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Wireless Sensor Networks (WSNs) consist of spatially distributed autonomous sensors to cooperatively monitor physical
conditions. Thus, the node battery autonomy is critical. To outperform it, most WSNs rely on the harvesting capability. As nodes
can recharge whenever energy is available, the problem is to determine at design time the node autonomy. For our project, we
solve it by creating a power/energy estimator that simulates business scenarios to predict node autonomy; the estimation concerns
both power and energy features. Based on node architecture configuration, its Dynamic Power Management (DPM) policy, and
environmental conditions, we present a simulator that helps identify power consumption hot spots and make critical choices
during the system design. It also helps to scale the energy storage system as well as the energy harvesters correctly. The hardware
part is modelled using the FLPA methodology to develop different node component models with a variable accuracy. For the
logical part, we developped a specific DPM by integrating meteorology and weather forecast behaviours. The novelty comes from
the ability to simulate the WSN harvesting capability and to estimate at runtime the remaining duration of each service.

1. Introduction

Wireless Sensor Networks (WSNs) consist of spatially
distributed autonomous sensors to cooperatively monitor
physical or environmental conditions [1]. Their target
applications are very wide and cover both civil and military
domains. Application contexts are various, for example,
they can be used in home for earthquake detection, home
automation [2], or in the field of automation for parking
guidance [3]. The industrial field uses them for mon-
itoring environment (temperature, pressure, hygrometry,
luminosity, etc.), while they are used in the environmental
field for UV, radioactivity, pollutants, heavy metals, ozone,
greenhouse gas, fire surveillance, and high-precision agri-
culture. The health domain used them for followup patient
healthcare [4], the security domain for area or perimeter
surveillance, and the field of transportation for automation
and accident prevention. In the military domain, WSNs
are used in electronic warfare for recognition of troop
movement, equipment, and battlefield recognition. They
are also used for menace detection of chemical, biological,

nuclear radiation, and for weapon guidance of tactical
missiles. However, probably in all domains, the potential of
WSNss has not been yet fully explored.

The recent enhancements made on new wireless radio fre-
quency transmitters/receivers as well as technology advances
has brought about several advantages, such as the reduction
of the component size and the power consumption. This
implies that devices can be more compact, lowcost, and light
weight for environment portability [5]. Consequently, nodes
aim to achieve maximum autonomy, and this directly relies
on the energy storage system [6]. Therefore, global system
lifetime and battery autonomy are critical (i).

As WSNss are dispersed in the environment, they must be
autonomous. To increase lifetime, most WSNs rely on their
harvesting capabilities, which consist of collecting energy
from ambient power sources [7-10]. This solution benefits
from “free” environmental energy according to the “green”
philosophy, which is to reduce the carbon footprint and
to improve reliability of power supply automations. A key
feature for evolving in a multisource environmental context
is to be adaptive (ii).



In WSNs, the power is supplied by an adapted energy
storage system [6], like a battery and/or a supercapacitor
[11], to handle ambient power. Recharging capability can be
serviced by using single or multiple harvesting sources [9,
10]. Harvesting devices range from solar panels [12], wind
generators [10] to vibration scavengers [13], and all other
devices using a potential energy difference. These devices can
provide additional energy to the system, at different energy
scales (nW, mW, W), but globally speaking, each source
depends on the geographical and environment situation.
Thus, the ambient energy profile is highly variable (iii).

Solutions are under development to solve these prob-
lems. Currently, Low Power (LP) design can be used from
the beginning and during the entire development process.
It is first used to exploit power reduction/optimization
techniques to increase system lifetime. This approach is
generally classified as Static Power Management because
it is performed at design time. Secondly, LP is used to
adapt the system behaviour to the environment, variable by
nature. This is done by using a Dynamic Power Management
(DPM) [14].

Static Power Management can be applied at different
layers and on different system subparts. Research explores
battery storage systems [6], energy harvesting systems [15],
power converters [16], processor units [17], system-level
scheduling [18], and other power management opportu-
nities. For hardware components, a difficulty is to extract
significant high-level criteria to characterize the power
features of the hardware configuration (iv).

DPM defines a Power Manager to adapt the system
behaviour by using different power modes, or by varying the
frequency and/or voltage, to dynamically adjust to the system
requirements in performance and power consumption. A
power manager uses a control procedure based on real
measurements or assumptions of the system loads. This
procedure is called a policy, and it is responsible for applying
the Power Management Strategy (PMS) (v).

At this step, we can notice that the energy storage system
is, from (i), crucial because it handles energy storage and the
on-demand supply current. Secondly, the ambient energy is
heavily coupled with the environment which is, from (iii),
very variable. Low-power approach can be implemented at
several levels: at the component granularity level, power
management depends on the available power opportunities
on the (iv) hardware configuration. At the logical level, DPM
defines a strategy (v) to adjust power modes: Idle, Sleep, and
Dynamic Frequency Voltage Scaling (DVES) in real-time (ii)
depending on the application tradeoff requirement between
performance and power consumption.

For the “CAPNET” project, we must handle realistic
business scenarios for the fire brigade of Brest, France. The
project goal is to evaluate the gain of migrating from a wired
solution to a wireless one. This is why the team must create a
software simulator and a hardware demonstrator. The system
is an autonomous wireless sensor network prototype using
multiple energy harvesting capabilities with a predictive
DPM.

Our contribution is to specify and implement an “esti-
mator” able to play and record business scenarios to estimate
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both the power consumption and the autonomy of the nodes.
This software will help in evaluating hardware choices by
estimating the impact of some component parameters on the
power consumption, help in the scale of the battery system
and the harvesters accordingly, and help in optimizing the
PMS to finely tune the DPM [14]. The key enhancement is
to propose an environment prediction model using meteo-
rology to simulate harvesting capability during a scenario.
At real-time, integrating weather forecasts (WFs) enable us
to predict the remaining node autonm for different DPM
services. Therefore, the supervisor user can decide to take
control to change the behaviour of a particular node.

To realize the simulator, the approach is to use the
Functional Level Power Analysis (FLPA) methodology [19].
The method permits the extraction, characterisation, and
validation of the power model for each unit of the hardware
configuration. One major advantage is the model adaptive
accuracy which consists of adapting models from generic
to complex ones based on physical hardware experiments.
Simulation can be processed with more accurate models
depending on the required error, accuracy, time, cost, or
choices made for the project. This work will help calibrate
the production of real-world well-scaled WSNs [2].

The paper is organized as follows: in Section 2, we
will present the CAPNET project. In Section 3, we will
describe the state-of-the-art about power estimation tools.
In Section 4, we will describe the modelling approach and
the methodology used to create the WSNs node models. In
Section 5, we will detail the power and energy Estimator
functional behaviour and its capabilities. In Section 6, we
will show model characterisations and results. In Section 7,
we will experiment a business scenario to estimate the
CAPNET node autonomy, after which we will conclude the

paper.

2. The CAPNET Project

CAPNET is an autonomous wireless sensor network pro-
totype using multiple energy harvesting capabilities. Its
objective is to study and implement a simulator and a
demonstrator that show the interest of the wireless approach
over the wired one. The project is expected to reduce the
cost by a factor of ten over the previous technology. Nodes
must support a recharging feature by harvesting multiple
environmental power sources. The specification includes
special aspects such as an integrated alert system able to
warn a supervisor in less than one second. The WSN uses
a linear topology ranging from 100 metres to 2 kilometres.
Each node communicates from/to direct neighbours. The
nodes are spaced at intervals of 100 metres and support a
bidirectional data transport protocol. If a node presents a
dysfunction, the system is able to detect and reconfigure itself
to automatically skip one (or up to two) dysfunctional nodes.
The detection occurs when a timeout is triggered due to an
unresponding node. Then, the node increases the amplifier
range to reach the next node distance. WFs are transmitted
to the nodes in order to switch the battery charger to the
maximal available power source. WFs can also inform the
supervisor of the remaining node lifetime for each DPM
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Figure 1: CAPNET topology.

service. We have integrated the WF into the specific DPM
called the WE-DPM.

2.1. Applications. The network topology is linear as shown
in Figure 1. This topology has been selected due to the
project applications. This choice guarantees an optimized
alert timing for all the nodes from the farthest to the nearest.

The system must handle various applications like fire
services, frontier and perimeter surveillance, (water, gas,
and petrol) network monitoring, environment observation
(earthquake, water overflow, and meteorology), automatic
meter reading, road network surveillance, industrial control
command. Customers provide representative use case sce-
narios corresponding to each application. The representative
scenario presented here has been established in cooperation
with the fire brigade of Brest, France.

2.2. Scenario. A problem appears on a carrier transporting
highly dangerous freight. A fire brigade must help the carrier
docked at the port of Brest, France. Products are flammable
and can reject toxic gas into the town atmosphere. It is very
threatening due to the presence of heat, toxic, or explosive gas
thus presenting a risk of explosion. To monitor and prevent
the risks, a secure perimeter is defined in an area range of
300 to 500 metres. All people entering this perimeter send
an alert signal to the supervisor who can view snapshots or
video of the scene. The WSN equipment is deployed in the
area in a circle layout. This is to intercept the gas, so as to
avoid spreading. For this mission, nodes embed traditional
meteorology sensors and also special gas detectors, a toxicity
meter, and for special nodes a thermal camera to track
hotpoints. The system must be able to work continuously
outside and in all types of weather.

2.3. Contributions. In this project, our work is to specify and
realize a power and energy estimator that will permit the
playback of real-case scenarios. Our needs are to predict the
remaining node autonomy with harvesting capability. But
estimating the power peaks is also necessary for the battery
model accuracy. The simulator results provide the total node

autonomy and the different energy consumption for different
groups of internal components. Moreover, by integrating WF
into the DPM, we can predict the Ambient Potential Power
Value (APPV) and then give the maximal time duration
per service. Therefore, the simulator can estimate the power
and energy consumption for each component according
to their control attributes, the weather environment, the
energy provision, the temperature degradation, and the
power management strategy (PMS).

To do this, we use a modelling approach by applying
the FLPA methodology (see Section 4.1). First, we establish
the global node power model that describes the entire
simulator (see Section 4.2). Secondly, we define a PMS which
can switch the power source depending on WF predictions
(see Section 4.3). Then, we build different models based on
real power consumption measurements for each device (see
Section 4.4). Finally, we build the estimator able to playback
the scenarios and give the total energy consumption per
node (see Section 5). When manufacturers build the final
hardware demonstrator, we will be able to compare the
absolute error between the simulator and the demonstrator.
This will give us feedback on the behaviours of the real WSNs
and the simulated WSNs to be able to enhance models if
required to better fit to the reality.

Before beginning, we will go over the state-of-the-art of
WSN power estimation tools.

3. State-of-the-Art

Low-power design could be applied at several levels in
electronics and WSNs. Some books are good starts for
understanding low power methodology [20], system-level
optimizations [21], and algorithms for power saving [22].
If we focus more particularly on WSNs, interesting research
works have detailed specific techniques. We could cite battery
modelling [23], Maximum Power Point Tracking (MPPT)
optimization [16], DPM [14], vibration harvesters [13], and
network modelling [24] to design a WSN [2, 25]. All these
technological headways are coupled with constant new WSN
prototypes. We present in this section, some interesting
WSNSs, focussing our attention on their features.

Heliomote [8] has a solar panel and two AA Ni-
MH batteries for a 3V current output. Its Solar panel is
directly connected to its battery through a diode, so energy
harvesting starts after the solar output is higher than 0.7V
than the battery voltage. Heliomote does not perform MPPT
to achieve better harvesting efficiency. Consequently, the
solar panel is voluminous to obtain a higher voltage than
the battery. Heliomote uses an ATmega 128 L with a Chipcon
868/916 Mhz transceiver.

Prometheus [7] uses a solar panel to charge a 22F
supercapacitor from which the system draws current when
there is enough power. The system uses the secondary buffer
Li-Polymer battery when the charge of the supercapacitor
is lower than a threshold. Also, when the supercapacitor is
higher than a given threshold, it charges the battery. How-
ever, like Heliomote, the solar panel is directly hardwired to
the supercapacitor and does not harvest energy efficiency. All
control tasks are run on a MSP430 MCU. Prometheus TelosB



uses a TI MSP430 with a Chipcon 2240 2.4 Ghz Wireless
transceiver. Prometheus power consumption is estimated
ranging from 205 yW at 1% duty cyle and 20 mA at 100%.

Everlast [11] has only a solar panel and a supercapacitor,
but no battery. Thus, it does not suffer from battery
degradation. It embeds an MPPT circuit for optimal power
harvesting that charges a 100F supercapacitor. However, it
requires MCU to perform the MPPT algorithm calculation.
Everlast uses a PIC16LF747 coupled with a Nordic nRF2401
2.4 Ghz Transceiver. Everlast power consumption is 0.68 mW
in minimum mode and 52.4 mW in maximum mode.

PUMA [9] has multiple power sources. It uses a power
routing technique to harvest simultaneous multiple power
sources. The high energy harvesting is achieved with a com-
bination of MPPT and power defragmentation. However, it
requires MCU control based on input from light and wind
sensors. PUMA uses a PIC18F6680 with a wireless 802.11b
card. Duranode consumption is 0.5W in minimum mode
and reaches 2 W in maximum mode.

AmbiMax [10] is a multiple harvester system with solar
and wind experiments. It includes MPPT tracking using
an hysteresis comparator coupled with an additional sensor
to hardware calculated MPPT. The harvested power is sent
to a boost regulator before charging a Li-Polymer battery.
Ambimax charges 12.5 times faster even at lower supply
levels, where previous techniques stop. Ambimax uses a
MCU8051 and an integrated 2.4 Ghz Radio. Its power
consumption is less than 200 mW.

PicoCube [5] is the smallest WSN known. It is a 1 cm?
sensor node powered by harvested energy. It uses a MSP430-
F1222 with a FBAR custom RF transceiver, the power
consumption is 6 4W in mean and reaches 6 mW when
transmitting. More WSNs with their technical features are
referenced at [26].

Now, if we examine available tools, there are several
power consumption platforms which can analyze systems at
specific power levels [27]. As can be seen in Table 1, some
tools can predict the power consumption of microprocessors,
while others can predict the overhead of an embedded OS.
We have not included the works about WSNs simulation
which mainly simulate network consumption by RF proto-
col, transport, and so forth. The reason for this is that in this
project, the RF simulation has been given to a partner lab.

Our need is to predict the remaining node autonomy
with harvesting capability. In Table 1, most of the tools
focus on particular microprocessors [30-32] or hardware
platforms and do not consider the entire node [30-32, 34,
36]. Building the whole simulation from scratch at transistor
level with SPICE [28] would be definitely a hard job. Also,
most WSNs include a DPM which must command/control
power modes, shutdown devices, apply tasks scheduling,
and so forth. Actually, most tools do not model the DPM
behaviour and are more hardware oriented [37, 38]. New
research projects are trying to model the WSNs in the whole
by using macromodelling [39], but these modelling concerns
simple WSNs. Another discrete-time analysis framework
[40] and advanced commercial low-power synthesis tool [35]
exist, but these tools are not adapted to model harvesting
WSNs.
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TaBLE 1: Power estimation tools.

Power tool Platform Analysis level
SPICE [28] General-purposes PCB/Transistor
circuit design
Simbed [29] Motorola M-CORE Architectural
platforms
Skyeye [30] MIPS platform Instruction
eSimu [31] ARMO platform Instruction
EMSIM [32] StrongARM platform Instruction

Softwatt [33] Embra, Mipsy, MXS 0s
platforms
powerTOSSIM TinyOS simulator on 0s
[34] Mica2
Low-power system .
OS] e G i
P to VerilogRTL
SoftExplorer CPU power Functional
[36] Estimation tool +instruction
Interconnect Interconnections tool Architectural
Explorer [37]
CAT [38] Power estimation All

platform

Thus, to simulate an entire WSNs node, we must
care about other internal node components like DC/DC,
harvesters, microprocessors, radio, or sensors but also the
environment and the DPM policy. And currently, none of the
tools responds completely to our needs. This is why we want
to develop a generic tool which can include specific models
into a single estimator.

A generic WSNs power estimator is required to verify
if some choices are relevant and contribute to system
consistency. Recording and replaying scenarios permit to
experiment consumption evolution by varying some param-
eters of the model. Although some components have already
been chosen and can clearly be measured to provide an
accurate model, other components are not, and we must rely
on generic models. Consequently, the two approaches must
be considered depending on the components which have
been selected. The global modelling approach is described in
the next section.

4. Modelling Approach

We make the assumption that all nodes can be modelled
independently. We use a decomposition approach that
divides each element of the system. Thus, we assume that a
node is decomposed into several internal components. We
apply an existing methodology to model elements of the
WSNss node architecture, called the FLPA methodology.

4.1. FLPA Methodology. The Functional Level Power Analysis
(FLPA) methodology [19] can be adapted to any component
and has already been successfully applied to extract processor
[41] and FPGA [42] power consumption models. This
methodology is based on physical measurements in order to
guarantee realistic values with good accuracy.
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TABLE 2: Scenario model example.
Name Nature Type Start Period Dur. Rep.
Gas measurement Auto Periodic 2 10 min 2s 500x
Measures
Intrusion area event Ale-trrn Periodic 1 300 min 10s 32x
Nivl
Intrusion confirmation Ala.lrm Periodic 3 2 hours 4s 10x
Niv2
The FLPA methodology has four main parts, which are TasLE 3: RF model example.
given below. - -
Time Supervisor Node 1 Node 2 Node X
(1) A primary functional analysis describes the system 0 Tx_ReqData
as a grey box with high-level parameters having an 1 Rx_ReqData
effective impact on the power consumption. 0 Tx ACK Rx_reqData
(2) The power characterisation step explains the power 3 Rx.ACK  Tx_Measures  Tx.ACK

consumption behaviour (obtained by physical mea-
surements) when each parameter varies indepen-
dently.

(3) Then, the complete power model is created with a
curve fitting or regression approach; it expresses the
overall power consumption variations related to all
the parameters.

(4) Finally, the model accuracy is estimated from a new
measurement set which provides the absolute error.

With this methodology, it can take less than a month
to build a power model of a complex processor. At project
startup, all components or decisions have not been validated
yet, so we define a variable accuracy granularity depending
on project advancement. Thus, model accuracy evolves
during project maturation by evaluating the cost to develop
a more accurate model. Two cases are used.

(i) If the physical element is not available, we search
for an existing model (datasheet, analytical law, etc.).
Then, we build a generic model which is integrated
into the simulator.

(ii) If the physical element is available, we proceed with
the FLPA methodology to extract an efficient model.

4.2. Global Node Power Model. We start by defining, in
Figure 2, what will be the global node model.

The node model is composed of two layers: the logical
and the hardware layer. Both are tightly coupled and are
synchronized to work together. This model defines multiple
models for the DPM and the hardware configuration.

4.3. The Logical Layer Power Model. The logical level defines
the node environment as several external models: scenario
events, RF events, meteorology, and weather forecast models.
The DPM model describes the energetic strategy developed
on the node.

4.3.1. Scenarios. In Table 2, scenarios are composed of rule-
based events which control the entire sequence. Event

Rx_reqData

signals define the start time, the duration, the periodicity
for periodic events, and the numbers of repetitions. This
produces a signal that characterizes an event context like
a sensor notification or other particular behaviour (fire
explosion, secure area intrusion, etc.). Events are consumed
by the DPM which verifies the rules at each discrete time and
consequently performs the corresponding actions. Basically,
the DPM impacts the devices and changes their model values
on the fly.

4.3.2. RF Events. The RF model describes the communi-
cation protocol as a set of RF events. Events define the
incoming and outcoming packets exchanged by the node.
The RF model is provided by our partners working on the
RF modules and the RF simulation. Table 3 presents the RF
matrix model. Here, the time resolution is in milliseconds.
The energy is estimated by cumulating over a one-second
period the time spent in each modes (RX, TX, Sleep, or OFF)
with their equivalent power model attributes. The model will
be refined when the RF partner transmits the final model.

4.3.3. Meteorology. Since energy is scavenged from the
environment, the node model must include a model for
each power source type. These environmental sources can
be provided in multiple ways including solar, wind, thermal,
radio, vibrations, and mechanical constraints. Currently,
CAPNET focuses on solar, wind, and thermal power sources.
Meteorology context is constructed with the Meteo-builder
integrated with the simulator. The context can be created
manually, scanned from a website, or extracted from a
meteorology file recorded day after day. The Table 4 presents
a model example for the city of Lorient, France.

With Date/Time: the timestamp, T: the temperature
(in°C), Wir: the wind direction (in®), Wipq: the wind speed
(in Km/h), R: the rain measurement (in mm), H: the
humidity degree (in %), P: the atmospheric pressure (in
hPa), and S: the sunset irradiance (in W/m?).
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TABLE 4: Meteorology model example.

Date/time T Wdir Wspd R H P S

30/06/2010 11:00 19 262 10 0 74 1022 229
30/06/2010 14:00 22 251 10 0 66 1021 228
30/06/2010 17:00 22 241 15 0 64 1020 275
30/06/2010 20:00 21 241 15 0 67 1019 45
Date/time; — — — — — — —

Scenarios
events

Meteorology
sun, wind, T°

Weather
forecasts

I J

I I I

L

[ CPU + RAM] [ Sensors ][ RF radio J[ Harvesters ][

Energy J

Power
supply storage

FiGUure 2: The CAPNET node model.

4.3.4. Weather Forecasts. The particularity of this project is
the modelling of not only the meteorology but also the
environment by exploiting WE. As meteorology forecasters
have already done heavy, intensive computation to predict
the weather, we reuse standard models provided by GFS runs
[43], and Meteo-France runs [44]. Therefore, the error of
these models is propagated directly from the predictions.
This model particularity comes from the real-time update
of the data models and their granularity. The node power
management strategy can use these predictions on 7-day
forward moving windows and combines backward windows
based on real weather measurements. The WF model is
similar to the Meteorological one, but with forward time
stamps.

4.3.5. DPM. The DPM policy controls the different power
states enabled for the system. This model is not the micropro-
cessor program but mainly a subset from the energy/power
point of view. The DPM has been modelled as a Finite State
Machine (FSM) composed of a set of states and transitions.
Each state represents a particular system consumption state
(IDLE, Sensorl Active and Sensor2 inactive, etc.).

This DPM model introduces the capacity to exploit the
WF model. The nodes have the ability to switch their power
source to the most advantageous energy microsource. The
system uses a hardware node power switch like DuraNode
[45], but here, WFs are used to determine which power
harvesting source will have the highest energy availability.
WFs can also be used to deactivate devices, like the camera,

if the energy level required is too low and the WFs do not
predict enough ambient energy.

The DPM process works as follows: DPM process starts
by reading external information: scenario and RF events,
which act as stimulus on it. They update DPM control
parameters and configuration device states. Then, the DPM
combines current state, power status indicators, and weather
forecasts predictions to decide transitions to another power
state. Each power state defines a functional power mode
to apply to components: CPU modes, frequency, clock
gating, shutdown, RF amplification level, and so forth.
Thus, the DPM updates configuration parameters before the
estimation of the new hardware model values.

The DPM shown in Figure 3 defines the power manage-
ment strategy for person detection in the intervention area.

After initialization, the system enters the Sleep processor
state; only Sensorl is active. When Sensorl generates an
alarm, Sensor2 is powered up to verify the information. If
Sensor2 confirms the alarm, an alert is sent to the supervisor.
The supervisor can decide to power up special devices or to
start the camera mode to take a video of the scene. The video
is in fact several JPEG snapshots taken one by one and sent to
the supervisor. In intervention, the supervisor can decide to
stop or power down devices on demand. When both alarms
are, stopped the system returns to Sleep mode.

The DPM service duration estimation method is done by
underlining paths in the DPM.

Here, we can extract four main paths corresponding to a
service. The system’s Sleep mode is the first service with no
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ALl

Sleep

Sensor 1: On
Sensor 2: Off
Camera: Off

Stop sensor 2
Sensor 1: On
Sensor 2: Off
Camera: Off

ALl and AL2

Stop camera

Sensor 1: On
Sensor 2: On
Camera: Off

ALI and AL2

Sensor 2 wake
Sensor 1: On
Sensor 2: On
Camera: Off

Wait AL1/2
Sensor 1: On
Sensor 2: On
Camera: Off

Wait AL1/2

Sensor 1: On
Sensor 2: On
Camera: Idle

AL2 and
Lvl_Battery > LowBat

Snapshot

AL2 and
Lvl_Battery < LowBat

Sensor 1: On
Sensor 2: On
Camera: On

Send image

Sensor 1: On
Sensor 2: On
Camera: On

End transmission

F1GURe 3: The CAPNET DPM model.

activity. The second service is S2Verif; in this path, the system
detects an alarm with the Sensor1. This wakes Sensor2 up but
Sensor2 does not detect a problem. So, after a certain amount
of time, the system goes back to Sleep mode.

In the third service, Sensorl detects an alarm and wakes
up Sensor2. Sensor2 detects an alert and sends an alarm level
2. If the battery is under the low state threshold, the system
enters into the S2LowBat service, sending alarms and waiting
for alarm releases.

Finally, the fourth service is the same as the third service
except that the battery is above the low state threshold. Then,
the camera is turned on, and the system takes a snapshot,
sends it to the supervisor, and enters into a waiting state.
Depending if the supervisor has activated the SuPervisor
Video Request (SPVR), the node can send a video by entering
a loop. Waiting stops when the supervisor confirms the off
state, and both sensors have been released. The system then
switches the camera and sensors off before returning to the
Sleep mode.

The service duration S; can be expressed as

Bat with Pt: task power in W,

T —
Coe Z?:l Pt; - Tt;

and Tt: task duration in s,

(1)
n with S;: service duration in s,
Sa = Coef.th,- o
0 and Tt: task duration in s.

For example, by taking a 12V, 2A'h, 86400 Joules Battery
Pt; = 0.3, Pt, = 0.653, Pt; = 0.653, Pty = 0.353, Pts = 1.2,
Pt¢ = 1.4, Pt; = 1.2, Ptg = 0.653 in Wattand T1 = T2 =
T3=T4=T5=T6 =T7 = T8 = 1 second, we have

(i) Sleep: 0.300 - T'1 = Sleep maximal duration is 80 h.

Power dispatcher

N :
ST " ~, Radio(s) RF
MCU/CPU |; Coprocessor 1 | .
controller |i (ASIC-DSP) !
Sensor 2 |-+ . /

Battery/
super-
capacitor

@ L [ Power supply
T T T

[Harvester 1] [Harvester 2] [Harvester 3]

FiGURE 4: The CAPNET hardware node model.

(ii) S2Verif: 0.300 - T'1 + 0.653 - T2 = S2Verif maximal
duration is 50 h.

(iii) S2LowBat: 0.300- T1+0.653 - T2+0.653 - T3+0.353 -
T4 > S2LowBat maximal duration is 49 h.

(iv) Video: 0.300- T140.653- T2+(1.2- T5+1.4-T6+1.2-
T7). NbSnapshots +0.653 - T8 + 0.353 - T4 = Video
maximal duration is 18.94 h with 22736 snapshots.

The supervisor can take control of the node whenever
they want, forcing it to use a special service. With these report
indicators, they are alerted of the maximum service duration
and can take adapted decisions.

4.4. The Hardware Configuration Power Model. The hard-
ware model is basically extracted from the main system
hardware components. Figure4 shows a hardware node
composed of control units, a storage energy system, a sensor



set, a harvester set, power supply converters, and radio
transceivers.

From this, the FLPA methodology is applied to each
component. This helps the designer to define high-level
parameters that characterize the power consumption and
decrease the complexity by splitting the node into elements.
Each model parameter is initialized in the configuration
according to the respective datasheets and the simulation
requirements.

4.4.1. Sensors. Each sensor uses specific power modes, power
supply, and quality of service parameters, which are modeled
and controlled by the power management. However, some-
times real measurements could reveal datasheet distortions
due to a mean function or different experimental conditions.
Therefore, datasheet models must be validated before using
them. At runtime, the node can also integrate models and,
therefore, must be adapted to run on a specific platform.
For example, some complex models cannot be evaluated on
a low-performance microcontroller because of RAM size or
performance constraints. This is why most models must be
adapted dynamically with FLPA if they are integrated into
the final platform.

4.4.2. Harvesters. Each harvester system is principally mod-
elled by determining a standard I-V characterization (inten-
sity versus voltage); therefore extracting the maximal P-V
curves (power versus voltage) point law associated to it. Thus,
a Maximum Power Point Tracking (MPPT) could provide
the best power adjustment [16] for the harvesting device.
Harvesters input parameters are supplied by the meteorology
model.

4.4.3. Microprocessor/RAM. Microprocessors often offer low
power modes or a Dynamic Frequency and Voltage Scaling
(DVES) ability [46]. Microprocessor model is obtained
by using FLPA measurement methodology on real chips
programmed to play the DPM. The CPU model defines
multiple power levels (Normal, Idle, Sleep, and Doze modes)
and switches between power modes depending on the DPM
activity. If a more complex CPU model is required, we can
use the SoftExplorer [36] tool to extract more accurate model
coefficients. If external RAM is present, the model has the
ability to shutdown the RAM when in low-power mode. An
enhancement could be to include OS task scheduling activity
for applying DVES.

4.4.4. Radio Modules. Statistically, the radio device is the
most power-hungry component. The entire power consump-
tion modelling is delegated to RF experts of a partner
laboratory. Radio is modelled using their different power
states and activity (RX, TX, Forward, idle, sleep, etc.). Power
modes and timings are integrated as input values in the
simulator. Of course, RF Scenarios and PE scenarios must be
synchronized to describe the same reality.

4.4.5. Power Supply/Power Dispatcher. The goal of the power
supply unit is to store energy harvested from the environ-
ment into the battery. The power dispatcher splits system
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power supply into several voltages for each component
specification. Both use mainly DC/DC converters to step
down or step up the voltage to provide regulated voltage.
Converter efficiency is variable, and low leakage current can
appear. It depends on the manufacturer, the temperature, the
input voltage, and the output current.

4.4.6. Energy Storage System. One of the most important
models is that of the energy storage system. The battery
behaviour is by far the most complex [47]. Most battery
models [23] predict the discharge time with a constant
current, but the system uses environment harvesting tech-
nologies and can recharge itself while discharging. Therefore,
we use a battery model which handles both charge and
discharge variable currents. This one is similar to the model
developped by [48], but we use different curve fitting
mathematical equations. As a battery presents poor reactivity
to pulses, we note that recent works on supercapacity [49]
also show good alternatives to assist main battery systems for
harvesters [7, 10].

Now that the node model context has been presented,
we will detail the power and energy estimator itself which
exploits the models described in this section.

5. The Power and Energy Estimator

The goal of the simulator is to help at design to identify major
power consumption hot-spots. As the project is constantly
evolving, models are dynamically revised with the FLPA
process depending on the desired accuracy. Thus, the
simulator can estimate both the node power consumption
and predict the system autonomy. The simulator accuracy
mainly depends on model specific errors.

On the other hand, simulating a DPM permits one
to adjust the strategy and fine tune DVFS and DPM
opportunities. Thus, designers can evaluate the relevance
of the developed DPM policy. Then, finally, we can give a
nearly realistic estimation of the global system viability for a
configuration.

Figure 5 presents the prototype of the Power/Energy
Estimator (PEE). In the main part, the screen describes the
node major hardware components, specific to studied WSNs.
The right part includes the controls which command the
system parameters in manual mode. Controls are updated in
real-time in automatic mode, when playing a scenario. The
bottom region displays the energy storage system evolutions
during the simulation.

5.1. Simulator Implementation. The PEE is built with Lab-
view from National Instruments [50]. It combines a graphi-
cal language with massively parallel programming and object
paradigm support.

The PEE is based on the global node model presented in
Figure 2. Thus, the simulator engine is composed of the two
layers. First, the power management policy layer reacts and
describes DPM activities. Second, the physical layer includes
all the hardware component models.

The DPM layer models the PMS by using an FSM defined
by a states-transitions schema. The DPM follows the scenario
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FIGURE 5: Power and energy estimator.

which defines the interaction with the internal and external
events. The policy decides on the behaviour to adopt, and
it updates the device states/parameters accordingly in the
hardware configuration.

The Hardware layer is based on node components and
their characteristics. Each component or peripheral is called
a device. Devices are classified according to their types:
DC/DC converters, batteries, microsources, CPU, radio, and
sensors as specified by the hardware model. Each device is
modelled by a class specialization that defines the device
behaviours in terms of power consumption. A configuration
is a set of channels on which devices are mapped. Each device
class embeds the properties, the parameters, and the methods
to evaluate and update its model.

The power simulator is managed by the “manager”
which commands the entire simulation evolution. The
manager controls playing/recording of scenarios by using a
discrete time representation which divides time into time-
slice quantas. The manager task is to apply the simulator
process which synchronizes both layers.

5.2. Simulator Process Description. The PEE process is shown
in Figure 6. The user creates or loads a project which includes

the scenario to be studied. In fact, it is the definition of the
different models, the configuration, the global simulation
parameters, and the results destination.

When the user decides to start the simulation, the man-
ager launches the simulation at a defined temporal resolu-
tion. When playing, the real-time DPM module (RT_DPM)
calls at fixed frequency the sample DPM function. This
function processes the reading of the node external models
and collects the data to dispatch them to the appropriate
devices. In detail, Read_Scenario reads the scenario events.
Read_Meteo reads the meteo coefficients and the WF pre-
dictions. Read_RF reads the RF environment to collect the
radio packets. Dispatch_Events applies the causality part of
events. For example, when the presence of gas is defined
by an event, the simulator must update TX-12 gas sensor
value accordingly. This step updates the input parameters
and thus prepares the hardware model. In practice, Dis-
patch_Events mainly updates sensors, but events can poten-
tially have an impact on any parts (cause of failure, etc.).
The Dispatch_Meteo prepares and converts meteo data for
the harvesters and the global node temperature (because
models can integrate model temperature degradation).
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WF information is transferred to the DPM. Then, Dis-
patch_RF sends the packets to the appropriate hardware
radio module. The logical stage purpose is to collect and
prepare the input parameters, to run the DPM module.
At this time, no hardware models have been estimated yet.
Finally, the run_DPM method is called. The DPM solves
the transition conditions and enters a new power mode.
The DPM executes a behaviour resulting in the update of
command variables and hardware component parameters.

The real-time sampler module (RT_Sampler) is started
after the DPM. Firstly, the sampler evaluates each device
model with the new fixed input parameter values. This
is done by calling the redefined UpdateModel method
which reevaluates the model. Each model has dedicated
parameters but share common variables: the supply voltage
indicator, the current/intensity, the consumed power, and
the component energy magnitude value (different for each
sensor or microsource). Secondly, these output variables are
recorded as one goes along in the results destination.

When RT_DPM and RT_Sampler have terminated, the
next function is evaluated to determine if simulation time
is exceeded or battery level has reached a low threshold. If
simulation continues, the simulation time is incremented
and the process restarts in loop.

5.3. Simulator Results. When the simulation is terminated,
the result files contain data over time which can be directly
analysed to present the results. Results are grouped into
sections: sensors, microsources, MPPT, DC/DC, CPU/RAM,
and radio components. For each component, the simulator
provides the equipment value, the intensity, the voltage,
and the power curves. Thus, the maximum power peaks
can be used to study the impact on the battery for high-
discharge sequences. The total harvested energy and the total

consumed energy are also determined by integrating the
power over time. The energy directly relies on the node
autonomy which can be presented in Watt hours. Because
batteries have specific behaviours [47], we cannot model the
total node autonomy with basic sum operators. Instead, we
must rely on a realistic battery model that handles at realtime
simultaneous variable charge and discharge currents [48, 51].

6. Model Characterization

For each model, we applied the FLPA methodology described
in Section 4.1. In this section, we present the results for
two sensors, a camera, a solar microsource model, and the
battery.

6.1. ERYMA 48 Sensor. The ERYMA 48 sensor is an intrusion
detector based on ground vibrations. A walking person
produces vibrations that are recorded and transmitted to
a local unit. This unit analyses the measurements and
generates an alarm. Power supply ranging from 10 to
50 Volts. Functional temperature range is —40°C to +65°C
For this power experimentation, we applied the FLPA
methodology to measure and characterize the sensor. For the
first step, we proceeded with a series of measurements by
varying the sensor input voltage. These measurements give
the intensity drained by the device. The process has been
repeated for several temperatures: —20, 0, +25, +35, +55
in °C by using an incubator. We have obtained a series of
I-V measures presenting the I-V characterization curves for
different temperatures shown in Figure 7.

We notice that the device seems to have a particular
behaviour at 40 V. This is probably due to a calibration effect.
As we know, the power is given by the formula: P = U.I,
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FIGURE 7: 4S sensor I-V characterization.

so it is trivial to determine the sensor power consumption.
Thus, we calculate the power consumption for each curve.
This gives the consumption for a selected voltage and an
operating temperature.

For the 4S sensor, power consumption is the lowest at
minimum temperature (—20°C). We note that the power
consumption increases from 525 mW at 10V to 910 mW at
50 V. It is a 73.33% increase at 25°C. We notice that there
is low power variation as the temperature increases. The
maximal variation is 11% when the temperature rises from
—20°C to +55°C at 10 Volts.

With these measurements, we extract the characteristics
for which the sensor is the less consuming. We get the
equation model (2)

y =0.2041 - x %% with xin V, y in A. (2)

As can be noticed, the curve variation is nearly linear in
temperature. Thus, a linear variation coefficient can be
defined.

Once the final model is built, the absolute error is
measured. For this sensor, the mean error is 1.7%, and the
maximum peak error is 11.9%. As the sensor will probably
be used in 10-15V like the battery nominal voltage, the
consumption will range from 488 to 624 mW. The maximum
error is 1.74%, this corresponds to less than 1 mA error from
the real behaviour.

6.2. ERYMA S§912 Sensor. The ERYMA §912 sensor is an
intrusion detector based on fence vibrations. A person
climbing a fence is detected and a signal is sent to the local
unit. The unit analyses the measurements and generates an
alert.

Like the previous sensor, we measure the behaviour of
the S912 sensor located in an incubator at: —20, 0, +25,
+35, +55 in °C. We vary the sensor input voltage from 10 to
30 Volts, and we record the intensity drained by the device.
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F1GURE 8: S912 sensor I-V characterization.

We have obtained a series of I-V measures presenting the I-
V characterization curves for different temperatures shown in
Figure 8.

We notice that the power consumption increases as the
input voltage grows, from 320 mW at 10 Volts to 548 mW
at 30 V. This is an increase of 71.25% at 25°C. The power
consumption has a 14% decrease when the temperature
evolves from —20°C to +55°C. We can remark that the curve
fits near a log function modelled by (3)

y =-0.013 - In(x) +0.0607 withxinV, yinA (3)

Moreover, we can remark that the increase of temperature
causes a power consumption variation from 4% to 14%
depending on the voltage. This increase can be modelled as a
linear equation.

Once the final model is built, the measured absolute error
is 1.9%. The maximum peak error is 4.7%. The sensor will
probably be used at 10-15V like the battery nominal voltage.
In this case, the consumption will range from 307 to 423 mW.
Here, a higher temperature gives lower consumption.

6.3. MicroCam Camera. The MicroCam device is a minia-
ture colour camera able to acquire a JPEG image through
a serial or USB connection. Created for robotics and
video surveillance, the camera can send 0.75 fps video or
compressed images (80 x 60 to 640 x 480). The device has
low power consumption.

Measurements have been taken at ambient temperature
(15°C). We measure the intensity drained by the device
at different phases by using the default software. We have
obtained an intensity curve at different phases shown in
Figure 9.

We notice that the power consumption increases, while
images are acquired and transmitted. There is no consump-
tion difference when changing image resolution or transfer
speed. The intensity consumption is 60 mA in standby and
64 mA for an image acquisition. Thus, it does not vary that
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much and can be assimilated as a constant model of 61 mA.
In this approximation, the error value is 1 mA overestimated
in standby mode and 3 mA underestimated in activity. But
we experiment a stability problem at 3.3 Volts with the TTL
that forces us to fall back on a 5Volt DC supply. With this
voltage, the power consumption reaches 305 mW.

6.4. Suntech 10 W Solar Panel. The Suntech panel is a
multicrystalline silicon solar cell offering 10 Watt maximal
power. It uses a textured cell surface and bypass diode
design to harvest maximum sunlight by preventing partial
shadowing attenuation. The Suntech total efficiency is 8.8%.

Measurements have been taken on location with real
weather contexts. For this, we use a Kimo SL200 Pyranome-
ter to measure the solar intensity reference. The solar panel is
oriented at 35° to the south direction. It is the optimal angle
in the applicative region.

We use a programmable power supply to measure the
intensity provided with different programmed ranges from
0 to Vo, Volts. As one solar measurement takes up 10
seconds to record on the entire range, solar sunset could
slightly vary, and thus introduce jitter. We have obtained an
intensity-voltage (I-V) curve for different sunset irradiation
powers ranging from 150 to 930 W/m?2. Each I-V curve,
is converted to a P-V (power-voltage) curve, where the
maximum indicates the maximum power point. Figure 10
shows the different P-V curves collected.

With the P-V curves, we reach 10 Watt with 930 W/m?
solar irradiation. We observed that the maximum power
point propagates nearly 17 Volts for this solar power range.
It corresponds to the Vi, = 17.20V and the I, =
0.58 A given by the datasheet. This is because module
performance is rated under Standard Test Conditions (STC):
irradiance of 1000 W/m?, solar spectrum of AM 1.5, and
module temperature at 25°C. Then, we modelled the Suntech
maximum power point by a linear equation. Thus, we
confirmed that the solar microsource harvested power range
vary from 0 to 10 W.

6.5. AS512/2 Battery Cell. The AS512/2 cell is a sealed lead-
calcium battery of 12 Volts for a 2 Ah capacity. The battery
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FiGure 10: Suntech solar panel characterization.

uses lead-calcium grids with gas recombination and offers
good recovery from deep discharge. For this model, we use
a similar method of work as that developed by [48] to
model a battery with simultaneous charge and discharge.
Method: By using the FLPA methodology, we define the high-
level parameters from an electrical point of view. We use
parameters defined in electricity: the electromotive force, the
capacity, the impedance, the efficiency, and the self-discharge
as the base of the model criteria. The electronic model is
defined by (4) as

Vout = Vemf - Rint * I) (4)

where Vou is the battery tension (V), Vems the battery
electromotive force (V'), Rin the battery internal resistance
(Ohms), and I the provided current (A).

bench description: to take the measurements, we used
a battery bench. The bench is composed of a power supply
which provides the recharge current to the reference battery.
The battery is placed in an incubator to measure behaviour as
a function of temperature. The bench integrates an electronic
load which varies according to a measurement scenario.

Analysis: to experiment a scenario, we must calibrate
the power supply to deliver a constant recharge current. In
this bench, a constant recharge current of 200 mA is applied
while a variable discharge current is applied with a repeated
pattern. The battery voltage is measured over time until the
threshold tension limit has been reached.

Characterization: we calculate the R;,; and the emf as a
function of capacity. To do this, we take a couple of points
on the data curve at each state transition. For example,
one point on a peak period and one on another peak
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(with a nearest delta). As we have a couple of points, we can
solve (4) by the double equation system (5)

Voutl = Vemf - Rint * I,

(5)
Vout2 = Vemf - Rint * 12-

By solving (5), we determine the evolution of the internal
resistance and the electromotive force depending on the
evolution of the battery capacity.

Model determination: then, we model the electromotive
force and internal resistance parameters. We notice that Veps
can be modelled as a linear equation (6)

Vemf = —a - q+0b, with g the capacity (A.h).  (6)

The internal resistance has an exponential aspect mod-
elled by(7)

Rpi=a-e??+¢,  with q the capacity (A.h).  (7)

Coefficients a, b in (6), and a, b, c in (7) are determined
by regression approach. They are tightly coupled with the
battery and the technology chosen.

Finally, the battery model is evaluated and compared to
the real measurements in Figure 11. The absolute maximum
measurement error is 8%.

As the battery model handles simultaneous charge and
discharge, it can be used to model a self-recharging WSN.
Thus, it can predict the battery autonomy of a WSN node
according to its activity and environment.

Finally, by repeating the process for all other compo-
nents, we can build a power map of the different node
equipment. If components or circuit design change, models
are rebuilt to reconstruct the power consumption map.
Table 5 shows an example of the power consumption map
for the required equipment of the CAPNET project.

7. Experiment

7.1. Experiment Setup. We measure the relevance of the DPM
presented in Figure 3, by measuring its autonomy. This WE-
DPM includes weather forecast enhancements.

The PEE is prepared and initialized with configuration
files. The simulator needs:

(i) to configure the hardware node components and set
associated model parameters,

(ii) to select the DPM wused to simulate the node
behaviours,

(iii) to provide the Meteo environment for the scenario,
(iv) to provide the RF Events to estimate the radio activity,
(v) to provide the scenario file,
(vi) to provide the global simulation parameters,
(vii) to provide the destination of the results.
With the scenario builder, we recreate the area protection

scenario developed in Section 2. A gas measurement is taken
every 5 minutes for 15 seconds duration, permanently during
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FIGURE 11: AS512 battery model results.

the entire scenario. A first detection with sensor 1 occurs,
but is not yet confirmed by sensor 2. The second detection
is confirmed by sensor 2 which sends an alarm to the
supervisor. The supervisor has WF predictions and knows
how long the system can take videos. After ten seconds of
video, the supervisor has identified the threat and decides
to send the intervention unit. The video is deactivated. The
DPM waits for sensor 1 and 2 to disarm and goes back to
Sleep mode.

Simulation assumptions. The weather environment has been
acquired by recording real weather coefficients over time,
and extracted for the weather scenario. DPM is built by
translating the FSM into an external dynamic Labview
module. Here, we consider just one node, thus we do not take
external RF Events into account. Moreover, global simulation
resolution is set to one second and we run the simulation for
529200 seconds (6.125 days).

We start the simulation and at the end, the simulator
produces the results files in the results destination. Results
are detailed current, voltage, power, and state values for all
discrete time simulations. Global information is minimum
power, maximum power, average power, and total energy
consumption per components. The simulator provides the
final global system average power and total energy consump-
tion.

7.2. Simulation Results. Table 6 describes the WEF-DPM
energy and power consumption results. Results are grouped
by components which callback the minimum power (in
mW), the maximum power (in mW), the average power (in
mW), the total energy (in Joules), and the total ratio (in %).

By examining the results of Tables 5 and 6, we can extract
some conclusions. When we study the system equipment,
we can see that the battery system has a capacity of 2 Ah.
The power consumption in Sleep state is mainly given by the
sensor 1, it is near 300 mW average in Sleep. It seems that this
sensor have the highest power impact on the system (i).

We replay the same scenario without any harvesters
to simulate the worst case/failure condition. In this case,
the scenario duration is 44.4 hours which means nearly
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TasBLE 5: Node power consumption map.
Type Component/chip Mode 1 Mode 2 Mode 3
PIC24F256 Full: Idle: Sleep:
CPU @3.3 Volts 16 mA 2.5uA 100 nA
53 mW 8.5uW 330 nW
A623308A Op R/W: StandBy: OFF:
SRAM (x2) @5 Volts 35 mA 10 uA 0 mA
175 mW 50 uW 0mW
REL MRF24J40 TX: RX: Sleep:
@3.3 Volts 130 mA 25mA 2 uA
AES128 430 mW 82.5mW 6.6 uW
RE2 CC1101 TX: RX: Idle:
@3.3 Volts 75 mA 25mA 200 nA
WakeOn 248 mW 82,5 mW 660 nW
Sensor] PRO-45'/8912 Operating: / /
@10-13 Volts 300 mW / /
Sensor2 Mygale 4S Operating: / /
@10-13 Volts 600 mW / /
MicroCam Capture: StandBy: /
Video @5 Volts 64 mA 61 mA /
320 mW 305 mW /
Gasl OLCT 50 (18-30V) / /
@18 Volts 1080 mW / /
Gas2 OLCT 80 @18 Volts (12-28 V) 900 mW ; ;
Gas3 TX-12 (6.5-9V) / /
@9V 108 mW / /
LT3652 Operating: StandBy: Idle:
MPPT 1= 90-95% 2.5mA 85 A 15uA
(in =4.95-32V) Variable Variable Variable
LM3100 Operating: StandBy: /
DC/DC (Down) 1 =85-92% 0.7mA 17 uA /
@(10.5-13V) Variable Variable /
Power stages: (1-3x) 3.3V (1x)5V (0-1x) 9V
DC/DC MAX618 Operating: Shutdown: /
(Up) 7= 93% 2.5mA 3uA /
@(10.5-13V) Variable Variable /
Power stages: (0-2x) 18V
MS1 Solar SunTech 10 W 1000 W/m? 500 W/m? 200 W/m?
PMax 10W 5W 2W
MS2 Wind Rutland 504 75Km/h 20 Km/h 15Km/h
PMax 60 W 4.3W 1.5W
MS3 Thermal MPG604 dT =70°C / /
80 mW / /
CELL Battery AS512/2 12V / /
(10.5-13 V) 2 Ah / /

1.85 days. Thus, the initial battery capacity of 2 Ah will be
too low to cover the scenario duration of 6 days in the
failure condition. Consequently, the project team decided to
extend the battery capacity to a 7 Ah battery. With further

verification, the battery level never drops down; the power

supply is now wellscaled for the system demand (ii).
Moreover, the WE-DPM always switches to the potential

maximal energy microsource (iii). The benefit has not been
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TABLE 6: Simulation results.

Component Min Max Avg  Energy  Ratio
S912 351.26 354.348 352.732 186666 70.35%
Mygale 4S 0 1619.73 38.8471 205579 7.75%
MicroCam 0 305 5.09774 2697.73  1.02%
OLCT 50 0 1048.8 0.0812 43.001 0.016%
OLCT 80 0 12.3993 0.00096 0.508 1.9E-4%
PIC24F256 1E-5 52.8 1.393  737.199 0.278%
A623308A 0 160 4.2213  2233.92  0.842%
MRF24J40 82.5 429 82.5956 43709.6 16.47%
CC1101 0 165 0.0452  23.925 0.009%
LM3100 0 74.70 14.58  7717.66 2.9%
LM3100 0 5.866 0.155 81.91 0.031%
LM3100 0 82.0588 1.644 870.29  0.328%
MAX618 0 187.271 0.0145 7.678  0.0029%
LT3652 0 140.992 41.4749 219485 8.272%
SunTech 0 2819.84 829.497 438970 /
Others 0 0 0 0 /
Total sensors - 396.759 209965  79.13%
Total radios - 82.6408 437335 16.48%
Total DC/DC - 16.3975 8677.54 3.27%
Total CPU/RAM  — 5.6143  2969.96 1.12%
Total harvested + 788.022 417021 /
Total cons. 501.412 265346 100%

quantified here, but it does offer a power switcher solution
like the one in Duranode system [45].

WE-DPM can help a supervisor user by automatically
computing the maximal duration of each service. Predicting
potential future environment energy permits us to present
lifetime autonomy indicators for real-time purposes (iv).

Finally, the prototype has helped to identify three power
bottleneck types and explore one new technology:

(i) heavy sensor consumption,
(ii) battery total autonomy and harvester scaling,
(iii) power switcher for automatic source selection.,

(iv) experiment a new WF estimating the remaining time
duration for a service.

WE-DPM presents interesting information to help a
supervisor activate the adapted service. Also, WF-DPM can
be used for automatic DPM decisions depending on the
application context. For example, there are some particular
deep-sea beacons which need to come back to the surface for
battery recharging. Here, WF-DPM can predict the potential
best period to emerge to maximize energy harvesting. We
think that WF has many applications that can be exploited
by WSN.

8. Conclusion

In this paper, we proposed to develop a power and energy
estimator to determine the node autonomy duration of
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WSNs. We present the CAPNET project with a representative
scenario of fire brigade intervention. We combine the mod-
elling approach with a problem decomposition approach to
realize the estimator. The simulator is built upon a two-layer
representation, handling the node logical part and the node
hardware part. By using the FLPA methodology, we built
models with successive incremental refinements to adjust
granularity to project duration, cost, and needs. The power
consumption engine exploits these models to manage the
hardware part and the DPM strategy at runtime.

The most important outcomes of this paper is that: the
simulator ability to handle recharging WSNs to predict node
autonomy in a given scenario. This way, it can identify power
bottlenecks such as states with heavy sensor consumption.
Thus, the tool enables the calibration of the total autonomy
of the battery and the harvester scale accordingly. Moreover,
by integrating WF into DPM, we can automatically select
the potentially best ambient power source. We validate that
a WE-DPM can be used to calculate the remaining time
duration for their services.

From this work, we learn to exploit component cartog-
raphy consumption, allowing for the quick identification of
abnormal power peak consumption. We observed that the
DPM must be easily writable because during adjustments, lot
of changes impact the DPM policy.

The FLPA methodology can be exploited for energy
characterization of hardware components, not just CPU
ones. This approach is representative about the way tools
must be based on real experimentation behaviours, to
determine is own particular models. By this way, it does not
restrict to a particular WSN, but can include lot of type of
WSNs. Now, we want to explore WE-DPM for automatic
DPM decisions, such as for particular deep-sea beacons
which need to surface for battery recharging. Here, WE-DPM
can predict the potential best period to emerge to maximize
the energy harvesting.

By the end of the CAPNET project, the goal is to build a
demonstrator including final sensors, harvesters, and others
system components. Now, we expect to measure the real
difference between the simulator and the demonstrator. This
will permit us to enhance the power/energy estimator to
better adapt tool accuracy to reality.
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