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As technology scales for increased circuit density and performance, the management of power consumption in system-on-chip
(SoC) is becoming critical. Today, having the appropriate electronic system level (ESL) tools for power estimation in the design flow
is mandatory. The main challenge for the design of such dedicated tools is to achieve a better tradeoff between accuracy and speed.
This paper presents a consumption estimation approach allowing taking the consumption criterion into account early in the design
flow during the system cosimulation. The originality of this approach is that it allows the power estimation for both white-box
intellectual properties (IPs) using annotated power models and black-box IPs using standalone power estimators. In order to obtain
accurate power estimates, our simulations were performed at the cycle-accurate bit-accurate (CABA) level, using SystemC. To make
our approach fast and not tedious for users, the simulated architectures, including standalone power estimators, were generated
automatically using a model driven engineering (MDE) approach. Both annotated power models and standalone power estimators
can be used together to estimate the consumption of the same architecture, which makes them complementary. The simulation
results showed that the power estimates given by both estimation techniques for a hardware component are very close, with a dif-
ference that does not exceed 0.3%. This proves that, even when the IP code is not accessible or not modifiable, our approach allows

obtaining quite accurate power estimates that early in the design flow thanks to the automation offered by the MDE approach.

1. Introduction

While the increasing integration of systems-on-chip (SoC)
permits to increase their computation performances, the
underlying power dissipation has become a dominant
concern. Therefore, power consumption becomes a major
criterion to take into account during design space explo-
ration. An important design challenge is to find a tradeoff
between performance and power consumption early in the
design flow in order to satisfy time-to-market constraints.
Cracking the power problem while maintaining acceptable
design productivity requires estimation methods that sup-
port abstraction and automation.

Low-level energy estimation methods take into account
many details of the simulated SoC, which leads to very

slow simulations that increase the design time significantly,
especially for complex systems. Despite the accuracy of such
methods, their slowness represents an obstacle to produc-
tivity. Therefore, more abstract estimation techniques are
required.

The cycle-accurate bit-accurate (CABA) level [1] is an
abstraction level for a system description that is higher than
the register transfer level (RTL). It allows obtaining faster
simulations than those performed using RTL. Usually, to
move from the RTL to the CABA level, hardware imple-
mentation details are hidden from the processing part of
the system while preserving system behavior at the clock
cycle level. The bit-accurate implies that a communication
protocol is used between components at the bit level. At the
CABA level, the behavior of the system can be simulated



cycle by cycle, which permits obtaining quite accurate power
estimates. Thus, this abstraction level allows for a tradeoff
between simulation speed and accuracy. Therefore, we chose
this abstraction level for our simulations.

Due to the tremendous amount of hardware resources
available in SoCs, design tools and methodologies are
required to decrease the design complexity. Implementing
these systems directly at a low level such as RTL can lead
to errors. Therefore, an efficient design methodology, such
as model driven engineering (MDE) [2], is needed in order
to make the SoC design easy and not tedious, by making
the low-level technical details transparent to designers. In
MDE, models become a means of productivity. The graphical
nature of MDE offered by the unified modeling language
(UML) makes the comprehensibility of a system easier and
allows users to model their systems at a high abstraction
level, reuse, modify, and extend their models. Using the
automation offered by MDE, the whole code necessary for
the simulation of an SoC can be generated automatically
from models describing the system. In order to use the MDE
for a high-level description of a system in a specific domain
such as embedded systems, UML profiles are used. A UML
profile is a set of stereotypes that add specific information
to a UML model in order to describe a system related to
a specific domain. Several UML profiles target embedded
systems design such as the modeling and analysis of real-time
and embedded systems (MARTE) [3] profile. MARTE is a
standard profile promoted by the object management group
(OMGQG).

Gaspard2 [4] is a SoC codesign framework that is based
on MDE to describe both the architecture and application
parts of a system at a high abstraction level. Gaspard2
uses the MARTE profile for embedded systems modeling. It
targets many technologies such as VHDL and SystemC using
model transformations. The generated SystemC code for a
modeled system using Gaspard2 is used for co-simulation
in order to determine the system performance in terms of
execution time. But, until now, the energy estimation has not
been fully integrated into Gaspard2. Our contribution in this
framework is to integrate power estimation at the modeling
level of Gaspard2 as well as at the simulation level, allowing
of automation the energy estimation in the Gaspard2 design
tflow.

An accurate power estimation method is based on a
characterization phase using low-level tools in order to
determine the consumption of the different activities of
a hardware component accurately. The obtained power
model is then used during simulations to estimate the
consumption of the related component. During simulation,
the simulator detects whether an activity has occurred for
a given component and adds its consumption cost to the
total consumption of the component. The most important
challenge here is how to detect these activities especially
if the intellectual property (IP) description codes are not
accessible.

The main contribution of this paper is to present a hybrid
energy estimation approach for SoC, in which the consump-
tion of both white-box IPs and black-box IPs can be esti-
mated. Based on model-driven engineering, this approach
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allows to take the consumption criterion into account early
in the design flow, during the co-simulation of SoC. In a
previous work [5], we presented an annotated power model
estimation technique for white-box IPs where counters are
introduced into the code of the IPs. A counter is incremented
whenever its related activity occurs. This technique was
used in this present work, along with the standalone power
estimator technique used for black-box IPs. The standalone
power estimation modules were generated using MDE and
connected between the components in order to detect
their activities through the signals that they exchange. To
test this approach, systems containing white-box IPs and
black-box IPs and their related estimation modules were
modeled in the Gaspard2 framework. Using the MDE model
transformations, the code required for simulation can be
generated automatically. Finally, consumption estimates can
be obtained during simulations.

The rest of this paper is organized as follows. Section 2
gives a summary of the related works. An overview of
MDE and the Gaspard2 framework is provided in Section 3.
Section 4 illustrates our hybrid approach for energy esti-
mation. Section 5 describes the MDE approach used to
implement our estimation modules and their integration in
the Gaspard2 framework. This paper ends with simulation
results in Section 6.

2. Related Work

There are many research efforts devoted to power consump-
tion estimation in SoC design. They operate at different
abstraction levels and have different estimation techniques.

At the layout level, the consumption estimation depends
on the electric currents through the transistors, which
requires a transistor-level description of the SoC. Optimizing
the consumption can be done by transistor resizing and
layout rearrangement depending on the obtained estimates.
Among tools operating at this level, we can mention SPICE
[6]. Although this approach is very accurate, it requires a
high amount of processed data and simulation time. These
limits represent an obstacle to apply this approach to com-
plex systems. At gate level, consumption estimation is based
on power models of technology cells. The power consumed
by a cell is correlated to its input data. Furthermore, it
depends on many other parameters such as supply voltage
and frequency. Thus, to optimize the power consumption of
a whole system, many experiments must be done in order
to optimize consumption parameters. Power Gate [7] of
Synopsys is among tools operating at this level. The accuracy
of the estimation of such tools is still high, but, similar
to the layout level, the amount of data and the simulation
time are still limiting. For a 10-million-gate design, even
the fastest software-based logic simulator may not exceed a
few cycles per second [8]. Compared to the Gate and layout
(transistor) levels, RTL brings, respectively, an acceleration
of 10x and 100x. At the RTL level, systems are described
using more abstract blocks such as adders and multipliers,
which accelerates the simulation. Two approaches can be
used for consumption estimation. The first one is based on
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probabilistic estimation [9]. This approach has the advantage
of accelerating the simulation but suffers from its low
accuracy. The second approach, which is the most used, is
based on event simulation. This technique relies on cycle
accurate simulation and the application of macro models.
The macro-models are derived from the processed data [10].
Petrol [11] is among the tools following this approach.

The simulation of a complete SoC at the three previous
levels suffers from slowness. With the increasing complexity
of designs, these estimation approaches become inadequate
as they produce estimation results late in the design flow.
More abstract estimation techniques are required to enable
early design decisions. To achieve this goal, several studies
have proposed evaluating power consumption at higher
abstraction levels such as the CABA level [1, 12], on which
this work is based. At this level, the behavior of components
is simulated cycle by cycle using an architectural level
simulator. An analytic power model is used to estimate
consumption for each platform component. The power
model of a component is based on the power costs of
its pertinent activities and the occurrences of these activi-
ties during the simulation. The consumption of pertinent
activities is estimated using power macro-models, produced
during lower-level simulations. The power model of each
component is then integrated into the simulator in order to
estimate the consumption of a system in every cycle, which
permits quite accurate estimates. Among tools operating
at this abstraction level, we find SimplePower [13] and
MPARM [14]. The main drawback of such tools is the use of
intrusive approaches. Such approaches add some code lines
to the monitored component IPs in order to determine their
consumption. The problem here is that these approaches are
not automated, because the consumption information has to
be added manually into the IP source codes. A solution to this
problem is to use standalone estimators connected between
the monitored components. The consumption estimation is
handled by these standalone modules, and the components
IPs are not modified. Among tools using this approach, we
cite UNISIM [15], which is a simulation framework that
offers cycle accurate energy estimation based on shadow
modules. A shadow module is connected to the module
that is being monitored and uses the input of this latter
to estimate its consumption. This approach is adaptable
for many hardware configurations. The disadvantage of the
shadow approach is that it uses a specific communication
protocol between hardware components. In addition, in
the UNISIM framework, the monitored modules need to
notify the estimation modules whenever an operation has
been performed. This means that the IP source codes of
the monitored modules have to be changed in order to
support this functionality, which means that this method is
not completely nonintrusive.

At a higher level of abstraction, we find the TLM
(transaction-level modeling) [16, 17], which permits faster
simulation but less accurate estimates. In TLM, a set
of abstraction levels simplifying the description of inter-
module communication is defined. Consequently simulation
time is reduced by increasing communication operation
granularity (the communication is insured via channels

instead of signals). In [18, 19], authors present a character-
ization method for generating power models within TLM,
adopted to peripheral components. The pertinent activities
are identified at several levels and granularities. The charac-
terization phase of the activities is performed at the gate level
and helps to deduce power of coarse-grain activities at higher
level. However, this method cannot be applied to different
kinds of components, such as processors, or interconnect
networks. In [20], the authors present a transaction-level
power estimation approach that uses characterization from
a low-level as well as an analytical modeling method. This
approach is applied in the Gaspard2 framework [4] allowing
a fast MPSoC (multiprocessor SoC) design at the timed
programmer view (PVT) level, one of the TLM levels. The
major disadvantage of this approach is that it is intrusive.

At the functional level, Tiwari et al. [21] proposed the
first method of the consumption estimation of a software
program by introducing the concept of instruction level-
power analysis (ILPA). This method consists accumulating
the energy dissipated by every instruction of a program. The
drawback of this method is that it requires a real exper-
imental environment containing the processor to model
and to execute the instructions in order to measure the
consumed current. Thus, it requires many analyses and
measures and much time to develop a power model for a
target processor. Among the tools based on this approach, we
find JouleTrack [22] that estimates only the consumption of
simple processors. Several extensions of the ILPA have been
proposed, such as the functional-level power analysis (FLPA)
[23] that decreases the time necessary for the power model
development. This method performs power estimation only
at the assembly-level with accuracy from 4% for simple
cases to 10% when both parallelism and pipeline stalls are
effectively considered. Among the tools using this approach,
we cite SoftExplorer [24] that covers the power analysis of
simple and complex processors.

MDE was also used for power estimation in several
works. In [25, 26], an analytical method for power estimation
is proposed. The power estimates are obtained by an
estimation tool called SPEU (system properties estimation
with UML). This method is based on describing an appli-
cation using UML diagrams and the UML-SPT profile [27].
Using model transformations and the SPEU tool, analytical
estimates can be obtained using the cost specified in the
models such as the costs associated with the services of
a processor. Since the energy estimates are obtained by
an analytical method and do not rely on simulations, this
method allows for a fast design space exploration. However,
in order to obtain fast estimates, the used components have
to be precharacterized in terms of energy consumption.

A similar approach for power estimation is presented
in [28, 29]. It uses the architecture analysis and design
language (AADL) [30] to describe embedded application
and operating systems. The power estimates are obtained
using the consumption analysis toolbox (CAT). This tool is
populated by power models built using the FLPA methodol-
ogy extended by considering the overhead due to operating
system services. Using the CAT tool, software parameters can
be extracted from the AADL models in order to determine



the consumption of the application using the power models
already integrated in CAT. This approach gives relatively
precise results.

In [31], an extension to the MARTE profile, with a
dynamic power management (DPM) profile, is proposed.
This approach considers an embedded application as a
set of use cases and links a power mode to each use
case. In a power mode, the components of a systems may
have different power states. This approach can be used for
fast system energy dissipation estimation without accurate
functional description or realization of the system. However,
this approach is still at the conceptual level, and no analysis
tool has been developed yet to evaluate energy dissipation.

Despite the speed of the model-driven power estimation
approaches presented earlier, their lack of precision may have
an important impact on the final estimation accuracy. This is
due to the fact that they are based on the code analysis or a
rapid profiling, which makes it difficult to determine some
parameters with precision. This is the case, for instance, in
cache miss rates in complex processors, which may have a
nonnegligible impact on the final power estimation.

The solution proposed in this paper makes a tradeoft
between the speed of simulation using a high abstraction
level, and an acceptable accuracy compared with lower levels.
Besides, it is nonintrusive, which is interesting especially if
the source code of the IPs is not accessible. Furthermore, the
consumption estimators are automatically generated using a
model driven engineering approach, which permits a gain in
the design time.

3. Model Driven Engineering and the Gaspard2
Design Framework

MDE revolves around three focal concepts. models, meta-
models and model transformations. A model is an abstract
representation of some reality and has two key elements:
concepts and relations. Concepts represent “things”, and
relations are the “links” between these things in reality. A
model can be observed from different abstract points of view
(views in MDE). The abstraction mechanism avoids dealing
with details and eases reusability. A metamodel is a collection
of concepts and relations for describing a model using a
model description language and defines syntax of a model.
This relation is analogous to a text and its language grammar.
Each model is said to conform to its metamodel at a higher
definition level. Finally, MDE allows to separate the concerns
in different models, allowing reutilization of these models
and keeping them human readable.

The MDE development process starts from a high
abstraction level and finishes at a targeted model, by flowing
through intermediate levels of abstraction via model trans-
formations (MTs) [32]; by which, concrete results such as an
executable model (or code) can be produced. MTs carry out
refinements moving from high abstraction levels to low-level
models and help to keep the different models synchronized.
At each intermediate level, implementation details are added
to the MTs. An MT is a compilation process that transforms
source models into target models and allows moving from
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FIGURE 1: An overview of model transformations.

an abstract model to a more detailed model. In the case of
an exogenous MT [33], as shown in Figure 1, the source
and target models conform to two different metamodels
while the endogenous transformation deals with two models
conforming to the same metamodel. Usually, the initial high-
level models contain only domain-specific concepts, whereas
technological concepts are introduced seamlessly in the inter-
mediate levels. An MT is based on a set of rules (either declar-
ative or imperative) that help to identify concepts in a source
metamodel in order to create enriched concepts in the target
metamodel. It can be extended by adding or/and modifying
rules in order to obtain a new MT targeting a different model.
The advantage of this approach is that it allows defining sev-
eral model transformations from the same abstraction level
but targeted to different lower levels, offering opportunities
to target different technology platforms. The model transfor-
mations can be either unidirectional (only source model can
be modified; targeted model is regenerated automatically)
or bidirectional (target model is also modifiable, requiring
the source model to be modified in a synchronized way)
in nature. In the second case, this could lead to a model
synchronization issue [34]. For model transformations,
OMG has proposed the metaobject Facility (MOF) standard
for metamodel expression and query/view/transformation
(QVT) [35] for transformation specifications.

Gaspard2 is an MDE-oriented SoC codesign framework
based on the Modeling and Analysis for real-time and
embedded systems (MARTE) standard. The applications
targeted by Gaspard2 are control and flow-oriented ISP ap-
plications such as multimedia and high-performance appli-
cations. In Gaspard2, the UML component concept is used
defining an application or an architecture component, and
the MARTE FlowPort concept is used to define all ports in
both the application and the architecture. To bridge the gap
between high-level modeling using MARTE and execution
platforms, Gaspard2 uses two main concepts: deployment
and model transformation.

The design flow in Gaspard2 follows several steps: system
modeling and deployment, model transformations and code
generation. The left side of Figure 2 shows the design
flow targeting the SystemC platform, which we used in
our work. Gaspard2 also targets other platforms such as
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Fortran and VHDL. In Gaspard2, there is a separation
between the architecture and the application models as
shown in the left side of Figure 2. An application model
describes the SW and/or HW components of an application.
To link the application and the architecture models, an
allocation model is used. At the deployment level, every
elementary component (application or architecture, com-
ponent) of a system is linked to an existing code hence,
facilitating intellectual property (IP) reuse. Each elementary
component can have several implementations (e.g., SystemC,
VHDL). The deployment model provides IP information for
model transformations targeting different domains (formal
verification, simulations, high-performance computing or
synthesis). After the deployment phase, model transforma-
tions (transformation chains) permit adding some details
to the input model in order to get closer to the targeted
technologies. At the end of a transformation chain, we
have a model with technical details allowing the code
generation related to the targeted technology. Model-to-
model transformations are implemented with QVTO [36]
and model-to-text transformations (code generation) with
Acceleo [37].

Our contribution in Gaspard2 is to integrate the power
estimation concepts in this framework. The integration

follows two steps as shown in the right side of Figure 2.
The first step is to generate power estimation modules for
the SystemC IPs in the Gaspard2 IP library. For this, we
developed a new profile and a new metamodel dedicated to
power estimation. The profile allows describing the behavior
of the power estimators and determining the architectural
parameters that will be used in the consumption estimation
later, when the estimators will be integrated into a whole
SoC architecture. Using model transformations, the SystemC
code of the estimators is generated automatically, in order
to obtain new IPs dedicated to power estimation. These
IPs are integrated in the IP library of Gaspard2. They
are ready to be used for the consumption estimation of
the hardware components used in the Gaspard2 system
designs. The second step is to integrate the power estimation
in SoC models in Gaspard2 in order to automate the
power estimation for these systems. For this, we extended
the deployment profile of Gaspard2. This extension allows
linking the existing estimators in the library to the hardware
components of a modeled SoC. The MDE approach of
Gaspard2 then allows generating the SystemC code of the
whole SoC with the integrated estimators. This code can then
be integrated into the SystemC simulator, and the energy
estimates can be displayed during the simulation.
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4. A Hybrid Consumption Estimation Approach

At the CABA level, the total energy consumption of a
system is obtained by adding the consumptions of its
components together. To provide accurate estimation, two
kinds of consumption are considered: dynamic consumption
related to component activity (e.g., read/write operations),
and static consumption related to leakage currents when
the component is inactive. For a long time, dynamic power
consumption has been considered more significant than
static consumption. However, this point of view changed
with the advent of new submicron technologies, for which
both types of consumption have their degree of importance.
The consumption models used in this work are simple,
since the related components are simple. Our consumption
models are based on the following formula:

EZZN,'*Ci, (1)

where N; is the number of times the activity i is realized
or the number of cycles the component is inactive, and C;
is the unit cost of the activity i or of a cycle of inactivity.
Using this formula, we obtained the power models of the
main components of the SoCLib library [38]: the processor,
the cache memory, the shared SRAM memory and the
interconnection network. These consumption models are
detailed in [5]. They were obtained after we had determined
each component pertinent activities and measured their unit
costs using low-level tools. The same power models are used
in this present work.

To determine the occurrences of each activity, activity
counters are used. Each counter is incremented during
the simulation if the corresponding activity occurs. This
approach gives the consumption of the whole architecture
in every cycle. The values of the activity counters are
transmitted to the energy consumption models integrated
into the simulator, to accumulate the energy dissipation
of the architecture. The consumption simulator contains
an energy model for each hardware component, which
depends on its technology parameters. Figure 3 illustrates
this approach.

The use of the counters depends on whether the IP’s
code is accessible or not. For white-box IPs, the counters can
be inserted into their source code while for black-box ones,
provided that their source code is not accessible, the activity
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occurrences are detected using standalone modules con-
nected to these IPs. Our hybrid approach combines these
two techniques in order to estimate the consumption of a
system composed of both white-box and black-box IPs. In
the following subsections, we detail consumption estimation
techniques for white-box and black-box IPs.

4.1. Energy Estimation for White-Box IPs. In order to deter-
mine the occurrences of activities, a counter is inserted
in the source code of the components for each activity
type (e.g., memory read, memory write). A counter is
incremented whenever its related activity is performed. Thus,
we have to look for the code portions describing each
activity and modify them by adding statements incrementing
the corresponding counters. Despite the accuracy of this
approach, due to the detection of all the consuming activities
corresponding to a power model of a component, its
drawback is that sometimes it is tedious to look for all the
activities in an IP code especially with a great number of code
lines. Besides, an IP is supposed to be unmodified, otherwise
it is not the same IP anymore. In order to mend this problem,
standalone energy estimation modules were implemented.
These modules are also very useful especially when the code
of the IPs is not accessible.

4.2. Energy Estimation for Black-Box IPs. Our solution to
determine the occurrences of the activities without being
intrusive in the IP codes is to detect these activities
through the signals that the components exchange. Figure 4
shows that to determine the consumption of two linked
components, we need a consumption estimator for each
one. Here, we do not use only one estimator to estimate
the consumption of both components because separating
estimators allows their reuse with different architectures.
The description of an estimator at the CABA level is
based on a power state machine as shows Figure 5. The
power state machine contains the relevant power states of
a component and the transitions between them. A power
state is related to an activity of the monitored component
or corresponds to a static consumption. The transitions
are conditioned by the values of the signals that the
monitored component exchange with others. Depending on
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these signals, it is possible to determine the current activity
of a component, so a transition to the corresponding power
state is carried out. In each transition, there is an energy
consumption related to the target state, so the related activity
counter is incremented.

Let us take the example of an SRAM memory, three
main activities consume energy: Read, Write, and Idle. These
activities correspond to the read access mode, the write
access mode, and the waiting state. This approach is similar
to the approach proposed by Loghi et al. [14]. Thus, the
SRAM estimator’s finite-state machine (FSM) is composed
of three states: Read, write, and Idle as Figure 6 shows.
Connected between the SRAM and the interconnect, the
SRAM estimator intercepts the requests that the SRAM
receives and the responses that it sends. If the SRAM
estimator receives a response from the SRAM corresponding
to a read request, there will be a transition to the Read state.
If the SRAM does not send any response, that means that it is
inactive, which corresponds to the Idle state in the FSM. So,
the SRAM total energy follows this equation:

ESRAM = Mread * Eread + Myrite * Ewrite

(2)

+ Midle * Eidles

where #iread, Myrite, and nigle are, respectively, the number of
occurrences of a read access, a write access and a cycle of

inactivity of the SRAM. These occurrences are given by the
counters associated to each state in the FSM. E;ead, Ewrite, and
Eiqle are, respectively, the costs of a read access, a write access
and a cycle of inactivity. These costs depend on the number
of words and the number of bits per word in the SRAM.

We chose, for instance, the OCP (open core protocol)
[39] for the interfaces of our estimators. This protocol allows
describing any type of communication. This solution permits
the use of a single standard protocol for the estimators, which
allows them to be connected to components with different
interface standards. Therefore, we used wrappers to make the
evaluated components compliant with the OCP so we can
connect estimators to them. Here, OCP is only an example
of a communication protocol. Our approach can be applied
to other protocols.

5. An MDE Approach for Power
Consumption Estimation

In order to facilitate the energy estimation for SoC designers,
the estimation modules can be generated automatically using
an MDE approach. This approach has many benefits, for
example, to modify the code related to an estimator, users
are not obliged to write a long code, they only need to enter
some modifications in the estimator model and relaunch
the code generation process to obtain the desired result.
Thus, model driven engineering is a solution to make power
consumption estimation a fast and nontedious work for
users in order to respect the time-to-market constraints. The
integration of the consumption estimation in the design flow
of the Gaspard2 framework [4] thus allows fast architectures
exploration. To implement this integration, we used the
same MDE tools as Gaspard2, namely, Papyrus [40] for
graphical modeling, QVTO [36] for model transformations,
and Acceleo [37] for code generation.

The integration of power estimation in the Gaspard2
framework follows two steps. The first step is to model
power estimators for several hardware components of the
Gaspard2 library and to generate SystemC code for these
estimators. The second step is to use the generated estimators
in the SoC models. This is done by linking the estimators
to the hardware components of an SoC at the deployment
level of Gaspard2. Using the transformation chain shown
in Figure 2, the SystemC code corresponding to an SoC
with its integrated power estimator that can be generated
and used for power estimation during simulation. The
two steps of our approach are detailed in the following
sections.

5.1. Fist Step: Estimators Generation. In order to obtain the
SystemC code of the estimators, the SoC designer has to
follow a transformation chain as Figure 7 shows. First, the
estimation modules are modeled using UML. To facilitate
the modeling of the estimators for users, we have designed
a UML profile dedicated to power estimation, so that they
have a graphical view of the estimator’s structure, FSM and
deployment. The MARTE profile used for SoC modeling in
Gaspard2 cannot be used for power estimators description
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icache_master

dcache_master

Bus estimator

because there are concepts such as state machines, that we
need and that we do not find in MARTE. Second, the
estimators model is transformed into a model compliant
with a power estimation metamodel. This metamodel is also
dedicated to power estimation. It is a metamodel different
from the metamodels used in Gaspard2 since it describes
the internal structure of an elementary component (the
power estimator) in order to generate its code while, in
Gaspard2 the codes of the elementary components already
exist in its library. Finally, the power model obtained by
the model transformation is transformed into a SystemC
code using a model-to-text transformation. These three
substeps are detailed in the rest of this subsection. Using
the power estimation profile, the SoC designer can elaborate
the estimator models easily. Three types of UML diagrams
are used here: composite, state machine, and deployment
diagrams. Figure 8 shows an example of a model representing
a library of estimators using a composite diagram. In this
figure, we modeled the estimators for the MIPS processor,
the instruction and data caches, the shared memory, and
the interconnect. An estimator is represented by a UML
component. The ports of this component correspond to the
interfaces of the estimator. An estimator can be implemented
by indicating its configuration and consumption parameters
and the description of its interfaces, using the Consumption-
Estimator and Interface stereotypes, respectively, as Figure 9
shows.

The UML state machine diagrams are used in order to
describe the behavior of the estimator, which corresponds to
the power machine of the monitored hardware component.

Ram estimator

master slave
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i i
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“Interface”
slave: ocp_slave

FIGURE 9: Power estimator implementation.

A deployment diagram is used to give the code files related
to the interfaces. Here, the code files describing the OCP
interfaces already exist in the Gaspard2 library. So, we only
need to make a link to those files. The code of the internal
operations of the estimators is already in the library. The
paths to these code files are specified in the deployment
diagram so that the generated SystemC estimators include
them in their headers. Thus, for the internal operations,
the estimator only has to call the functions related to those
operations.

The elaborated model can be then transformed into a
model corresponding to the power estimation metamodel.
The power estimation metamodel is composed of two parts:
one part describes the structure of the estimators, and
the other part describes their behavior using the FSM.
Figures 10 and 11 show, respectively, the structure and the
FSM parts of the consumption estimation metamodel. The
structure part indicates that the estimation metamodel is
based on an EstimationModel. The EstimationModel may
contain one or several ConsumptionEstimators, which allows
to have more than one estimator in the same model. A
ConsumptionEstimator has Interfaces which may be OCP
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FIGURE 10: Energy estimation metamodel—the consumption estimator structure.

interfaces or any other type of interfaces. The interfaces
have InterfaceTypes such as an OCP master or an OCP
slave. To each InterfaceType, there are associated input and
output ports. To take into account the configuration of the
monitored component, the estimator uses some Parameters
(configurationParameters) which may also serve in the energy
consumption estimation (consumptionParameters) such as
the number and size of cache blocks. In certain cases, the
estimator has to save some data in registers in order to use
them as a condition for next transitions. For example, the
cache estimator needs to know if there was a cache miss
previously, that is the use of the association otherParameters.
Saving the values of these parameters is an activity which
accompanies a transition or is a doActivity of a state

in the estimator FSM. A Parameter has a DataType and
a multiplicity in order to indicate if it is an array. The size of
the array is also a Parameter of the ConsumptionEstimator.
The path to the InterfaceType source code is given by the
CodeFile metaclass.

The FSM of the estimator is inspired from the state
machine of the UML metamodel. It contains the main
concepts of this metamodel. It also contains power estima-
tion information using the EstimatorElement metaclass. This
metaclass represents the estimator parameters and interfaces,
as shown in Figure 10, which are used in the activities of
the state machine. An estimator has a StateMachine which
contains States and Transitions between States. A State may
have a doActivity. A Transition may have a condition and
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an effect. An Activity manipulates several EstimatorElements.
The source code path of an activity is given by the CodeFile
metaclass. This supposes that all the activities of an estimator
are saved in the same file with the function that calculates
the consumption of the monitored component and whose
name is given by the property estimationFunctionName of the
ConsumptionEstimator metaclass.

After the model-to-model transformation targeting an
estimation model that is compliant to the metamodel
described above, the model-to-text transformation trans-
forms this model into a SystemC code using Acceleo [37].
With this process, we have generated estimators with 200 to
300 code lines, compared with 10 to 120 lines inserted into
IPs with the intrusive approach. This difference is because of
the code necessary to manage the FSM of the estimator and
especially the conditions of the transitions. Here, the MDE
approach saves us a long coding time.

5.2. Second Step: Integration of Power Estimators in SoC
Models. This step is a set of several substeps as described
in Figure 12. The first sub-step is to model an SoC in
the Gaspard2 framework. Gaspard2 is an environment
that permits to model a whole MPSoC architecture using
UML and then generate the simulation code in various
abstraction level languages such as VHDL and SystemC [4].
Gaspard2 uses the MARTE profile for system modeling.
Figure 13 shows an example of a system modeled by
Gaspard2. This system contains the components that we will
monitor (the processors, the cache memories, the shared
memories, and the interconnect). These components are
modeled using some stereotypes from the MARTE profile,
such as HW Processor, HW Cache, and HW RAM. At the
deployment level of Gaspard2, the existing IPs are linked
to the modeled architectural components. At this level, we
use stereotypes such as VirtuallP and HardwarelP from



EURASIP Journal on Embedded Systems

11

“HW _Processor” “HW_Cache” “HW_CommunicationResource”
Mips XCache Bus
instruct instruct
master master slave
data data
“HW_RAM” “HW_RAM”
Instruction memory Data memory Main architecture
slave slave p: Processing unit
— master
"I“ slave
“HW _Resource” L i
Processing unit e D@
m: Mips ‘ ’ c: XCache [— master
1 J

im: Instruction
memory

dm: Data memory

instruct mStrI;gcstte master
data data

slave slave

FIGURE 13: An architecture model in Gaspard2.

“HW_RAM”

Data memory

slave
T |
I
I
|
~ 1
1 1
I I
' “implements” |
| “impllements”
1
1
“VirtuallP” !
Virtual data memory |
1
v_slave \
I
<-—-—-------- 1
I
i
A i
1
! “implements” |
I . ! »
I impléments
“ HW_RAM, HardwareIP” !
OCP data memory i
ocp-slave ,
1
i

FIGURE 14: Architecture deployment in Gaspard2.

the deployment profile of Gaspard2. Figure 14 shows the
deployment of the memory component from the archi-
tecture described in Figure 13. The integration of the
consumption estimation in an architecture is done at the
deployment level. Therefore, we extended the deployment
profile of Gaspard2 by adding the Consumption Estimator
and the monitors stereotypes. The Consumption Estimator

“HW_RAM, HardwareIP”
OCP data memory
ocp_slave
S
“monitors”

AN
I

I

I

I

I

i monitors
1

“Consumption_Estimator”

OCP ram estimator

[ -

ocp-master

ocp-slave

Figure 15: Example of a memory consumption estimator integra-
tion in a Gaspard2 SoC design.

stereotype is applied to a component that represents an
existing power estimator in the Gaspard2 library. These
estimators are those we generated earlier. Figure 15 shows
an example of the integration of the estimation modules in
the deployment model in Gaspard2. Here, the deployment
diagram shows that the RAM memory that is used in the
system is OCP compliant, and that its estimator is connected
to its OCP slave interface. So, at the generation of the
code for the simulation, there will be an insertion of an
estimator between the memory and the other component
of the MPSoC to which the memory is connected. To do
this, we introduced some modification in the transformation
chain of Gaspard2 targeting the SystemC platform. At the
end of the chain, we obtain the whole system code with
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integrated consumption estimators in order to integrate
power estimation during the system simulation.

6. Simulation Results

To validate our approach, we estimated the consumption
of a JPEG compression application for images of 256 *
256 pixels. The inputs of this software application are images
in the BMP format, and the outputs are images in the JPEG
format. The JPEG application was simulated on different
architectures. The hardware components used in these archi-
tectures are MIPSR3000 processors, 16 KB SRAM memories,
and micronetworks. The used caches contain actually two
independent instruction and data caches, sharing the same
interface. They are direct mapped caches. The data cache’s
writing policy is write-through.

All the IPs used here are white-box IPs (with an accessible
code), but we can apply to them the same approach as
black-box IPs. Thus, in order to insert the counters into
the code, we use standalone estimators. This way, we can
use both approaches for a simulated system at the same
time, using a white-box approach for some IPs and a black-
box one for the others. Figure 16 shows an example of the
simulated architectures with 2 processors. In order to observe
the communication between two components, the estimator
needs two interfaces to observe the communication in both
directions. In the example described in Figure 16, the white-
box approach was used for the cache memories whereas the
black-box approach was used for the rest of the IPs.

In order to follow the evolution of the performance
during the simulation time, the consumption of each com-
ponent of an architecture was written into an XML file that
serves as a data source for a reporting engine that generates
a consumption report. The report gives the percentage of
the consumption of each component at different simulation
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FIGURE 17: Performance and energy variation in terms of the
number of processors.

cycles and information about the current cycle. It can also
give details about a cycle chosen by the user and indicate
the cycle where a consumption threshold fixed by the user
was exceeded. This report gives a graphical view of the
performance of the simulated architecture, which facilitates
the design space exploration.

To evaluate the impact of the number of processors on
the performance and the total consumption of the system,
we executed the JPEG application using systems with 1 up
to 16 processors. The size of the instruction and data cache
was set to 4 KB, and the MIPS frequency was set at 50 MHz.
All the processors execute the same JPEG application but on
different image macroblocs. Figure 17 reports the execution
time in cycles and the total energy consumption in mJ.
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TaBLE 1: Simulation time and energy consumption for combined estimation techniques.

Estimation approach

Simulation time (s) Energy consumption (mJ)

Processor Cache memory Shared memory Interconnect
W W W W 436 2080.4
W W W B 550 2080.4
W W B W 499 2080.4
W W B B 578 2080.4
W B W w 607 2077.4
W B W B 731 2077.4
W B B w 632 2077.4
W B B B 756 2077.4
B W W W 514 2080.4
B W W B 598 2080.4
B W B W 541 2080.4
B W B B 627 2080.4
B B W w 661 2077.4
B B W B 781 2077.4
B B B w 679 2077.4
B B B B 828 2077.4
5000 43 To examine the impact of varying instruction and data
4500 cache sizes on the performance and energy consumption of
. the whole system, we used a 4-processor configuration. We
4000 *; executed the JPEG-parallelized algorithm using instruction
= 3500 LI < and data caches of increasing size: from 1KB up to 32 KB.
% ‘ % Our results are presented in Figure 18.
g 3000 £ The increase in the cache size increases the overall
% 2500 | g system energy consumption significantly. In general, larger
g : k- caches improve system performance; however, this depends
= 2000 ¢ ;é) on the size of the task or of the data to be handled. In
1500 |- {35 our example, the move from 4KB to 8 KB, for instance,
1000 . . 5 improved performance by 0.3% but also increased energy
12 4 8 16 32 consumption by 14%. Between the 8 KB and 16 KB caches,
Cache size (KB) the performance did not change, but energy consumption

—— Energy estimation
— Simulation time

FIGURE 18: Variations in performance and energy consumption in
terms of cache size with 4 processors.

Given these results, it seems that adding processors to
the system decreases execution time, which improves system
performance. This variation is not linear because the proces-
sors share resources, and, sometimes, they cannot reach the
same target simultaneously, which necessitates waiting cycles
and diminishes system performance. In terms of energy
consumption, up to a certain number of processors, the total
system energy consumption decreases as the number of exe-
cution cycles is reduced, and then it tends to stabilize as the
system performance improves. But increasing the number of
processors over a certain limit tends to be ineffective, as it
just adds new conflicts at the interconnect, leading to more
waiting cycles, which alters overall performances, especially
in terms of power consumption.

increased by 78%.

To prove that both white-box and black-box approaches
can be used at the same time for a system, we simulated
a system composed of 4 processors with a cache size
of 4KB. For each simulation, we varied the estimation
approach for the different components. Since we have here
4 types of components (the processor, the cache memory,
the shared memory, and the interconnect), we obtained
16 different simulations as Table 1 shows. The simulation
results show that the energy estimates are very close for
all combinations, with a difference that does not exceed
0.15%. This difference is due to the consumption of the
cache FIFOs that was considered in the intrusive approach
but not in the nonintrusive one, since this information is
not detectable through the signals between the component
of an architecture. However, provided that the consumption
of the FIFO is very small, it can be neglected, and we
can say that using standalone estimation modules permitted
getting accurate results because it took into account the
main pertinent and the most consuming activities of the
monitored hardware components.
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Since the black-box approach uses additional modules
added to the simulated system, this approach increases
the simulation time as Table 1 shows. This increase does
not exceed 90%, which is obtained when the black-box
approach is applied to all the components of a system. The
combination of both approaches for the same system gives
faster simulations. The increase in the simulation time can be
considered as acceptable because the simulation at the CABA
level is fast, and having a doubled (the worst case) simulation
time still allows to have fast simulations.

In order to test the efficiency of the black-box approach,
we simulated systems with different numbers of processors
and cache sizes. Two types of simulations were done. The
first type uses the black-box approach for all the components
of a system, and the second type uses the white-box one.
The increase in simulation time between a system using a
white-box approach and a system, with the same number
of processors and cache size, using the black-box approach,
was between 80% and 98%. If we consider the white-box
approach as a reference, the estimation error of the black-box
approach does not exceed 0.3% as Figure 19 shows.

7. Conclusion

This paper presents a hybrid approach for energy estimation
for systems-on-chip (SoC). This approach is applicable for
both white-box and black-box IPs. For white-box IPs, our
approach inserts activity counters into the IP codes in
order to detect the activity occurrences and determining
the consumption of these activities, during the simulation
of a system. For black-box IPs, estimation modules are
connected between the IPs in order to detect their activities
through the signals that they exchange during the simulation.
These modules were generated using an MDE approach.
The simulated systems were also generated automatically

EURASIP Journal on Embedded Systems

from high-level models in the Gaspard2 framework. In
order to integrate the energy estimation in the design flow
of this framework, we extended its deployment level. The
simulations were implemented in SystemC at the CABA
level. This high abstraction level allowed us to obtain fast
simulations and quite accurate results due to an acceptable
amount of architectural details that this abstraction level
takes into account. In order to test the efficiency of our
approach, we used a combination of the white-box and the
black-box approaches for different system configurations.
The simulation results showed that even if the code of an
IP is not accessible, we can still obtain its consumption
estimates with an acceptable accuracy. For this, we only
need to detect, from the signals that it exchanges with
the other components of a system, the activity that it is
performing and associate its related consumption cost. In
our future research, we plan to adapt our approach to more
complex architectures including other components, such
as other types of processors and interconnects. Measure-
ments of the consumption from real implementations of
the studied systems can also be considered, in our future
works, in order to compare them with the results of the
simulations.
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