.
Generally, a configuration is tied to specific resources at spe-
cific locations on RH. However, to facilitate run-time recon-
figuration, partially reconfigurable architectures with reloca-
tion allow the locations of the tasks to be moved to accom-
modate other tasks [137]. Issues related to configuration ar-
chitectures and reconfiguration management are discussed
in Section 5.

An RTOS may use preemptive scheduling of tasks onto
RH [138]. For example, a soft-deadline task present on the
RH may be removed to make room for a hard-deadline task.
These scheduling algorithms offer tradeoffs in terms of over-
all system utilization and the total number of tasks that can
be effectively scheduled. The OVERSOC project [135] inves-
tigates the interaction between embedded RTOSs and recon-
figurable SoC platforms, and proposes a variety of methods
to model reconfigurable fabrics and techniques for schedul-
ing real-time tasks on reconfigurable SoC platforms.

Although using RH to create a real-time system with cus-
tomized hardware instructions can improve task completion
ratios, most tools used to design these instructions [139, 140]
focus on reducing average application execution time, when
in fact worst-case time is generally more important for real-
time operation. One custom instruction generator tool de-
signed specifically for real-time systems instead selects sub-
graphs for custom instruction implementation to minimize
worst-case task execution time [141]. Topics related to cus-
tom instruction generation for non-real-time systems are
discussed in more depth in Section 6.2.

4.4. Design security

High-quality hardware cores for embedded systems are ex-
tremely useful to embedded designers, speeding the develop-
ment process. However, these cores are also time-consuming
and expensive to develop and verify. Furthermore, since the
hardware designs frequently reside in a configuration bit-
stream loaded at startup or at runtime into the RH, designs
can be intercepted and reverse-engineered. Therefore, design
security of this intellectual property (IP) is critical to core de-
velopers, leading to encryption of configuration bitstreams
[142, 143]. Both Altera and Xilinx have implemented config-
uration encryption in their commercial products [144, 145].

5. WHAT ABOUT CONFIGURATION OVERHEAD?

Reconfiguring hardware at runtime allows a greater number
of computations to be accelerated in hardware than could be
otherwise, but introduces configuration overhead as the con-
figuration SRAM must be loaded with new values for each
reconfiguration. For separate FPGA chips, this process can
take on the order of milliseconds [136], possibly overshad-
owing the benefits of hardware computation. This section

briefly presents both hardware- and software-related aspects
of managing the configuration overhead.

A straightforward strategy to reduce configuration over-
head is to reduce the amount of data transferred. The struc-
ture of the logic/routing itself has an effect: fine-grained de-
vices provide great flexibility through a very large number
of configuration points. Coarse-grained architectures by na-
ture require fewer configuration bits because fewer choices
are available. The Stretch S5 embedded processor [66], for
example, is composed of 4-bit ALU structures. This architec-
ture can be configured in less than 100 microseconds if the
configuration data is located in the on-chip cache.

Partially-reconfigurable RH can be selectively pro-
grammed [68, 71, 110, 111, 114, 146] instead of forcing the
entire device to be reconfigured for any change (a common
requirement). However, to be truly effective for run-time
reconfigurable computing, the devices must also relocate
and defragment configurations to avoid positioning conflicts
within the hardware and fragmentation of usable resources
[137, 147-149], maintaining intraconfiguration communi-
cation and connections to the outside of the RH. A page-
based architecture is an alternate form of partially reconfig-
urable architecture that simplifies communication problems.
In a page-based design, identical tiles of reconfigurable re-
sources are connected by a communication bus, and config-
urations occupy some number of complete pages [150-152].
Pipeline reconfigurable architectures have a similar quality,
as each configuration stage may be assigned to any phys-
ical pipeline unit [111]. These types of organizations can
also be imposed on existing FPGA architectures by dedi-
cating part of the hardware to the required communication
infrastructure [150, 153] that simplifies cross-configuration
communication. Furthermore, page- or tile-based architec-
tures would be especially useful in a system also requir-
ing fault-tolerance, as the same division used for scheduling
could be used for the STARS fault-detection approach dis-
cussed in Section 4.2, and faulty pages could be avoided.

Configuration data can also be compressed [154], par-
ticularly useful when the RH and the configuration memory
are on separate chips. When possible, on-chip configuration
memory or a configuration cache can dramatically decrease
configuration times [66, 155] due to shorter connections and
wider communication paths. Finally, multiple configurations
can be stored within the RH at the configuration points in a
multicontexted device [156, 157]. These devices have several
multiplexed planes of configuration information. Swapping
between the loaded configurations involves simply changing
which configuration plane is addressed. A key benefit of this
approach is background-loading of a configuration while an-
other is active.

Software techniques such as prefetching [158] or
scheduling can also reduce configuration overhead by pre-
dicting needed configurations and loading them in advance,
as well as retaining configurations (in a partially reconfig-
urable device) that may be needed again in the near future. If
the system operation is well-defined and known in advance,
temporal partitioning and static scheduling may be suffi-
cient [159, 160]. For other systems, the simplest approach is
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Figure 7: Different implementations (fast but large, small but
slower, or software) for three kernels (A, B, and C) are shown over
time. Shaded areas show when kernels are not needed. In this exam-
ple, one fast or two small kernels can fit in RH simultaneously.

to load configurations as they are needed, removing one or
more configurations from the RH if necessary to free suffi-
cient resources [66, 155, 161, 162].

In more complex systems, compiler- or user-inserted di-
rectives can be used to preload the configurations in or-
der to minimize configuration overhead [155], or the con-
figuration schedule can be determined during application
compilation [163], dynamically at runtime [137, 153, 164—
171], or a combination of the two [152]. Although dynamic
scheduling requires some overhead to compute the schedule,
this is essential if a variety of applications will execute con-
currently on the hardware, breaking the static predictability
of the next-needed configuration. Dynamic scheduling also
raises the possibility of runtime binding of resources to ei-
ther the reconfigurable logic or the host processor [168—170],
and of choosing between different versions of the compu-
tation created in advance or dynamically [75, 99] based on
area/speed/power tradeoffs [153, 165, 170, 172] as shown
in Figure 7. This could allow an embedded device to run
much faster when plugged in, and save power when operat-
ing on batteries. To facilitate this scheduling, the RH could
be context-switched, saving the current state before load-
ing a new one [66, 173, 174], possibly allowing preemptive
scheduling of the resources [137].

6. WHAT TOOLS AID THE RECONFIGURABLE
EMBEDDED DESIGNER?

The design of reconfigurable embedded systems, or applica-
tions for them, is frequently a complex process. Fortunately,
tools can assist the designer in this process, as described in
this section.

6.1. Hardware/software codesign

The reconfigurable computing hardware/software (HW/SW)
codesign problem is similar to general HW/SW codesign,
and in many cases FPGAs are used to demonstrate tech-
niques even if they do not leverage run-time reconfiguration
[24, 175, 176]. Design patterns [77] in many cases can ap-
ply equally well to general hardware design and hardware
design for reconfigurable computing. This section primar-
ily focuses on areas of codesign specific to embedded recon-
figurable computing. More information on general HW/SW
codesign can be found elsewhere [177-180].

Designers can manually HW/SW partition applications
using a combination of profiling and intuition, and develop
the components separately for each resource [171]. Alter-
nately, applications can be specified in a more unified form,
generally using a high-level language (HLL) such as C or
Java [66, 175, 181-183], but in many cases these compilers
require code annotations to specify hardware-specific infor-
mation (custom bitwidths, parallelism, etc.) or only operate
on a restricted subset of the language. Some compilers per-
mit parallelism to be specified at the task level using threads
[184, 185]. However, compiling hardware from a software-
style description can be difficult or inefficient due to the se-
quential nature of software, and the spatial nature of hard-
ware [186—188]. Some efforts have therefore focused on new
ways to express computations that are more agnostic to final
implementation in hardware or software, expressing instead
the dataflow of the application [151, 189-191]. One aspect
of HW/SW codesign unique to RH is temporal partitioning
[160, 171, 192, 193], the process of breaking up a single cir-
cuit or a series of computations into a set of configurations
swapped in and out of the RH over time. Some systems also
allow these configurations to be dynamically placed and con-
nected to the other components on RH [162, 194].

Finally, designing an application for an embedded system
with RH has the advantage that verification tools can use the
RH in conjunction with software simulation and debugging
to accelerate the verification process [66, 195-198]. If design
errors are found, the RH can be reconfigured with a fixed
design because configuration is not a permanent process.

6.2. ProcessorISA customization

Backwards-compatibility is generally far less critical to em-
bedded systems than to general-purpose computers. This al-
lows embedded systems designers the freedom to adapt pro-
cessors’ ISAs to changing needs and technologies, and makes
custom compilers for such ISAs less of a burden as embedded
applications are frequently developed by the same company
that develops the hardware (or one of its partners). RH al-
lows the designers to use a single chip design to implement
dramatically different ISAs by reprogramming the RH with
different functionalities. Multiple design tools are available
to automate this process [66, 139, 140, 199, 200]. These tools
generally examine precompiled binary instruction streams
and generate data flow graphs as candidates for custom in-
structions. Another approach is to create a compile-time list
of potential configurations and their associated binary in-
struction graph, and at run time detect those graphs in the
instruction stream, replacing them with the appropriate RH
operations [140].

The SPREE tool [200] is a manual-assist tool that allows
a designer to explore processor tradeoffs such as pipeline
depth, software versus hardware implementation of compo-
nents such as multiplication and division, and other design
features. The tool also removes unused instructions to save
area. Tool chains from Altera and Xilinx focus on SoPC plat-
form design, with parameterizable soft-core processors man-
ually tuned to the respective FPGA architectures, and core
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generators to create other common computational structures
needed on SoPC designs. Developers using Stretch proces-
sors write applications in C, profile them, and choose can-
didate functions for RH to implement in a C variant de-
signed to specify hardware [66, 120]. Finally, for designers
wanting to create a fixed-silicon custom processor with a re-
configurable functional unit (instead of a soft-core processor
implemented on an FPGA), customizable processors such as
Xtensa [201] provide a base processor design and a tool-set
for customization. Xtensa is the base of Stretch, Inc. commer-
cially available reconfigurable embedded processors [66].

6.3. Automated RH design

Finally, automatic design tools can aid in the creation of
the RH itself [202-204]. The Totem project focuses on the
creation of automatic design tools to create coarse-grained
domain-specific RH for SoCs based on the intended applica-
tions [203]. Other work investigates the use of synthesizable
FPGA structures either specifically for embedding in SoCs
[23, 202] or tile-based FPGA layout generators usable ei-
ther in SoCs or as stand-alone architectures [204]. This latter
work created architectures in 34 person-weeks instead of 50
person-years, with only a 36% area penalty.

7. WHAT DOES THE FUTURE HOLD?

Reconfigurable hardware faces a number of challenges if
it is to become commonplace in embedded systems. First,
there is a Catch-22 in that because reconfigurable comput-
ing is not a common technique in commercial hardware,
it is not yet something that many embedded designers will
know to consider. This problem is gradually being overcome
with the introduction of reconfigurable computing in certain
embedded areas, such as network routers, high-definition
video servers, automobiles, wireless base stations, and medi-
cal imaging systems. Furthermore, a greater number of peo-
ple are exposed to reconfigurable hardware as more univer-
sities include courses and laboratories using FPGAs. Second,
the strict power limitations of many embedded systems high-
lights the power inefficiency of LUT-based reconfigurable
hardware compared to ASIC designs. Because power con-
cerns are intensifying in all areas of computing, research will
increasingly focus on power efficiency. Efforts are already un-
derway, with researchers studying a variety of architectural
and CAD techniques to improve power dissipation in recon-
figurable hardware and computing. Third, the flexibility of
reconfigurable hardware that permits the fault tolerance ben-
efits discussed in this article also increases the hardware’s sus-
ceptibility to faults due to the extra area introduced to sup-
port reconfigurability and the use of SRAM-based configu-
ration bits. Innovative reconfigurable architectures, circuit-
level design methodologies, and techniques for detecting and
avoiding faults are needed to further improve the fault toler-
ance of reconfigurable hardware.

There are also a number of software-related issues to con-
sider. Compiler support, while improving, is not yet at the
level required for widespread adoption of embedded recon-
figurable computing. In most cases the computations to be

implemented in software and the computations to be imple-
mented in hardware must be specified separately in different
languages, and compiled with different toolsets. While some
systems and tool suites do offer a more unified flow, these
are currently less common. Continued research in effective
hardware-software codesign is essential to improve the ease
of application design for embedded reconfigurable systems.
Furthermore, even though the concept of OS support of re-
configurable hardware was proposed nearly a decade ago, this
area remains open.

These challenges are worth addressing, as reconfigurable
hardware has many advantages for embedded systems. Im-
plementing compute-intensive applications partially or com-
pletely in hardware can dramatically improve system perfor-
mance and/or decrease system power consumption. The flex-
ibility of the hardware allows a single structure to act as an
accelerator for a variety of calculations, saving the area that
discrete specialized structures would otherwise require, and
allowing new computations to be implemented on the hard-
ware after fabrication. That flexibility can also be used to re-
duce the design and production cost of embedded system
components, as one physical design can be reused for mul-
tiple different tasks, amortizing NREs. Finally, reconfigura-
bility provides new opportunities for fault-tolerance, since a
design implemented in the reconfigurable hardware can be
configured to avoid faulty areas of that hardware. In some
cases, the reconfigurable hardware can even be configured
to implement the functionality of a faulty component else-
where in the system. For all of these reasons, reconfigurable
hardware is a compelling component for embedded system
design.
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