
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2011, Article ID 480805, 14 pages
doi:10.1155/2011/480805

Research Article

A Precise High-Level Power ConsumptionModel for
Embedded Systems Software

Mostafa E. A. Ibrahim,1, 2 Markus Rupp (EURASIPMember),2 and Hossam A. H. Fahmy3

1 Electrical Engineering Department, High Institute of Technology, Benha University, 13512 Benha, Egypt
2 Institute of Communications and RF Engineering, Vienna University of Technology, 1040 Vienna, Austria
3Electronics and Communication Department, Faculty of Engineering, Cairo University, 12613 Cairo, Egypt

Correspondence should be addressed to Mostafa E. A. Ibrahim, mostafa.halas@gmail.com

Received 26 February 2010; Revised 17 June 2010; Accepted 11 August 2010

Academic Editor: Xiaorui Wang

Copyright © 2011 Mostafa E. A. Ibrahim et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The increasing demand for portable computing has elevated power consumption to be one of the most critical embedded systems
design parameters. In this paper, we present a precise high-level power estimation methodology for the software loaded on a
VLIW processor that is based on a functional level power model. The targeted processor of our approach is the TMS320C6416T
DSP from Texas Instrument. We consider several important issues in our model such as the pipeline stall, inter-instructions effect
and cache misses. The contributions are the following. First, a precise model to estimate the power consumption of the targeted
DSP, while running a software algorithm is proposed. Second, we prove the validation and precision of our model on many typical
algorithms applied in signal and image processing. Third, we further validate the precision of our model on a real application
applied in the video processing field. The power consumption estimated by our model is compared to the physically measured
power consumption, achieving a very low average absolute estimation error of 1.65% and a maximum absolute estimation error
of only 3.3%.

1. Introduction

Many applications in special areas such as hand-held compu-
tation, tiny robots, and guidance systems in automated vehi-
cles are powered by batteries of low rating. In order to avoid
frequent recharging or replacement of the batteries, there
is a significant interest in low-power system design. Very
Long Instruction Word (VLIW) Digital Signal Processors
(DSP) are the most worthy choice for such an application
domain because of their optimal performance at low power.
The importance of the power constraints during the design
of embedded systems has continuously increased in the
past years, due to technological trends toward high-level
integration and increasing operating frequencies, combined
with the growing demand of portable systems. This has
led to a significant research effort in power estimation
and low power design. Power simulators (profilers) allow
the software programmers to specify the hot spot, highly
power consuming, segments of their software code as a first

step towards optimizing these code segments from power
perspective. Developers of power simulators have to embed
a precise power consumption model in their simulators.
Existing processors power simulators are available only for
the lower levels of the design, at the circuit level and to a
limited extent at the logic level. These tools are very slow
and impractical to use to evaluate the power consumption
of embedded software since the application power consump-
tion would only be known at the very last stage of the
design process. In this paper, an approach for estimating
the power consumption of a VLIW DSP while running a
software application is presented. The contribution of this
work aims to precisely estimate the power consumption of
the core processor while running a software algorithm at an
early stage in the design process. The targeted DSP is the
TMS320C6416T (for the rest of the paper it is referred to as
C6416T for brevity) from Texas Instrument. This processor
features the highest performance among the fixed-point
DSPs of the C6000 DSP platforms.

2 EURASIP Journal on Embedded Systems

The rest of the paper is organized as follows. Section 2
presents an overview of the existing power consumption
modeling abstraction levels for general purpose processors.
Section 3 provides a general overview of the target archi-
tecture. Section 4 describes the methodology along with the
experimental setup employed in our experiments. Section 5
describes in detail the functional level analysis and the
resulting mathematical formulas constituting the model for
the targeted architecture functional units. Section 6 demon-
strates the validation of the power estimation methodology
utilizing the developed power consumption model. Finally,
Section 7 summarizes the main contributions of this paper.

2. RelatedWork

This section summarizes the most recent contributions to
the problem of power modeling and estimation. Recent
approaches to model the power consumption of the software
running on a processor can be separated into two main
categories low-level models and high-level models. Low-level
models calculate power and energy from detailed electrical
descriptions, comprising circuit level, gate level, register
transfer (RT) level, or system level. while, high-level models
deal only with instructions and functional units from the
software point of view and without electrical knowledge of
the underlying architecture [1].

2.1. Low-Level Estimation Techniques. The level of detail in
the modeling performed by the power simulator influences
both the accuracy of estimation as well as the speed
of the simulator. In this section we survey the models
frequently used at low level as these power consumption
estimation techniques cover a range of abstractions such
as the circuit/transistor level, logic gate level, RT level, and
architectural level.

2.1.1. Transistor-Level Estimations. The representation of a
microprocessor in terms of transistors and nets is extremely
complex and requires undergoing all the steps of the design
flow and the layout, routing, and parameter extraction
inclusive. Furthermore, a transistor level view of the system
employs component models based on linearized differential
equations and works in the continuous time domain. This
implies that a simulation of more than one million transis-
tors, even for a few clock cycles, requires times that are usu-
ally not affordable and anyway not practical for the high-level
power characterization [2]. Thus, while providing very good
accuracy; transistor-level power estimation methodology is
slow and impractical for analyzing the power consumption
at an early design stage. Moreover, this methodology requires
the availability of lower level circuit details of the targeted
processor, which is not available for most of commercial off-
the-shelf processors.

The PowerMil [3] is an early attempt to build a low-
level power consumption simulator. PowerMil is a transis-
tor level simulator for simulating the current and power
behavior in VLSI circuits. It is capable of simulating detailed
current behavior in modern deep submicron CMOS circuits,

including sophisticated circuitries such as sense-amplifiers,
with speed and capacity approaching conventional gate
level simulators. For more details about power estimation
techniques in VLSI circuits refer to [4, 5].

2.1.2. Gate-Level Estimations. Methods to estimate the power
consumption based on gate level descriptions of micro-
processors or micro controller cores have been proposed
in literature. The main advantage of such methods with
respect to transistor-level simulation approaches is that the
simulation is event-driven and takes place in a discrete
time domain, leading to a considerable reduction of the
computational complexity, without a significant loss of
accuracy [2].

An example for the gate level power estimators is the
model presented by Chou [6]. present an accurate estimation
of signal activity at the internal nodes of sequential logic
circuits. The power consumption estimation in Chou and
Roy is a Monte Carlo based approach that take spatial and
temporal correlations of logic signals into consideration.

2.1.3. RT-Level Estimations. A design described at RT-level
can be regarded as a collection of blocks and a network
of interconnections. The blocks are sometimes referred to
as macros, adders, registers, multiplexers, and so on, while
the interconnections are simply nets or group of nets. An
assumption underlying the great majority of the approaches
presented in the literature is that the power properties of a
block can be derived from an analysis of the block isolated
from a design, under controlled operating conditions. The
main factor influencing the power consumption model of a
macro is the input statistics [2].

Most of the research in RT level power estimation is based
on empirical methods that measure the power consumption
of existing implementations and produce models from those
measurements. This is in contrast to the approaches that rely
on information-theoretic measures of activity to estimate
power [7, 8]. Measurement-based approaches for estimating
the power consumption of datapath functional units can be
divided into two subcategories, namely; transition sensitive
and activity sensitive. The first technique, introduced by
Powel and Chau [9], is a fixed-activity micromodeling
strategy called the Power Factor Approximation (PFA)
method. The power models are parameterized in terms of
complexity parameters and a PFA proportional constant.
Similar schemes were also proposed by Kumar et al. [10]
and Liu and Svensson [11]. This approach assumes that the
inputs do not affect the switching activity of a hardware
block. To remedy this problem, activity-sensitive empirical
power models were developed. These schemes are based on
predictable input signal statistics; an example is the method
proposed by Landman and Rabaey [12]. The overall accuracy
of such models may be hampered due to incorrect input
statistics or the inability to correctly model the interaction.

The second empirical technique, transition-sensitive
power models, is based on input transitions rather than
input statistics. The method, proposed by Mehta et al. [13],
assumes that a power model is provided for each functional

EURASIP Journal on Embedded Systems 3

unit—a table containing the power consumed for each
input transition. Closely related input transitions and power
patterns can be concentrated in clusters, thereby reducing the
size of the table. Other researchers have also proposed similar
macro-model-based power estimation approaches [14, 15].

2.1.4. Architectural-Level Estimations. Recently, various
architectural power simulators have been designed that
employ a combination of lower level of abstraction power
consumption models. These simulators derive power
estimates from the analysis of circuit activity induced by the
application programmes during each cycle and from detailed
capacitive models for the components activated. A key dis-
tinction between these different simulators is the estimation
accuracy and estimation speed. For example, the Simple-
Power power simulator [16] employs a transition-sensitive
power model for the datapath functional unit. The Simple-
Power core accesses a table containing the switch capacitance
for each input transition of the functional unit exercised.

The use of a transition-sensitive approach has both
design challenges as well as performance concerns during
simulation. The first concern is that the construction of
these tables is time-consuming. Unfortunately, the size
of this table grows exponentially with the size of the
inputs. The table construction problem can be addressed
by partitioning and clustering mechanisms. The second
concern is the performance cost of the table lookup for each
component access in a cycle. In order to overcome this cost,
simulators such as SoftWatt [17] and Wattch [18] utilize a
simple fixed-activity model for the functional unit. These
simulators only track the number of accesses to a specific
component and utilize an average capacity value to estimate
the power consumed. Even the same simulator can employ
different types of power models for different components.
For example, SimplePower estimates the power consumed in
the memories utilizing analytical models [19]. In contrast to
the datapath components that utilize a transition-sensitive
approach, these models estimate the power consumed per
access and do not accommodate the power differences found
in sequences of accesses. One of the most widely used
microarchitectural power simulators isWattch [18].Wattch is
a power simulator for superscalar, out-of-order, processors.
It has been developed with aid of the infrastructure offered
by SimpleScaler [20]. The power estimation engine of Wattch
is based on the SimpleScaler architecture, but in addition, it
supports detailed cycle-accurate information for all models,
including datapath elements, memory, control logic, and
clock distribution network [21].

While providing good accuracy, low-level power estima-
tion methodologies are slow and impractical for analyzing
the power consumption at an early design stage. Moreover,
these methodologies require the availability of lower level
circuit details or a complete Hardware Description Language
(HDL) design of the targeted processor, which is not available
for most of the commercial off-the-shelf processors.

2.2. High-Level Estimation Techniques. Recently, the demand
has increased for high level power estimation simulators

that allow an early design space exploration from the power
consumption perspective. The existing high-level power
estimation models can be classified into two main categories,
Instruction Level Power Analysis (ILPA) and Functional
Level Power Analysis (FLPA).

2.2.1. Instruction Level Power Analysis. An instruction level
power model for individual processors was first proposed
by Tiwari et al. [22]. By measuring the current drawn by
the processor as it repeatedly executes distinct instructions
or distinct instruction sequences, it is possible to obtain
most of the information that is required to evaluate the
power consumption of a program for the processor under
test. Tiwari et al. modeled the power consumption of the
Intel DX486 processor. Power is modeled as a base cost
for each instruction plus the interinstruction overheads
that depend on neighboring instructions. The base cost
of an instruction can be considered as the cost associated
with the basic processing needed to execute the instruction.
However, when sequences of instructions are considered,
certain interinstruction effects come into play, which are not
reflected in the cost computed solely from base cost. These
effects can be summarized as the following.

(i) Circuit state: switching activity depends on the
current inputs and previous circuit state, In other
words the difference between the bit pattern of two
successive instructions.

(ii) Resource constraints: resource constraints in the
CPU can lead to stalls, for example, pipeline stalls and
write buffer stalls.

(iii) Cache misses: another interinstruction effect is the
effect of cache misses. The instruction timings listed
in manuals provide the cycle count assuming a cache
hit. For a cache miss, a certain cycle penalty has to be
added to the instruction execution time.

An experimental method is proposed by Tiwari et al.
to empirically determine the base and the inter-instructions
overhead cost. In this experimental method, several pro-
grams containing an infinite loop consisting of several
instances of the given instruction or instruction sequences
are used. The average current drawn by the processor core
during the execution of this loop is measured by a stan-
dard off-the-shelf, dual-slope integrating digital multimeter.
Much more accurate measuring environments have been
proposed to precisely monitor the instantaneous current
drawn by the processor instead of the average current. One of
these approaches has employed a high-performance current
mirror based on bipolar junction transistors as current
sensing circuit. The power profiler in the work of Nikolaidis
et al. [23] receives as input the trace file of executed
assembly instructions, generated by an appropriate processor
simulator, and estimates the base and interinstruction energy
cost of the executed program taking into account the energy
sensitive factors as well as the effect of pipeline stalls and
flushes. The main disadvantage of this approach is the
current measuring complexity [24].

4 EURASIP Journal on Embedded Systems

Another approach, to reduce the spatial complexity of
instruction-level power models is presented in [25]. Therein,
interinstruction effects have been measured by considering
only the additional energy consumption observed when a
generic instruction is executed after a no-operation (NOP)
instruction.

An attempt to modify the original ILPA to create an
instruction level power model with a gate level simulator is
carried out by Sama et al. [26]. In this approach, the power
cost values were obtained through a power simulator rather
than actual measurement; thus modeling is possible at design
time and can be part of microarchitecture and/or instruction
set architecture exploration. More researchers attempted
to enhance the original Tiwari ILPA power consumption
modeling technique as in [27–29].

The ILPA-based methods have some drawbacks, one of
these drawbacks is that the number of current measurements
is directly related to the number of instructions in the
Instruction Set Architecture (ISA) and also the number of
parallel instructions composing the very long instruction in
the VLIW processor. The problem of instruction level power
characterization of K-issue VLIW processor is O(N2K) where
N is the number of instructions in the ISA and K is number
of parallel instructions composing the VLIW [30]. Also they
do not provide any insight on the instantaneous causes of
power consumption within the processor core, which is seen
as a black-box model. Moreover, the effect of varying data
(as well as address) is ignored in the ILPA models, though
this effect can be accounted by an additive factor [31].

2.2.2. Function Level Power Analysis. FLPA was first intro-
duced by Laurent et al. in [32]. The functional level power
modeling approach is applicable to all types of processor
architectures. Furthermore, FLPA modeling can be applied to
a processor with moderate effort, and no detailed knowledge
of the processors circuitry is needed. The basic idea behind
the FLPA is the distinction of the processor architecture
into functional blocks like processing Unit (PU), instruction
management unit (IMU), internal memory, and others [32].
First, a functional analysis of these blocks is performed to
specify and then discard the nonconsuming blocks (those
with negligible impact on the power-consumption). The
second step is to figure out the parameters that affect
the power consumption of each of the power consuming
blocks. For instance, the IMU is affected by the instructions
dispatching rate which in turn is related to the degree
of parallelism. In addition to these parameters, there are
some parameters that affect the power consumption of all
functional blocks in the same manner such as operating
frequency and word length of input data.

Laurent et al. [32, 33] presented a functional level
power consumption model for the TI C62x DSP series. The
C62x series has four internal memory modes which are
handled by Laurent et al. model. The targeted architecture
in our proposed model is the TI C64x. There are significant
differences between the C64x and the C62x architectures.
The internal program and data memories of the C62x have
been replaced by two level-1 caches in the C64x. Moreover,

L1P cache

L2
memory

C6000 DSP core

Instruction fetch
Instruction dispatch
Instruction decode

Data path A Data path B

A register file B register file

L1 S1 M1 D1 D2 M2 S2 L2

Control
registers
Control

logic

Test

In-circuit
emulation
Interrupt
control

L1D cache

Figure 1: C6416T block diagram.

the C64x includes a level-2 SRAM that is utilized both for the
data and program with the ability to be partially configured
as level-2 cache memory. Moreover, the C64x has the ability
to utilize SIMD instructions. The number of registers is also
doubled (2× 32 in place of 2× 16).

Unlike the model presented in [32, 33] that considers
the load and store instructions as a part of the processing
unit submodel, we had to consider the internal memory
as a separate functional block. Hence, we believe that our
proposed model is substantially different from the model
presented in [32, 33] but required for accurately modeling
the C64 family.

The work presented in [34] briefly points to the C64x but
is lacking details. Furthermore, as of now (submission time
of the paper) the model for the C64x is not included in the
library of the latest SoftExplorer tool [35]. Unlike the model
introduced in [36] that employs the parallelism factor as the
affecting parameter for the processing units (PUs) block, the
fact that the NOP does not require any PU for its execution
convinced us that another parameter yields a better descrip-
tion of the PUs. Moreover, as we will explain later, the level-1
data cache memory submodel is different as well.

3. Target Architecture

In this section we briefly consider the target processor
architectural features and the experimental setup used in our
work.

A block diagram of the C6416T CPU is shown in
Figure 1. It is one of the highest performance fixed-point
DSPs that features deep pipeline (11 stages), eight 32-bit
instructions/cycle, twenty-eight operations/cycle, and up to
8000 MIPS. The VLIW TMS320C64x+ DSP core consists of
six ALUs (32-/40-bit), each supports single 32-bit, dual 16-
bit, or quad 8-bit arithmetic per clock cycle, two multipliers
support four 16 × 16-bit multiplications (32-bit results) per
clock cycle or eight 8 × 8-bit multiplications (16-bit results)

EURASIP Journal on Embedded Systems 5

Software task

IDE

Compilation

Profiling

Parameters
computation

Algorithmic
parameters

Power
model

Estimated power

Processor
architecture

FLPA and
parameters
definitions

Measurements
and

curve fitting

Architectural
parameters

Figure 2: Functional level power estimation general methodology.

per clock cycle, 64-/32-bit general purpose registers, and
nonaligned load-store architecture. Instruction set features
byte-addressable (8-/16-/32-/64-bit data). L1/L2 memory
architecture composed of 16 kB two-way set associative L1D
cache, with a 64-byte line size and 128 sets, 16 k-byte direct-
mapped L1P cache, with a 32-byte line size and 512 sets, and
1024 k-byte L2 unified mapped RAM/cache, with flexible
allocation configurations [37].

4. Methodology

The basic idea behind the FLPA is the distinction of the
processor architecture into functional blocks like processing
unit (PU), instruction management unit (IMU), internal
memory, and others [32]. Figure 2 illustrates the process of
estimating the power consumption with aid of the FLPA
technique. At first, a functional analysis of these blocks is per-
formed to specify and then discard the nonconsuming blocks
(those with negligible impact on the power consumption).
The second step is to figure out the parameters that affect the
power consumption of each of the power consuming blocks.
This kind of parameters is called algorithmic parameters as
they are computed from the software algorithm. For instance,
the IMU is affected by the instructions dispatching rate
which in turn is related to the parallelism degree. In addition
to these parameters, there are some parameters that affect
the power consumption of all functional blocks in the same
manner such as operating frequency and word length of
input data which are called architectural parameters [33].

By means of simulations or measurements it is pos-
sible to find an arithmetic function for each block that
determines its power consumption depending on a set of
parameters. Hence, to determine the arithmetic function
for each functional block, the average supply current of the
processor core is measured in relation with the variation
of the affecting parameter. These variations are achieved by
a set of small programs, called scenarios. Such scenarios
are short programs written in assembly language. Each
program consists of an unbounded loop with a body of
several hundreds of certain instructions that individually
invoke each block. The power consumption rules are finally
obtained by curve-fitting the measurement values [33].

Digital
multi meter

DSK power
circuitry

1.2 V

0.
02

5
Ω

JP1

C64x+
CPU

3.3 V

0.
02

5
Ω

Pe
ri

ph
er

al
s

C6416T DSK

Figure 3: Current measurement setup.

All the current measurements are carried out on the
TMS320C6416T DSP Starter Kit (DSK) manufactured by
Spectrum Digital Inc. There are three power test points on
this DSK for DSP I/O current, DSP core current, and system
current. The operating frequency ranges from 600 MHz to
1200 MHz and the DSP core voltage is 1.2 V. The C/C++
compiler embedded in the Code Composer Studio (CCS3.1)
from Texas Instruments is used for getting the binaries to
be loaded to the DSP. The current drawn by the DSP core
while running an algorithm (IDD) is captured by the Agilent
34410A 6.5 digit digital multimeter (DMM). This DMM
features very high DC basic accuracy, actually 0.003% of
the reading plus 0.003% of the range [38]. As shown in
Figure 3 the current is captured in terms of the differential
voltage drop across a 0.025Ω sense resistor inserted, by the
DSK manufacturer, in the current path of the DSP core. The
input differential voltage drop is divided by 0.025Ω to obtain
the current drawn. Several assembly language scenarios have
been developed to separately stimulate each of the functional
blocks. Each scenario consists of an unbounded loop with a
body of more than 1000 instructions, to avoid the effect of
branching instructions on the measured current.

The parameters that affect the power consumption for
each functional block can be extracted from the assembly
code generated by the CCS3.1. Some parameters cannot
be extracted directly from the assembly code, such as the
execution time and the data cache miss rate. Therefore, the
code should be run at least once to obtain these parameters
with the aid of the code profiler.

5. C6416T Power ConsumptionModel

After applying the FLPA, the C6416T architecture is subdi-
vided into six distinct functional blocks (clock tree, instruc-
tion management unit, processing unit, internal memory, L1
data cache and L1 program cache) as shown in Figure 4. The
L2 unified memory accesses are considered via handling the
L1 data and program cache misses. The L2 cache misses are
not handled in our model as the L2 cache misses require the
data or program to be accessed from an external memory
that is beyond the scope of our proposed model. Moreover,

6 EURASIP Journal on Embedded Systems

Table 1: Methodology of computing algorithmic parameters.

Parameter Computation methodology

α No. of fetch packets/No. of execution packets

β (No. of executed instructions—NOP instructions)/Total code cycles

ε (No. of L1D read hits/Total code cycles) · 100

λ (No. of L1D write hits/Total code cycles) · 100

γ ((No. of L1D read misses + No. of L1D write misses)/No. of L1D references) · 100

δ (No. of L1P misses/No. of L1P references) · 100

PSR No. of CPU stall cycles/Total code cycles

Clock system

IMU
Instruction fetch

Instruction dispatch

Processing unit

Instruction decode

Instruction execute

L1 catch memory

Program memory Data memory

L1P L1D

L2 memory

α

β

ε λ

δ γ

Figure 4: Functional level power analysis for C6416T.

there are extreme differences between individual realizations
of external memories in terms of their access time and power
consumption. The utilization of the FLPA also results in the
algorithmic parameters that affect the power consumption
for the prementioned functional blocks.

The dispatching rate α represents the average number
of execution packets per fetch packet. The processing rate
β stands for the average number of active processing units
per cycle. The internal memory read/write access rates ε/λ,
respectively, express the number of memory accesses divided
by the number of required clock cycles for executing the
code segment under investigation. The data cache miss rate
γ corresponds to the number of data cache misses divided
by the total memory accesses. Finally, the program cache
miss rate δ corresponds to the number of program cache
misses divided by the total program cache references. Table 1
shows how these algorithmic parameters of the proposed
model are computed with the aid of the C6416T profiler. The
C6416T profiler, which is embedded in the CCS3.1, offers
many statistics regarding the program under investigation
that are utilized in the process of computing our proposed
model such as number of execution packets, number of NOP
instruction cycles, and number of L1D cache misses.

5.1. Static and Clock Distribution Power Consumption Sub-
model. The static power consumption of any processor
includes the power consumed due to leakage current and the
clock distribution network. It is not possible at the functional

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

ID
D

(A
)

500 700 900 1100 1300

Operating frequency (MHz)

Figure 5: Model function of the C6416T clock tree.

level analysis to differentiate between those types of power
consumption. Hence, both static and clock distribution
power consumption are considered in a single submodel as
the static and clock distribution power consumption model.
From now on when we talk about the operating frequency
effect on the power consumption, actually the effect of
static and clock distribution is meant. It is clear that the
parameter that affects the power consumption of the clock
tree functional block is the operating frequency. Thus, we
modeled the effect of the operating frequency on the power
consumption. The operating frequency linearly affects the
current drawn by the DSP core and hence, also linearly affects
the power consumption of the processor. Figure 5 shows the
relation between the operating frequency and the current
drawn by the DSP core.

5.2. IMU Power Consumption Submodel. The IMU unit of
the C6416T processor consists of two main subunits which
are the instructions fetching unit and the dispatching unit.
The IMU fetches eight instructions per cycle as one fetch
packet. The dispatch unit then subdivides this fetch packet
into execution packets. Since the C6416T has eight functional
units, it is capable of simultaneously executing up to eight
instructions. Consequently, the dispatch unit can divide
the fetch packet into ne (maximum parallelism) to eight
(sequential) execution packets. Thus, the dispatching rate is
strongly affecting the instruction parallelism. Therefore, it is

EURASIP Journal on Embedded Systems 7

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

‖
‖
‖
‖
‖
‖
‖

α = 1

(a)

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

‖
‖
‖

‖
‖
‖

α = 1/2

(b)

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

‖

‖

‖

‖

α = 1/4

(c)

Figure 6: Screen shots of the scenarios for varying α.

0

0.05

0.1

0.15

0.2

0.25

0.3

ID
D

(A
)

0.1 0.3 0.5 0.7 0.9

α

Figure 7: Model function of the C6416T IMU at F = 1000 MHz.

obvious that the dispatch rate is the parameter that affects
the power consumption of the IMU.

Since the NOP instruction does not require any process-
ing unit for its execution, each of the proposed scenarios to
invoke the IMU is composed of an unbounded loop with
more than 1000 no operations (NOPs). These scenarios vary
the dispatch rate (number of fetch packets divided by the
number of execution packets) from 0.125 to 1.0. Figure 6
shows screen shots of the scenarios to vary the dispatch rate,
where the pipe symbols (‖) indicate parallel instructions,
that is, the first instruction without ‖ together with the
successor instructions with ‖ is executed in the same clock
cycle. Figure 7 indicates the characteristics of the current
drawn by the core processor with a varying dispatch rate
when the operating frequency is adjusted to 1000 MHz.
Figure 8 indicates that varying α is independent of varying
the operating frequency.

By curve fitting the measurement values in Figure 7 the
arithmetic function is obtained:

IDDIMU = −0.0918α2 + 0.284α + 0.0603. (1)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ID
D

IM
U

(A
)

0 0.2 0.4 0.6 0.8 1

α

500 MHz
600 MHz
720 MHz

850 MHz

1000 MHz
1200 MHz
Poly. (1000 MHz)

Figure 8: Model function of the C6416T IMU at different
frequencies.

The quality of the fitting process is measured by the
value R-squared (R2): a number from 0 to 1, which is the
normalized square of the residuals of the data after the fit.
This value expresses what fraction of the variance of the data
is explained by the fitted trend line. It reveals how closely the
estimated values for the trend line correspond to the actual
data. A trend line is most reliable when its R2 value is at
or close to 1.0 [39]. Since the R2 value for the arithmetic
function in (1) equals 0.9994 then (1) is an excellent fit for
the curve values in Figure 7.

The arithmetic function in (1) does not consider the
effect of pipeline stalls. Many reasons cause the pipeline to
stall. For instance, one data cache miss stalls the pipeline for
at least six cycles. Hence, the arithmetic function in (2) is

8 EURASIP Journal on Embedded Systems

ADD A0, 5, A1
SUB A2, 4, A10
AND A4, A0, A3
MPY A6, A7, A15
ADD B0, B4, B2
SUB B4, 15, B3
AND B5, A0, B6
MPY B5, B4, B7

‖
‖
‖
‖
‖
‖
‖

α = 1 β = 8/8

(a)

ADD A0, 5, A1
NOP
AND A4, A0, A3
NOP
NOP
SUB B4, 15, B3
NOP
MPY B5, B4, B7

‖
‖
‖
‖
‖
‖
‖

α = 1 β = 4/8

(b)

ADD A0, 5, A1
NOP
NOP
NOP
NOP
NOP
NOP
MPY B5, B4, B7

‖
‖
‖
‖
‖
‖
‖

α = 1 β = 2/8

(c)

Figure 9: Difference between β and α.

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ID
D

(A
)

0 2 4 6 8

β

Figure 10: Model function of the C6416T processing units at α = 1
and F = 1000 MHz.

presented to account for the pipeline stall effect”

IDDIMU =
(−0.0918α2 + 0.284α + 0.0603

)
(1− PSR), (2)

where PSR stands for pipeline stall rate which can be
expressed as the number of pipeline stall cycles divided by the
total cycles required for executing the code segment under
investigation.

5.3. PU Power Consumption SubModel. The data path of the
C6416T consists of eight functional units. These functional
units can work simultaneously if the dispatch unit succeeds
to compose an execution packet with eight instructions.
Unlike the model in [36] that uses the parallelism degree
as the affecting parameter for the processing unit submodel,
the fact that the NOP does not require any PU for its
execution convinced us that another parameter yields a
better description of the PUs.

The new parameter is the processing unit rate which
expresses the average number of active processing units per
cycle. Figure 9 illustrates the difference between the dispatch
rate and the processing unit rate. Another important param-
eter that affects the processing unit power consumption is the
word length of the data operands. In the C6416T the word
length varies from 8 bits to 32 bits. Thus, in our model 16-bit
word length has been chosen to be the typical word length.

More than 1000 different instructions compose the
scenarios that vary the processing unit rate, that is to account
for the inter-instructions effect. The current measured from
the DSK is the sum of the clock tree, IMU, and the PU
currents. To attain only the current drawn by the PU,
the IMU and clock tree currents are subtracted from the
measured current.

Figure 10 depicts the effect of varying the number of
active PU per cycle on the current drawn by the core
processor.

IDDPU =
(−0.0049β + 0.0065

)
(1− PSR). (3)

The arithmetic function in (3) results in an excellent fit
for the curve values in Figure 10 with an R2 value of 0.9982.
Compared to other functional units such as clock tree or the
IMU, it is clear that the PU does not significantly contribute
to the total power consumption of the core processor. It
is important to mention that the scenario for invoking the
PU does not include any memory instructions. The internal
memory operations are handled in a separate scenario.

5.4. Internal Memory Power Consumption SubModel. As
mentioned in Section 5.3 the internal memory operations are
separately handled. That is because of its distinct execution
characteristics. Two categories of memory operations are
included in the instruction set of the C6416T DSP load and
store. The load instructions represent the read of data from
the data cache (if the operand exist in the data cache) to a
specific register from the processor’s register file. The store
instructions represent the write of data into the memory,
according to the data cache write policy.

The C64x+ architecture is capable of performing two
memory operations per cycle. The affecting parameters for
the internal memory submodel are the memory read access
rate ε and the memory write access rate λ. The memory access
rate is defined as the number of memory references (read and
write) divided by the algorithm execution time.

Figure 11 illustrates snapshots of different scenarios to
vary the memory read access rate ε from 20% to 180% (as
two memory operations can be simultaneously executed).
All of those scenarios conducted with the same α = 1/4;
where D1 and D2 are the processing functional units that

EURASIP Journal on Embedded Systems 9

LDHU .D1 ∗A25++,A26 LDHU .D1 ∗A25++,A26 LDHU .D1 ∗A25++,A26
|| LDHU .D2 ∗B25++,B26 || LDHU .D2 ∗B25++,B26 || LDHU .D2 ∗B25++,B26

NOP LDHU .D1 ∗A25++,A27 LDHU .D1 ∗A25++,A27
|| NOP || LDHU .D2 ∗B25++,B27 || LDHU .D2 ∗B25++,B27

NOP LDHU .D1 ∗A25++,A28 LDHU .D1 ∗A25++,A28
|| NOP || LDHU .D2 ∗B25++,B28 || LDHU .D2 ∗B25++,B28

NOP NOP LDHU .D1 ∗A25++,A29
|| NOP || NOP || LDHU .D2 ∗B25++,B29

NOP NOP LDHU .D1 ∗A25++,A30
|| NOP || NOP || LDHU .D2 ∗B25++,B30

NOP NOP LDHU .D1 ∗A25++,A31
|| NOP || NOP || LDHU .D2 ∗B25++,B31

NOP NOP LDHU .D1 ∗A25++,A26
|| NOP || NOP || LDHU .D2 ∗B25++,B26

NOP NOP LDHU .D1 ∗A25++,A27
|| NOP || NOP || LDHU .D2 ∗B25++,B27

NOP NOP LDHU .D1 ∗A25++,A28
|| NOP || NOP || LDHU .D2 ∗B25++,B28

NOP NOP NOP
|| NOP || NOP || NOP

α = 1/4 ε = 20% α = 1/4 ε = 60% α = 1/4 ε = 180%

Figure 11: Snapshots of different scenarios for varying ε.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

ID
D

(A
)

0 50 100 150 200

ε

Figure 12: Model function of the C6416T internal memory read at
α = 1 and F = 1000 MHz.

are responsible for load and store operations [40]. Figure 12
shows the measured current values for different ε values

IDDInt Mem Read =
(−2 · 10−6ε2 + 0.0012ε

)
(1− PSR). (4)

The arithmetic function in (4) results in an excellent fit for
the curve values in Figure 7 with an R2 value of 0.9995. When
we tried to fit the values of the curve in Figure 12 with a
linear arithmetic function, we hit upon that the resultant
R2 value equals 0.98, equivalent to an error of 2%. As the
final model will be the summation of the different functional
block submodels the final model estimation error will be an
accumulation of the submodels errors. Therefore, we decided
to minimize the curve fitting error as much as possible.
Hence, we choose the arithmetic function in (4) to represent
the internal memory read submodel.

In the same manner (5) represents the current drawn
from the CPU while running different scenarios that vary the

memory write access rate λ. This equation results in an R2

value of 0.9978

IDDInt Mem Write =
(−10−5λ2 + 0.0049λ

)
(1− PSR). (5)

Hence, (6) represents the total internal memory model:

IDDInt Mem = IDDInt Mem Read + IDDInt Mem Write. (6)

5.5. L1 Data Cache Power Consumption SubModel. The L1
data cache functional block represents the flow of data from
the L1 data cache to L2 memory and vice versa. Different
scenarios are prepared to stimulate the effect of the data
cache miss.

The data cache miss rate is used as the affecting
parameter for the L1 data cache functional block. Taking
into account the fact that the L1D cache is a two-way
associative cache, different scenarios that vary the number
of data cache misses per fixed number of memory accesses
have been developed. In this scenario, a deterministic way
for forcing the data cache misses is followed. First, arbitrary
data are preloaded into both blocks of set 0. Second, data
from L2 memory with addresses that must be mapped
into set 0 blocks are loaded to L1D cache. The new data,
from L2 memory, addresses are different from those already
preloaded to set 0. Hence, a data cache miss occurs as
illustrated in Figure 13.

Figure 14 shows the effect of varying the data cache
miss rate on the current drawn by the core processor. The
arithmetic function in (7) results in an excellent fit for
the curve values in Figure 14 with an R2 value of 0.9909.
Although the quadratic term in (7) is very small compared
to the linear term, it has great impact on the R2 value.
Discarding the quadratic term in (7) results in an R2 value
of 0.9272 with an error of 7.28%, thus, (7) is a very

10 EURASIP Journal on Embedded Systems

L2 memory

000C 0000-000C 003F

000C 2000-000C 203F

000C 4000-000C 403F

000C 6000-000C 603F

Pre-load

Pre-load

Force cache
miss

L1D cache

Blk0

Blk1

Blk0

Blk1

Blk0

Blk1

Set0

Set1

Set127

Figure 13: Scenario for forcing a data cache miss.

0

0.05

0.1

0.15

0.2

0.25

ID
D

(m
A

)

0 20 40 60 80 100

γ

Figure 14: L1D cache miss rate versus measured CPU current.

suitable function to represent the L1D cache misses power
consumption:

IDDL1D =
(−2 · 10−5γ2 + 0.0041γ

)
(1− PSR). (7)

The arithmetic function in (7) differs from the corre-
sponding linear function that was proposed in [36] for the
cache functional block. The squared-function yields a better
description for the L1 data cache block due to the fact that
L1 data cache pipelines the cache misses, to decrease the
resulting pipeline stalls. The proposed model in [33] did not
separately investigate the effect of data cache misses; instead
it is included in the processing unit functional block [41].

5.6. L1 Program Cache Power Consumption SubModel. With
the aid of the profiler of the C6416T device accurate cycle
simulator, different scenarios are prepared that arbitrarily
vary the program cache miss rate δ. Figure 15 shows the
effect of varying the program cache miss rate on the current
drawn by the core processor. The best fit for the measured

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

ID
D

(A
)

0 2 4 6 8 10 12

δ

Figure 15: L1P cache miss rate versus measured CPU current.

values in Figure 15 is obtained as indicated in (8) with an R2

value of 0.9889.

IDDL1p = 0.0011δ(1− PSR). (8)

The complete FLPA power consumption model for the
C6416T fixed-point high-performance VLIW DSP is shown
in Table 2, while the complete model with exact constant
values at an operating frequency of 1000 MHz is illustrated
in Table 3.

6. Model Validation

Some common signal and image processing benchmarks
from Texas Instruments libraries are used for demonstration
purpose as described in Table 4. The input data for all used
benchmarks are located in the internal data memory. All the
benchmarks are executed in an infinite loop to obtain a stable
reading on the DMM.

First of all, all optimization options which are included in
the CCS3.1 are turned off because these optimization options

EURASIP Journal on Embedded Systems 11

Table 2: Complete power consumption model for C6416T DSP.

Functional unit Functional unit power consumption submodel

Clock distribution PF = (a1 · F + a2) ·Vcore

IMU PIMU = (b1 · α2 + b2 · α + b3)(1− PSR) · F ·Vcore

Processing units PPU = (c1 · β + c2)(1− PSR) · F ·Vcore

Memory read PMemR = (d1 · ε2 + d2 · ε)(1− PSR) · F ·Vcore

Memory write PMemW = (e1 · λ2 + e2 · λ)(1− PSR) · F ·Vcore

L1D cache PL1D = (g1 · γ2 + g2 · γ)(1− PSR) · F ·Vcore

L1P cache PL1P = (h1 · δ)(1− PSR) · F ·Vcore

Total power PT = PF + PIMU + PPU + PMemR + PMemW + PL1D + PL1P

Table 3: Complete power consumption model for C6416T DSP at F = 1000 MHz.

Functional unit Functional unit power consumption submodel

Clock distribution PClock Distribution = (0.0006F + 0.0574)×Vcore

IMU PIMU = (−0.0918α2 + 0.284α + 0.0603)(1− PSR) ·Vcore

Processing units PPU = (−0.0049β + 0.0065)(1− PSR) ·Vcore

Memory read PMem Read = (−2 · 10−6ε2 + 0.0012ε)(1− PSR) ·Vcore

Memory write PMem Write = (−10−5λ2 + 0.0049λ)(1− PSR) ·Vcore

L1D cache PL1D = (−2 · 10−5γ2 + 0.0041γ)(1− PSR) ·Vcore

L1P cache PL1P = 0.0011δ(1− PSR) ·Vcore

0.8

0.85

0.9

0.95

1

1.05

1.1

Po
w

er
(W

)

D
ot

P
12

8

FI
R

So
be

l
3
×

3

II
R

T
h

re
sh

ol
d

FF
T

16
×

16
r

H
is

to
gr

am

C
or

re
la

ti
on

3
×

3

Measured (W)
Estimated (W)

Figure 16: Estimated versus measured power consumption of the
C6416T at F = 1000 MHz.

affect the speed or the code size only and are not dedicated
to power optimization. The second step is to compile the
benchmarks.

The required parameters for the model are calculated
either statically from the generated assembly files or with the
aid of the CCS3.1 profiler for the parameters that cannot
be estimated statically such as the data cache miss rate.
For instance, the processing unit rate which is defined as
the average number of active processing units per cycle is
calculated from the assembly code. The parameter β is the
result of dividing the number of processing units (equals the
number of instructions excluding the NOP) by the number
of cycles per code iteration. Figure 16 presents the result of

6 inlier regions

Ideal
6 vertex grid

Scatterplot of plants

Crop guess

Inliers

Figure 17: Illustration of the plants scatter-plot.

the estimated power consumption versus the measured one
for the benchmarks listed in Table 4. The absolute average
estimation error is 1.65% while the worst is 3.3%.

Unlike almost all the benchmarks of Figure 16, the physi-
cally measured power consumption for the IIR benchmark
is higher than the estimated power. By investigating the
generated assembly code of the IIR benchmark from the
CCS3.1 we find that all the load and store operations inside
the loops are of operand size 32 bits unlike the case in

12 EURASIP Journal on Embedded Systems

Table 4: Benchmarks used for our experiments.

Benchmark Description

DotP128 Dot product of a vector of 128 16-bit elements

m100 Matrix multiplication for 2 100× 100 square matrices

FIR Computes a real FIR filter, Input data and filter taps are 16-bit

Sobel 3× 3 Apply Sobel filter of 3× 3 window to an image of 8192 pixels

Thresholding Performs a thresholding operation on an input image of 8192 pixels

Histogram Takes histogram of an image of 8192, 8-bit pixels

IIR
Performs an auto-regressive moving-average (ARMA) filter with 4
auto-regressive filter coefficients and 5 moving-average filter
coefficients

FFT16× 16
Performs a mixed radix forwards FFT using a special sequence of
coefficients

Correlation 3× 3
Performs a point by point multiplication of the 3× 3 mask with an
input image

12.09%

0.8%
10.23% 0.87%

76.01%

Clock distribution
IMU

PU

Internal memory

L1 data cache

Figure 18: Average functional units contribution to the processor
power consumption.

the other benchmarks; for example in the FFT 16× 16 all
the load and store instructions are of operand size 16 bit.
Refereing to Section 4, we indicated that the word length
of the instructions’ operand affects the power consumption
of almost all the functional blocks. Moreover, in Section 5
we stated that “in our proposed model we choose 16-bits
word length to be the typical word length.” Therefore the
estimated power in the IIR benchmark is slightly higher than
the physically measured power.

Moreover, we utilized a part of a real application,
bad weeds recognition, for validating our developed power
consumption model. The employed part of the application
is a restricted set exhaustive search algorithm named Elastic
Graph Model. Elastic Graph Model is a method for detecting
nearly regular located objects in images. It proceeds as
follows: any local maximum of the scatter plot is supposed
to represent the left upper node of the ideal six-vertex grid.
For any of the remaining five ideal grid nodes a subset of local
maxima is determined from the remaining local maxima in
the scatter plot. Hence, we obtain for any grid node a set of
candidates, the so called inliers, which lie within a certain

region around the ideal grid node. In Figure 17 these inliers
are highlighted in green. Thus, the number of hypotheses
for the elastic graph is any possible combination of inliers
for any node. Any of these hypotheses is evaluated by two
measures: the external energy, which represents the weight of
the six local maxima of the respective hypothesis indicated
in Figure 17 by thicker or thinner crosses and the internal
energy, which is a measure that accumulates the squared
error of the edge length between two hypothetical nodes (for
all seven edges) and the ideal edge length (which is one in the
usual case), also weighted by an edge weight (typically also
one for all edges).

The power-consumption of the Elastic Graph Matching
(EGM) algorithm is estimated with the aid of our proposed
power consumption model described in Section 2. The
estimated power consumption equals 1.0498 W while the
physically measured power consumption equals 1.061 W,
resulting in an estimation error of only 1%.

7. Conclusion

In this paper, we developed a precise functional level
estimation technique to estimate the power consumption
of the embedded software running on a programmable
processor. The commercial off-the-shelf VLIW DSP C6416T
from Texas Instruments is utilized as the targeted platform.
The inter-instructions as well as the pipeline stall effects have
been investigated in our proposed model. The validation
and precision of our model have been proven by estimating
the power consumption of many typical algorithms applied
in signal and image processing. We further validated the
precision of our developed model on a real application
applied in the video processing field. The power consump-
tion estimated by our model, is compared to the physically
measured power consumption, achieving a very low absolute
average estimation error of 1.65% and an absolute maximum
estimation error of only 3.3%.

Although our methodology for modeling the TI C6416T
VLIW processor power consumption is applicable for
other VLIW processors, for different targeted processor

EURASIP Journal on Embedded Systems 13

architecture we can reconsider the distinction of the
processor architecture into functional blocks as shown
in Figure 4. For example, if the new target architecture
includes a floating-point unit, Figure 4 has to be modified
by including a new functional block that represents the
floating-point unit together with the parameters affecting
its power consumption such as the access rate. Thus, as long
as the power consumption of the functional blocks remains
independent, our presented power estimation methodology
is intended to work equally on all VLIW architectures.

Furthermore, the proposed model allows us to figure
out the processor functional units that are dominantly
contributing to the power consumption. Figure 18 illustrates
the contribution percentages of the processor architectural
function blocks to the total power consumption of the
processor core. It is clear that the clock distribution is the
largest contributor while the processing unit is the smallest
contributor.

Finally, we have evaluated the global optimization levels
of the CCS as well as two specific architectural features of the
C6416T, namely, Software Pipelined Loop (SPLoop) and the
Single Instruction Multi Data (SIMD) from the perspective
of energy and power consumption [42, 43].

Acknowledgments

This work has been funded by the Christian Doppler
Laboratory for Design Methodology of Signal Processing
Algorithms as well as the COMET K-Project Embedded
Computer Vision (ECV) in conjunction with the Austrian
Institute of Technology (AIT).

References

[1] C. J. Bleakley, M. Casas-Sanchez, and J. Rizo-Morente,
“Software level power consumption models and power saving
techniques for embedded DSP processors,” Journal of Low
Power Electronics, vol. 2, no. 2, pp. 281–290, 2006.

[2] C. Brandolese, A codesign approach to software power estima-
tion for embedded systems, Ph.D. disseration, Politecnico di
Milano, Institute of Electronics and Information, 2000.

[3] C. X. Huang, B. Zhang, A. Deng, and B. Swirski, “Design
and implementation of PowerMill,” in Proceedings of the
International Symposium on Low Power Design (ISLPED ’95),
pp. 105–109, ACM, New York, NY, USA, April 1995.

[4] F. N. Najm, “Survey of power estimation techniques in VLSI
circuits,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 2, no. 4, pp. 446–455, 1994.

[5] S. Gupta and F. N. Najm, “Power macromodeling for high
level power estimation,” in Proceedings of the 34th Design
Automation Conference (DAC ’97), pp. 365–370, ACM, New
York, NY, USA, June 1997.

[6] T. Chou and K. Roy, “Accurate power estimation of CMOS
sequential circuits,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 4, no. 3, pp. 369–380, 1996.

[7] D. Marculescu, R. Marculescu, and M. Pedram, “Information
theoretic measures of energy consumption at register transfer
level,” in Proceedings of the International Symposium on Low
Power Design (ISLPED ’95), pp. 81–86, ACM, New York, NY,
USA, 1995.

[8] J. N. Rabaey and M. Pedram, Low Power Design Methodologies,
vol. 336 of The Springer International Series in Engineering and
Computer Science, 1996.

[9] S. Powell and E. M. Chau, “Estimating power dissipation of
VLSI signal processing chips: the PFA technique,” in VLSI
Signal Processing IV, pp. 250–259, 1990.

[10] N. Kumar, S. Katkoori, L. Rader, and R. Vemuri, “Profile-
driven behavioral synthesis for low-power VLSI systems,” IEEE
Design and Test of Computers, vol. 12, no. 3, pp. 70–84, 1995.

[11] D. Liu and C. Svensson, “Power consumption estimation in
CMOS VLSI chips,” IEEE Journal of Solid-State Circuits, vol.
29, no. 6, pp. 663–670, 1994.

[12] P. E. Landman and J. M. Rabaey, “Activity-sensitive architec-
tural power analysis for the control path,” in Proceedings of the
International Symposium on Low Power Design (ISLPED ’95),
pp. 93–98, ACM, New York, NY, USA, April 1995.

[13] H. Mehta, R. M. Owens, and M. J. Irwin, “Energy characteri-
zation based on clustering,” in Proceedings of the 33rd Annual
Design Automation Conference (DAC ’96), pp. 702–707, ACM,
New York, NY, USA, June 1996.

[14] Q. Wu, Q. Qiu, M. Pedram, and C.-S. Ding, “Cycle-accurate
macro-models for RT-level power analysis,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 6, no. 4, pp.
520–528, 1998.

[15] L. Benini, A. Bogliolo, M. Favalli, and G. De Micheli, “Regres-
sion models for behavioral power estimation,” Integrated
Computer-Aided Engineering, vol. 5, no. 2, pp. 95–106, 1998.

[16] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin,
“The design and use of simplepower: a cycle-accurate energy
estimation tool,” in Proceedings of the 37th conference on Design
Automation (DAC ’00), pp. 340–345, ACM, New York, NY,
USA, June 2000.

[17] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin et al.,
“Using complete machine simulation for software power
estimation: the softWatt approach,” in Proceedings of the
8th International Symposium on High-Performance Computer
Architecture (HPCA ’02), pp. 141–151, IEEE Computer Soci-
ety, Washington, DC, USA, February 2002.

[18] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework
for architectural-level power analysis and optimizations,”
SIGARCH Computer Architecture News, vol. 28, no. 2, pp. 83–
94, 2000.

[19] M. B. Kamble and K. Ghose, “Analytical energy dissipation
models for low power caches,” in Proceedings of the Inter-
national Symposium on Low Power Electronics and Design
(ISLPED ’97), pp. 143–148, ACM, New York, NY, USA, August
1997.

[20] D. Burger and T. M. Austin, “The simplescalar tool set, version
2.0,” SIGARCH Computer Architecture News, vol. 25, no. 3, pp.
13–25, 1997.

[21] M. Pedram, Power Aware Design Methodologies, edited by J.
M. Rabaey, Norwell, Mass, USA, Kluwer Academic Publishers,
2002.

[22] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded
software: a first step towards software power minimization,”
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 2, no. 4, pp. 437–445, 1994.

[23] S. Nikolaidis, N. Kavvadias, P. Neofotistos, K. Kosmatopoulos,
T. Laopoulos, and L. Bisdounis, “Instrumentation set-up
for instruction level power modeling,” in Proceedings of the
12th International Workshop on Power and Timing Modeling,
Optimization and Simulation (PATMOS ’02), pp. 71–80,
Springer, London, UK, 2002.

14 EURASIP Journal on Embedded Systems

[24] S. Nikolaidis, N. Kavvadias, T. Laopoulos, L. Bisdounis, and
S. Blionas, “Instruction level energy modeling for pipelined
processors,” Journal of Embedded Computing, vol. 1, no. 3, pp.
317–324, 2005.

[25] B. Klass, D. E. Thomas, H. Schmit, and D. F. Nagle, “Modeling
inter-instruction energy effects in a digital signal processor,” in
Proceedings of the Power Driven Microarchitecture Workshop in
Conjunction with International Syymposism Computer Archi-
tecture, June 1998.

[26] A. Sama, J. F. M. Theeuwen, and M. Balakrishnan, “Speeding
up power estimation of embedded software,” in Proceedings
of the International Symposium on Low Power Electronics and
Design (ISLPED ’00), pp. 191–196, ACM, New York, NY, USA,
2000.

[27] J. T. Russell and M. F. Jacome, “Software power estimation
and optimization for high performance, 32-bit embedded
processors,” in Proceedings of the IEEE International Conference
on Computer Design (ICCD ’98), pp. 328–333, IEEE Computer
Society, Washington, DC, USA, October 1998.

[28] H. Mehta, R. M. Owens, and M. J. Irwin, “Instruction level
power profiling,” in Proceedings of the International Conference
of Acoustics, Speech, and Signal Processing (ICASSP ’96), pp.
3326–3329, IEEE Computer Society, Washington, DC, USA,
1996.

[29] V. Steven, R. Gentile, D. R. Kaeli, and G. Olivadoti, “Devel-
oping energy-aware strategies for the blackfin processor,” in
Proceedings of the High Performance Embedded Computing
(HPEC ’04), Septemper 2004.

[30] M. Sami, D. Sciuto, C. Silvano, and V. Zaccaria, “An
instruction-level energy model for embedded VLIW archi-
tectures,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 21, no. 9, pp. 998–1010,
2002.

[31] M. Balakrishnan, “Low Power Design,” Lectures, 2008, http://
embedded.cse.iitd.ernet.in/homepage/course/low power/ind-
ex.shtml.

[32] J. Laurent, E. Senn, N. Julien, and E. Martin, “High level
energy estimation for DSP systems,” in Proceedings Interna-
tional Workshop on Power And TimingModeling and Optimiza-
tion and Simulation (PATMOS ’01), pp. 311–316, September
2001.

[33] E. Senn, N. Julien, J. Laurent, and E. Martin, “Power
consumption estimation of a C program for data-intensive
applications,” in Proceedings of the 12th InternationalWorkshop
on Integrated Circuit Design. Power and Timing Modeling,
Optimization and Simulation (PATMOS’02), pp. 332–341,
Springer, London, UK, 2002.

[34] E. Senn, J. Laurent, N. Julien, and E. Martin, “SoftExplorer:
estimating and optimizing the power and energy consumption
of a C program for DSP applications,” EURASIP Journal on
Applied Signal Processing, vol. 2005, no. 16, pp. 2641–2654,
2005.

[35] “SoftExplorer: Processors Power Estimation Tool,” http://
portal.acm.org/citation.cfm?id=1287311.

[36] M. Schneider, H. Blume, and T. G. Noll, “Power estimation
on functional level for programmable processors,” Journal of
Advances in Radio Science, vol. 2, pp. 215–219, 2005.

[37] Texas Instruments Inc., “TMS320C6416T, Fixed Point Digital
Signal Processor, Datasheet,” SPRS226J, November 2003,
http://www.ti.com.

[38] Agilent Technologies Inc., “Agilent 34410A Digital Multi-
meter, Datasheet,” 5989-3738EN, October 2007, http://www
.home.agilent.com/agilent/product.jspx?pn=34410A.

[39] N. R. Draper and H. Smith, Applied Regression Analysis, Wiley
Series in Probability and Mathematical Statistics, John Wiley
& Sons, New York, NY, USA, 2nd edition, 1981.

[40] Texas Instruments Inc., “TMS320C6416T, Technical Over-
view,” SPRU395B, January 2001, http://www.ti.com.

[41] M. E. A. Ibrahim, M. Rupp, and H. A. H. Fahmy, “Power
estimation methodology for VLIW digital signal Processor,”
in Proceedings of the Conference on Signals, Systems and
Computers (SSC ’08), pp. 1840–1844, IEEE Computer Society,
Asilomar, Calif, USA, October 2008.

[42] M. E. A. Ibrahim, M. Rupp, and S. E.-D. Habib, “Compiler-
based optimizations impact on embedded software power
consumption,” in Proceedings of the IEEE Joint North-East
Workshop on Circuits and Systems and TAISA Conference
(NEWCAS-TAISA ’09), pp. 247–250, IEEE, Toulouse, France,
June 2009.

[43] M. E. A. Ibrahim, M. Rupp, and S. E.-D. Habib, “Performance
and power consumption trade-offs for a VLIW DSP,” in
Proceedings of the IEEE International Symposium on Signals,
Circuits and systems (ISSCS ’09), pp. 179–200, IEEE, Iasi,
Romania, July 2009.

	1. Introduction
	2. Related Work
	2.1. Low-Level Estimation Techniques
	2.1.1. Transistor-Level Estimations
	2.1.2. Gate-Level Estimations
	2.1.3. RT-Level Estimations
	2.1.4. Architectural-Level Estimations

	2.2. High-Level Estimation Techniques
	2.2.1. Instruction Level Power Analysis
	2.2.2. Function Level Power Analysis

	3. Target Architecture
	4.Methodology
	5. C6416T Power Consumption Model
	5.1. Static and Clock Distribution Power Consumption Submodel
	5.2. IMU Power Consumption Submodel
	5.3. PU Power Consumption SubModel
	5.4. Internal Memory Power Consumption SubModel
	5.5. L1 Data Cache Power Consumption SubModel
	5.6. L1 Program Cache Power Consumption SubModel

	6.Model Validation
	7. Conclusion
	Acknowledgments
	References

