
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2010, Article ID 726286, 11 pages
doi:10.1155/2010/726286

Research Article

A Systematic DevelopmentMethodology for Mixed-Mode
Behavioral Models of In-Vehicle Embedded Electronic Systems

Candice Muller,1 Maurizio Valle,1 William Prodanov,2 and Roman Buzas3

1Department of Biophysical and Electronic Engineering, University of Genoa, Opera Pia 11A, 16145 Genoa, Italy
2Department of Product Development, Chipus Microelectronics, Lauro Linhares 589, 88036-001 Florianopolis, SC, Brazil
3Department of Product Development, Automotive IVN (In vehicle networking), ON Semiconductors Inc., Videnska 125, 619 00 Brno,
Czech Republic

Correspondence should be addressed to Candice Muller, candice.muller@unige.it

Received 28 May 2009; Accepted 26 October 2009

Academic Editor: Luca Fanucci

Copyright © 2010 Candice Muller et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The rising demands for safety, power-weight reduction, and comfort make the in-vehicle network of embedded electronic systems
very complex. In particular system reliability is essential, especially because of the safety requirements. Test and verification of the
entire in-vehicle network by means of behavioral simulations are each time more widely adopted. To this aim, behavioral models
that faithfully represent the behavior of mixed-mode-embedded systems are essential for achieving reliable simulation results. This
paper presents a systematic development methodology for mixed-mode behavioral models of in-vehicle-embedded systems. The
methodology allows achieving accurate models, which provide reliable system simulations. The model development methodology
is described and the results of the methodology applied to two case studies are presented: (1) the mixed-mode behavioral model of
a generic Flexray physical layer transceiver and (2) the mixed-mode behavioral model of a CAN bus transceiver-integrated circuit.
The simulation results show that behavioral simulations are much faster than transistor level simulations. Moreover, behavioral
simulations are flexible, which allows quickly changing and verifying the communication network topology if compared with
hardware prototypes.

1. Introduction

The amount of electronics used in vehicle systems is growing
fast with the replacement of purely mechanical or hydraulic
systems for electronic ones. Each function is implemented by
an Electronic Control Unit (ECU), that is, an embedded sys-
tem; ECUs communicate between them through a fieldbus
communication network.

The powertrain and chassis control systems are directly
related with the safety of the vehicle’s behavior and con-
sequently, with the safety of the occupants [1]. The rising
demands for safety, power-weight reduction, and comfort
makes the in-vehicle-embedded electronic systems very com-
plex. In particular system reliability is essential, especially
because of the safety requirements. Moreover, the in-vehicle-
embedded system asks for suitable techniques to assess the
system dependability.

Design verifications are compulsory even during the
early stages of the system design. Verifications can be done
through prototypes tests or circuit simulations. System
prototypes are expensive and time consuming. Furthermore,
it is difficult to represent the worst case scenarios, because it
is usually not possible to set all system parameters in order to
reproduce the worst case conditions. Time and investments
are necessary to implement hundreds of different topologies
and analyze their behaviors. On the other hand, transistor
level simulations of such complex systems, like Spectre,
are often practically impossible because of the enormous
computational time required due the many interactions of
all nonlinearities [2]. A possible and efficient solution to
the verification problem is to use behavioral simulations.
Behavioral simulations can be used to guarantee the correct
system behavior, avoiding unneeded hardware development,
forecasting design problems, and, consequently, reducing



2 EURASIP Journal on Embedded Systems

Sensor

Actuator

A/D interface

uC

D/A interface

Communication
interface

Physical
layer

transceiver

Embedded system

ESD CMC Termination

Bus termination

Bus lines

Figure 1: Generic embedded system block diagram.

considerably cost and time to market. In addition, behavioral
simulations allow the total environment controllability,
which makes very simple to set the boundary conditions.

Some works on behavioral modeling related to in-
vehicle communication systems are reported in literature.
The challenge of networks developers on dealing with
the signal integrity of the communication system physical
layer implementation is exposed in [3], where a validation
methodology of in-vehicle protocol networks topologies,
based on behavioral models, is presented.

A virtual environment of a complete CAN network
model and the importance of simulations of in-vehicle
networks at the early stage of the design process, in order
to reduce the number of prototypes and cost and time to
market, are highlighted in [4].

The work in [5] presents the development of the physical
layer and signal integrity analysis for Flexray communication
systems, while [6] introduces an automated simulation-
based methodology based on the guidelines and criteria
defined in the Flexray physical layer specification [7],
focusing on the network design verification methodology.

In order to achieve reliable results on networks test and
verification through the use of techniques and methodolo-
gies based on behavioral simulations (e.g., the ones presented
in the previews paragraphs), it is necessary to have faithful
behavioral models, which accurately represent the behavior
of the real ECUs.

A generic in-vehicle electronic embedded system (i.e.,
ECU) block diagram is presented in Figure 1. It is composed
by a by microcontroller, communication interface, and the
A/D and D/A interfaces to sensors and actuators. The
communication interface connects to the bus line and the
bus termination, which can contain common mode choke
(CMC) and electromagnetic discharge protection elements
(ESD).

The main difficulty on modelling the embedded system
is on modelling the mixed-mode communication interface.
The electronic device that implements this block is the
physical layer transceiver. It is responsible for converting the
digital microcontroller instructions in analog signals on the
bus lines and vice versa. The difficulty on modelling the
transceiver is mainly due the fact that it is a mixed-mode
circuit. The voltage on the bus lines can achieve high levels

Receiver
wake-up

Receiver

Drivers

D/A

A/D

Monitor

Digital
module Output

controls

Input
controls

Bus
line

Po
w

er
su

pp
lie

s

Transceiver

Analog module

Figure 2: Generic block diagram of the physical layer transceiver.

and silicon transceiver bus drivers must be developed in
a technology which allows such high voltages. The digital
blocks are implemented with CMOS technology and work
with low voltage levels.

The accuracy of the mixed mode behavioral model of
the physical layer transceiver directly influences the bus line
signal integrity, once the transceiver is the responsible for
writing and reading the analog data on the bus lines. Figure 2
shows a generic block diagram of the fieldbus physical layer
transceiver.

Another important issue is the modelling of the electro-
magnetic interference (EMI). The communication systems
based on electrical buses are important sources of electro-
magnetic emissions. Furthermore, the in-vehicle network
immunity against the EMI produced by the other electronic
equipments placed in the vehicle must be investigated.

The behavior of the physical layer transceiver is defined
according to physical layer communication protocol. The
most widely used in-vehicle communication protocol is
the Controller Area Network (CAN) [8]. CAN is a serial
communication protocol that defines a differential voltage to
represent recessive and dominant states on a wired line and
allows bit rates up to 1.0 Mbps.



EURASIP Journal on Embedded Systems 3

Does it
converge?

Wrong
behavior?

Model validation

End

Correct
behavior?

Model specification
definition

Conceptual model
definition

Primitive elements
definition

VHDL-AMS primitive
elements implementation

Primitive elements
verification

No

Yes

Yes

NoYes

No

No

Yes

Yes

No

Passed
all tests?

Real
device?

Model verification

Trade-off

VHDL-AMS
hierarchical model

implementation

Figure 3: Model development methodology flow chart.

However, the fast growth in automotive control systems
demands data rates and reliability not achieved by CAN
communication buses. Requirements for actual in-vehicle
control applications include the combination of higher
data rates, deterministic behavior, and the support of fault
tolerance. The Flexray communication system [9] can handle
these requirements. It is an automotive standard hybrid
protocol that combines time-triggered and event-triggered
messages, it is fault-tolerant, and it supports high-speed
data communication, up to 10.0 Mbps. Trends point Flexray
as the communication protocol of these new in-vehicle
applications.

The aim of this paper is to present a systematic devel-
opment methodology for mixed-mode behavioral models
of in-vehicle-embedded electronic systems. The goal of
the methodology is to develop accurate models, which
provides reliable system simulations. Two case studies are
presented, in order to demonstrate the methodology results:
the physical layer CAN transceiver and the physical layer
Flexray transceiver.

We have used VHDL-AMS hardware description lan-
guage for the behavioral models implementation, due to the
fact that it is an industrial standard modelling language and
it is widely supported by the available mixed-mode circuit
simulators. Furthermore, it provides features for modelling
analog, digital, and mixed-mode systems and it allows to
use multiple energy domains, such as electromechanical,
electro-optical, and thermal-electrical systems, which allows
the complete embedded system modelling (including sensors
and actuators).

The paper is organized in four sections, including this
introduction. Section 2 presents the model development

methodology. Section 3 shows two case studies, gives exam-
ples of the model utilization, and presents the advantages
of the behavioral simulations compared with hardware
prototypes and transistor level simulations, while Section 4
presents the conclusions.

2. Model Development Methodology

The behavioral simulation of complex systems, for example,
automotive mixed-mode-embedded system, requires reliable
model implementation. In order to achieve this requirement,
we present a systematic development methodology, which is
divided in four steps, as follows:

(A) model specification definition,

(B) model design and implementation:

(1) conceptual model definition,
(2) primitive elements definition,
(3) VHDL-AMS primitive elements implementa-

tion,
(4) primitive elements verification,
(5) VHDL-AMS hierarchical model implementa-

tion,

(C) tradeoff,

(D) conformance test:

(1) model verification,
(2) model validation.

Figure 3 shows the model development methodology
flow chart.

The model accuracy is very important for signal integrity
investigation. Simulation speed-up is mandatory for simu-
lating complete networks in a reasonable CPU usage time. At
last but not least, it is necessary to care about convergence
issues. It does not matter how fast and accurate the model is
if it is not able to converge in all operating conditions [10].
The proposed development methodology faces these aspects,
finding a compromise between them.

The previews steps are detailed in the next subsections.

2.1. Model Specification Definition. The model specification
can be divided in two different categories, according to the
kind of model that must be implemented:

(i) generic device model,

(ii) real silicon device model.

The generic device model is the model of a generic device,
that is, a model that fulfills the protocol specification (e.g.,
the Controller Area Network protocol (CAN)). It means
that the model specification is based on the specifications
defined by the protocol, respecting the protocol require-
ments as operation modes, timing characteristics, electrical
parameters as voltages levels, I/O signals characteristics, I/O
pins impedances, and so forth. It is also compliant with the
functionalities defined in the protocol.



4 EURASIP Journal on Embedded Systems

The generic device model can be used as proof of concept
for silicon design development, as support tool during the
digital block design and verification and it also can be tuned
for representing a real silicon device.

On the other hand, the real silicon device model is the
model of a real device. In this case, the model specification
is based on the device data sheet (that is compliant with the
protocol specification).

The real silicon device model can be used for testing and
verifying the behavior of the in-vehicle network topologies.

The model specification should address the following:

(i) the model requirements, for example, bus operating
modes, power supplies validity ranges, timings, elec-
trical characteristics, and so forth;

(ii) the model parameterization, for example, typical
behavior and corner cases parameters;

(iii) the features, for example, statistic simulation, moni-
toring system, diagnosis, power consumption estima-
tion, and so forth;

(iv) the model evaluation definition, that is, how the
model accuracy must be evaluated.

2.2. Model Design and Implementation. The model design
and implementation goes from the conceptual model defi-
nition until the code implementation.

2.2.1. Conceptual Model Definition. The conceptual model is
defined considering all parameters described in the model
specification. It consists of describing how the model require-
ments are broken down into a collection of components,
how the components fit together and interact, and how
they work together to meet the specifications. It is a
mathematical/logical representation of the problem [11].
Furthermore, each component has to be decomposed until
the level of primitive elements, that is, basic circuit cells.

In practical terms, it consists of taking the transceiver and
dividing it in a hierarchical way, until the primitive elements
level (also called basic cells). The result is a hierarchically
composed model. The advantage of the methodology is that
the primitive elements can be reused for modelling different
subsystems (i.e., reusability) [12].

2.2.2. Primitive Elements Definition. The definition of how
the primitives elements are implemented is one of the most
important steps of behavioral modelling. It is necessary to
pay special attention to the possible discontinuities in the
analog domain of the mixed-mode circuit, because the dis-
continuities can cause convergence problems and instability.
Therefore, smooth transitions of the analog variables should
be used.

The primitive elements contain one or more definitions.
Each definition is implemented by an architecture in the
VHDL-AMS primitive elements implementation (please
refer to Section 2.2.3). The behavior of the primitive ele-
ments can be described at different abstraction levels. One
can use mathematical expressions in a very high level of

abstraction, while the other can use a low level of abstraction
modeling approach resulting in a description very close to
the electronic circuit.

As example of primitive element definition lets us
consider the model which represents a MOS transistor. It
has three terminals (G, D, S) and the voltage level at the
terminals defines the region of operation (cutoff, linear,
and saturation). Four different architectures using different
abstraction levels were defined and are presented as follows.

(a) First Definition. The first definition uses a low level of
abstraction, considering the physical parameters of a real
silicon transistor for modelling the complete behavior of all
operation regions. The mathematical expressions are defined
as [13]

Kn = μnCOX
W

L
, (1)

Cutoff region, VGS ≤ VTN:

IDS = 0.0A, (2)

Linear region, VGS −VTN ≥ VDS ≥ 0.0V :

IDS = Kn

(
VGS −VTN − VDS

2

)
VDS, (3)

Saturation region, VDS ≥ VGS −VTN ≥ 0.0V :

IDS = Kn

2
(VGS −VTN)2(1 + λVDS), (4)

where μn is electron mobility, COX is oxide capacitance per
unit area, W is channel width, L is channel length, IDS

is drain-source current, VGS is gate-source voltage, VTN is
threshold voltage, and VDS is drain-source voltage.

The result is a description similar to the one used in
transistor level simulators, as Spice, for example.

(b) Second Definition. Using a higher abstraction level, the
transistor can be implemented describing each operation
region by means of a linear approximation. The result is
a piecewise linear model. The behavior of the model is
controlled by the voltage between G and S terminals. If VGS is
smaller than VTN, the transistor is in cutoff region; otherwise
it behaves as follows:

Saturation region, VDS > VSAT:

IDS = ISAT, (5)

Linear region, VSAT ≥ VDS ≥ VREV:

IDS = VDS

RON
, (6)



EURASIP Journal on Embedded Systems 5

ISAT

VREV

RSAT

RON

VSAT

RSAT

RSAT

I

V

Off

On

0

Figure 4: VDS × IDS piecewise linear approximation.

Cutoff region, VREV > VDS:

IDS = 0.0A, (7)

where ISAT is saturation current, RON is output resistance,
VSAT = ISAT · RON, and RON and ISAT are model parameters.

In order to avoid a null ∂i/∂v derivative, a linear current
term is added in all operation regions. Therefore, the output
current will be

I′DS = IDS +
VDS

RSAT
. (8)

The v-i characteristics of the piecewise linear transistor are
shown in Figure 4.

(c) Third Definition. The piecewise linear architecture has
two points of first-order derivative discontinuities: the tran-
sition between cutoff and linear regions and the transition
between linear and saturation regions. Substituting the
piecewise linear equation of the linear region by means of
a Taylor series expansion polynomial equation we obtain
a smoothed transition between the linear and saturation
regions. The model definition is given by

Saturation region, VDS > VSAT:

IDS = ISAT, (9)

Linear region, VSAT ≥ VDS ≥ VREV:

IDS = ISAT ·
(
kVDS − (kVDS)3

6
+

(kVDS)5

120

)
, (10)

Cutoff region, VREV > VDS:

IDS = 0.0A, (11)

where

k =

√√√√√6 ·
⎛
⎝1−

√
1
3

⎞
⎠ ·V−1

SAT. (12)

Adding the linear current to all operation regions we have

I′DS = IDS +
VDS

RSAT
. (13)

This definition has a DC characteristic closer to the real
transistor, increasing the model accuracy, and a smoother
transition on VSAT point. Figure 5 shows the v-i character-
istics of the third definition.

I′SAT

VREV

RSAT

VSAT

RSAT

RSAT

I

V

Off

On

ILEAK

Taylor
series

Figure 5: VDS × IDS Taylor series expansion piecewise approxima-
tion.

ISAT

0

RON

RSAT

I

V

Off

On

ILEAK

Figure 6: VDS × IDS Hyperbolic tangent piecewise approximation.

(d) Fourth Definition. The fourth definition makes use of
the hyperbolic tangent approximation, which has a natural
asymptotic characteristic. Moreover, only two regions must
be defined to describe the whole transistor operation, as
follows:

Active region, VDS > 0.0V :

IDS = ISAT · tanh
(
VDS

τ1

)
, (14)

Cutoff region, VDS ≤ 0.0V :

IDS = ILEAK · tanh
(
VDS

τ2

)
, (15)

where τ1 = ISAT · RON, τ2 = ILEAK · RON, and ILEAK is leakage
current.

The output characteristics are shown in Figure 6.
Further information about the primitive cells definition

can be found in [10].
The availability of primitive element with more than one

definition allows to build higher hierarchies with different
performances, which can be used according to the user needs.
Please refer to Section 3.

2.2.3. VHDL-AMS Primitive Elements Implementation. After
defining the mathematical expressions which represent each
one of the primitive elements, it is time to convert it to the
VHDL-AMS language description. A VHDL-AMS code file
is written for each primitive element/architecture.

2.2.4. Primitive Elements Verification. Before using the prim-
itive element it is necessary to verify if it is correctly



6 EURASIP Journal on Embedded Systems

implemented. Test cases are generated in order to verify the
primitive elements behavior. If the element has more than
one architecture, the same test cases are used. All the element
architectures must be verified.

If the verification tests are successful, the basic cell is
ready to be used. Otherwise, it is necessary to review the
primitive element definition.

2.2.5. VHDL-AMS Hierarchical Model Implementation. The
VHDL-AMS hierarchical model implementation is based on
the conceptual model definition. Usually the implementation
is divided in steps, according to the number of hierarchical
levels. Further test cases are generated in order to verify the
correct model behavior at the different levels. This procedure
improves the model reliability and helps to solve design
problems, once undesirable behaviors are detected early at
lower hierarchical levels.

2.3. Tradeoff. One of the main difficulties on developing
mixed-mode behavioral circuits is on finding a tradeoff
between speed, accuracy, and convergence. The accuracy is
strictly related with the level of abstraction used during
the primitive elements implementation. The lower the
abstraction level is, the more accurate is the model. Low
abstraction levels usually use mathematical equations which
require high computational effort. The first important point
is on finding a good relationship between accuracy and
speed. The second one is related to the convergence issue.
Discontinuities between piecewise regions must be avoided
as well as null first-order derivatives. Refer to Section 2.2.2.

The tradeoff between speed, accuracy, and convergence is
faced by applying the available architectures implemented in
the basic cells. Architectures with different abstraction levels
give different performances in terms of accuracy and speed
as well as different levels of convergence stability.

The methodology allows implementing different archi-
tectures for the same behavioral model, each one presenting
different abstraction level, accuracy, speed, and convergence
performance. The use of one or other architectures depends
on the user requirements. Accurate models are important for
signal integrity analysis, while faster models can be used for
simulations which focus on, for example, the functionalities
verification.

In addition, different architectures can include or not
some supported features. It means that, with the same
accuracy, the model can be faster if some features are not
implemented. Please refer to Section 3.2.

2.4. Conformance Test. The conformance test is divided in
two parts: verification and validation. These two concepts are
often considered as a single process, but actually there is a
distinct focus on each one: verification focuses on the model
capability and validation focuses on the model credibility
[14].

2.4.1. Model Verification. Verification is the process of deter-
mining if the model implementation accurately represents
the conceptual description and specifications [14]. It consists

of verifying all the model requirements (operating modes,
validity ranges, timings, electrical characteristics, etc.), the
correct parameterization, and the implementation of the
supported features.

The model verification is the main purpose of the
conformance test. A set of test cases are defined, in order to
fully verify the model. The test cases are independent of each
other. For each test case the following must be defined:

(i) the purpose,

(ii) the configuration setup,

(iii) the execution steps,

(iv) the pass/failure criterion.

The pass/failure criterion is defined according to the
model specification. Examples are reported in Section 3.

The model robustness is also verified, considering stress
conditions during the test cases.

The test cases are basically defined according to the con-
formance test of the communication protocol, for example,
Flexray physical layer conformance test specification [15] for
the Flexray communication system.

If the model fails during the verification tests, it is
necessary to return to the preview steps. In this case, it is
necessary to analyze the failure results to decide where to
act. If the model implements wrong behavior, it is necessary
to review the conceptual model definition. If the model
behaves correctly, but it is not sufficiently accurate, it may
be necessary to use another primitive element architecture
(tradeoff step). If the simulation does not converge, it is
necessary to review the primitive elements definition (see
Figure 3).

The model verification must be done for the generic and
for the real device models. Examples of model verification
are reported in Section 3.1.

2.4.2. Model Validation. Validation process checks if the
model accurately represents the real device from the per-
spective of the intended use of the model [14]. It consists
of comparing the model simulation results with the device
measurements.

The model validation can be done just for real device
models. Refer to Section 3.2.

3. Results

In this section we present the application of the method-
ology described in Section 2, showing two case studies: the
generic mixed-mode behavioral model of Flexray physical
layer transceiver and the real silicon device mixed-mode
behavioral model of CAN bus transceiver.

Through the case studies we demonstrate some steps
of the model development methodology, giving special
attention to the model tradeoff and conformance test. In
Section 3.1 we present some results of the model verification
and in the Section 3.2 we present how the model tradeoff was
done and also some results of the model validation.

Section 3.3 presents the advantages of using behavioral
simulations.



EURASIP Journal on Embedded Systems 7

500 520 540 560 580 600 620 640 660 680 700
2

2.5

3

3.5

B
P

/B
M

(V
)

Time (ns)

Data 0 Data 1

BP
BM

(a)

500 520 540 560 580 600 620 640 660 680 700
−1.5

−1

−0.5
0

0.5

1

1.5

u
B

u
s

(V
)

Time (ns)

uBus
Eye diagram mask

(b)

Figure 7: BP and BM bus lines signal integrity simulation.

3.1. Flexray Physical Layer Transceiver. The mixed-mode
behavioral model of Flexray physical layer transceiver
reported in [16] is fully compatible with the Flexray standard
[9].

Some examples of model verification are reported.
Figure 7 shows the bus signal integrity verification. The
verification is done comparing the differential voltage on
the bus (uBus) with the eye diagram mask. The pass/failure
criterion defines that, for passing the test, the uBus must
respect the minimum protocol requirements represented by
the eye diagram mask.

BP and BM represent the bus line voltages (Figure 7(a))
and uBus the differential voltage on the bus (Figure 7(b)).
From 500 nanoseconds to 600 nanoseconds the transceiver
transmits Data 0 (TxD = Low). During this time uBus
is negative. At 600 nanoseconds the transceiver is set
to transmit Data 1 (TxD = High) and uBus goes to a
positive value. In both data transmissions, uBus respects the
minimum protocol requirements.

Figure 8 shows the verification of the model behavior
during bus states transitions. The transceiver input control
signals STBN, TxEN, and TxD were set in order to generate
the following bus state sequence: Idle LP, Idle, Data 0,
Data 1, and Idle. Figures 8(b)–8(d) show the input control
signals and Figure 8(a) shows the state transitions on BP/BM
bus lines.

The pass/failure criterion defines the following behavior
for the different bus states.

0 50 100 150 200 250 300 350 400

B
P

/B
M

(V
)

Time (μs)

0
1
2
3
4

Idle LP Idle Data 0 Data 1 Idle

(a)

0 50 100 150 200 250 300 350 400ST
B

N
(V

)

Time (μs)

0
2
4

(b)

0 50 100 150 200 250 300 350 400T
xE

N
(V

)

Time (μs)

0
2
4

(c)

0 50 100 150 200 250 300 350 400

T
xD

(V
)

Time (μs)

0
2
4

(d)

Figure 8: Bus state transitions simulation.

(i) Idle LP: no current is driven either to BP or to BM
and the bus drivers bias both BP and BM to GND
level.

(ii) Idle: no current is driven to BP and BM and the bus
drivers bias both BP and BM to a certain level of
voltage (around Vcc/2).

(iii) Data 0: at least one bus driver forces a positive
differential voltage between BP and BM.

(iv) Data 1: at least one bus driver forces a negative
differential voltage between BP and BM.

While STBN signal is at low level, the transceiver is in
Idle LP state and BP/BM is biased to GND. When STBN
goes to high level (TxEN is still set high), the transceiver
goes to Idle state and BP/BM goes to a level of voltage
around Vcc/2. In both bus states, Idle LP and Idle, the
differential bus voltage value (uBus) is almost zero and no
current is driven either to BP or to BM. However, when the
transmitter is enabled (TxEN set low), BP/BM voltages go
to different directions, generating a differential voltage on
the bus. During Data 0 state uBus is negative and during
Data 1 uBus is positive. The simulation result shows that the
behavioral model correctly represents all the states and passes
the test.

In addition to the protocol specifications, the model
supports some additional features.



8 EURASIP Journal on Embedded Systems

Table 1: CAN transceiver model architectures characteristics.

Description Fast model Moderate model Accurate model

Output drivers Piecewise linear Taylor series Transconductor

EME control No No Yes

Internal voltage reference Piecewise linear Exponential Exponential

Power consumption estimation No Yes Yes

Thermal shutdown No Yes Yes

(i) Statistical Analysis: corner and Monte Carlo analyses
allow the user to run simulations where the devices
are exposed to different environment conditions. The
influence of each device on the entire network, in
worst case scenarios, can be evaluated even during the
network design stage and before any prototype being
developed.

(ii) Fault diagnosis: the detection of network faults is
implemented by the behavioral model. The model is
able to detect and signal bus line short circuits and
power supplies failures.

(iii) Monitoring system: all the power supplies as well as
the voltages at all input/output pins are constantly
monitored. If any voltage is out of the defined valid
range, error or warning messages are generated.

Figure 9 shows an example of fault diagnosis, where
the power supply voltage (Vcc) failure is simulated. The
simulation starts with Vcc at typical value (5.0 V), and then
Vcc goes to unpowered (0.0 V) and returns to typical value
(Figure 9(b)).

The pass/failure criterion defines that, if Vcc undervolt-
age is detected, the undervoltage monitoring flag porb vcc
must signals the failure and the bus drivers should
autonomously switch to low-power mode; that is, no current
must be driven either to BP or to BM and the bus drivers
must bias both, BP and BM, to GND level.

While Vcc is at typical value, BP and BM bus lines
represent the bus state defined by the input control pins
(STBN, TxEN, TxD), that, in the simulation case, is Data 0
(Figure 9(a)). When Vcc goes to unpowered, BP and BM go
to Idle LP state and porb vcc signals the Vcc power supply
failure (Figure 9(c)). The transceiver remains in Idle LP state
until no power supply failure is detected. The model presents
the correct behavior during power supply failure and also the
correct power supply failure detection and signal (porb vcc).

When statistical analysis is implemented, it is also
necessary to verify the model behavior in the corner cases.
Figure 10 shows the bus signal integrity analysis not just for
the typical behavior but also for the corner cases (best and
worst cases). The corner cases parameters must be provided
by the silicon manufacturer (foundry).

The simulation results demonstrate that the model does
not present any signal integrity problem (neither in the
corner cases).

3.2. CAN Bus Transceiver. The mixed-mode behavioral
model of CAN bus transceiver is fully compatible with the
ISO CAN standard and with the NCV7341 transceiver [17].

102 104 106 108 110 112 114 116 118

0

1

2

3

B
P

/B
M

(V
)

Time (μs)

BP
BM

(a)

102 104 106 108 110 112 114 116 118
0

2

4
V

cc
(V

)

Time (μs)

Vcc

(b)

102 104 106 108 110 112 114 116 118

0

1

Po
rb

V
cc

Time (μs)

Porb Vcc

(c)

Figure 9: Power supply voltage Vcc failure simulation.

In this case study, we show how the tradeoff between
accuracy and speed was managed. Three different CAN
transceiver model architectures were implemented. Each
architecture uses different primitive elements descriptions,
which directly affect the model accuracy and speed. On
the other hand, some model architectures implement the
thermal protection, the instantaneous power consumption
estimation based on the operation modes, and the electro-
magnetic emission (EME) control. The model architecture
characteristics are presented in Table 1. Further informa-
tion about the implemented architectures can be found
in [18].

The performance is evaluated comparing the CPU usage
time of the three architectures. Some simulation results are
presented. Table 2 gives a brief description of the performed
tests and Table 3 shows the CPU usage time in seconds. The



EURASIP Journal on Embedded Systems 9

500 520 540 560 580 600 620 640 660 680 700
2

2.5

3

3.5

B
P

/B
M

(V
)

Time (ns)

Data 0 Data 1

BP/BM typical
BP/BM best case
BP/BM worst case

(a)

500 520 540 560 580 600 620 640 660 680 700

−1.5

−1
−0.5

0

0.5
1

1.5

u
B

u
s

(V
)

Time (ns)

uBus typical

uBus best case

uBus worst case

Eye diagram mask

(b)

Figure 10: BP and BM bus lines signal integrity simulation.

Table 2: Test cases description.

Test no. Description Simulation period

Test 1 TxD dominant clamp timeout 1.1 ms

Test 2 Vio undervoltage timeout 12.3 ms

Test 3 Loop delay TxD-CANBus RxD 14.0 μs

Test 4 Hoping states 133.1 μs

Test 5 Short circuits 210.1 μs

Test 6 Local and remote wake-up 670.1 μs

Test 7 Power-On detection 10.5 ms

PC workstation used to perform the tests presented in Table 3
is an Intel P4, 2.66 GHz, 512 MB RAM, and Linux O.S.

The results shown in Table 3 demonstrate the CPU usage
time variation according to the chosen architecture. It is also
possible to verify that CPU usage time variation is strongly
dependent on the test case characteristics.

In addition, we present some examples of model vali-
dation for the CAN transceiver model. Model simulations
in the three architectures are compared with measurements.
Figure 11 shows the recessive to dominant and Figure 12
shows the dominant to recessive bus state transitions.

The measured and ACCURATE model data match,
mainly regarding to bus signals voltage slope. The FAST and
MODERATE model results match on voltage levels, but they
exhibit steeper voltage slopes. The architecture choice must
consider the user requirements.

0.05 0.1 0.15
1

1.5

2

2.5

3

3.5

4

C
A

N
L,

C
A

N
H

(V
)

Time (μs)

Measured
Model fast

Model moderate
Model accurate

Figure 11: Recessive to dominant state transition.

1 1.05 1.1 1.15
1

1.5

2

2.5

3

3.5

4

C
A

N
L,

C
A

N
H

(V
)

Time (μs)

Measured
Model fast

Model moderate
Model accurate

Figure 12: Dominant to recessive state transition.

Table 3: CPU usage time.

Test no. Fast Moderate Accurate

Test 1 46.9 s 49.7 s 59.3 s

Test 2 329.4 s 450.0 s 534.7 s

Test 3 15.2 s 24.2 s 31.3 s

Test 4 18.8 s 28.3 s 35.0 s

Test 5 30.4 s 52.4 s 90.5 s

Test 6 31.8 s 38.0 s 46.5 s

Test 7 339.1 s 390.0 s 461.0 s

3.3. Advantages of Using Behavioral Simulation. The in-
vehicle communication network is composed by the ECUs
(see Figure 1) and the bus line, which connects all the
ECUs of the network. Figure 13 shows an example of the
communication network. Accordingly with the applica-
tion requirements (bandwidth, safety, deterministic/statistic
behaviors, etc.), different communication protocols can be
used, as, for instance, CAN and Flexray protocols. The



10 EURASIP Journal on Embedded Systems

ECU
B

ECU
D

ECU
F

ECU
H

ECU
A

ECU
C

ECU
E

ECU
G

Figure 13: In-vehicle network example.

Table 4: CPU usage time.

Test case description Behavioral
model

Spectre
model

Simulation
period

Bus signal integrity 3.8 s 372.8 s 102 μs

Bus state transitions 3.5 s 512.2 s 400 μs

Vcc Power supply failure 2.5 s 162.9 s 120 μs

Wake-up pattern detection 7.8 s 2622.8 s 235 μs

number of ECUs can also increase since new electronic
controlled features are implemented in the vehicle system.

The increasing complexity of in-vehicle communication
networks requires big effort on system design verification. It
is compulsory to verify if the network behavior is compliant
to the protocol physical layer specification and to ensure
the interoperability between the ECUs that compose the
network.

The transceiver behavioral models presented in Section 3
can be used for evaluating the communication network
design and also for forecasting design problems in the
early stages of the design process, even before building any
hardware prototype.

If all the models of the network component are available,
it is possible to analyze the network behavior in real
operation conditions, verifying the effects of the network
reflections, timings, and so forth.

The use of behavioral simulations has advantages with
respect to the use of prototypes as well to the use of transistor
level simulations.

When compared with hardware prototypes, behavioral
simulations represent a reduction in cost and time to market.
In addition, it allows easily and quickly changing and
verifying the network topology, which is very hard and costly
with prototypes. Moreover, in behavioral simulations the
user has the total system controllability, which allows setting,
simulating, and verifying the system behavior in the worst
case scenarios.

Behavioral simulations are much faster when compared
with transistor level simulations. Table 4 shows the com-
parison of the CPU usage time between the simulations of
VHDL-AMS behavioral model and Spectre model of Flexray
physical layer transceiver. The first column gives a brief
description of the main tests performed. The second and
third columns report the CPU usage time of the simulations
of behavioral model and Spectre model, respectively. The
fifth column shows the simulation period set for the test case
transient analysis. The PC workstation used to perform the
tests is an Intel P4, 2.66 GHz, 2 GB RAM, and Linux O.S.

4. Conclusion

The paper presents a systematic development methodology
for mixed-mode behavioral models of in-vehicle electronic
embedded systems. The proposed methodology is divided in
four different steps: model specification, model design and
implementation, tradeoff, and conformance test.

Two case studies are presented: a real silicon device
mixed-mode behavioral model of a CAN bus transceiver
and a generic mixed-mode behavioral model of a Flexray
physical layer transceiver. The paper presents how the pro-
posed methodology was applied to the models development,
reporting some simulation results.

In addition, the paper shows that the behavioral sim-
ulations present an expressive reduction of the CPU usage
time if compared with Spectre transistor level simulations.
Moreover, behavioral simulations are flexible and allow
the fast communication network setup and verification if
compared with hardware prototypes.

Future work will address the electromagnetic compatibil-
ity (EMC) analysis applied to behavioral modelling. It should
focus on the electromagnetic emissions effects (caused by
the fast transitions of the transmitted bus line differential
signal) and the conducted immunity. A deep study of how
behavioral models can reliably represent the electromagnetic
effects is necessary.

References

[1] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert, “Trends in
automotive communication systems,” Proceedings of the IEEE,
vol. 93, no. 6, pp. 1204–1222, 2005.

[2] K. Current, J. F. Parker, and W. Hardaker, “On behavioral
modeling of analog and mixed-signal circuits,” in Proceedings
of Conference on Signals, Systems and Computers, pp. 264–268,
Pacific Grove, Calif, USA, October 1994.

[3] W. Lawrenz and D. Bollati, “Validation of in-vehicle-protocol
network topologies,” in Proceedings of the 2nd International
Conference on Systems (ICONS ’07), pp. 20–24, April 2007.

[4] T. Gerke and C. Schanze, “Development and verification of in-
vehicle networks in virtual environment,” SAE Technical Paper
Series 2006.01.0168, SAE International, Warrendale, Pa, USA,
2005.

[5] T. Gerke and D. Bollati, “Development of physical layer and
signal integrity analysis of flexray design systems,” SAE Techni-
cal Paper Series 2007.01.1636, SAE International, Warrendale,
Pa, USA, 2007.



EURASIP Journal on Embedded Systems 11

[6] T. Gerke and D. Bollati, “An automoted model based design
flow for the desing of robust flexray networks,” SAE Technical
Paper Series 2008.01.1031, SAE International, Warrendale, Pa,
USA, 2008.

[7] “FlexRay Communication System Electrical Physical Layer
Specification,” FlexRay Consortium, http://www.flexray.com/.

[8] “BOSCH—CAN Specification Version 2.0,” 1991, Robert
Bosch GmbH, http://www.bosch.com/.

[9] “Flexray Communications System Specifications,” FlexRay
Consortium, http://www.flexray.com/.

[10] W. Prodanov, M. Valle, R. Buzas, and H. Pierscinski, “Behav-
ioral models of basic mixed-mode circuits: practical issues
and application,” in Proceedings of the European Conference on
Circuit Theory and Design (ECCTD ’07), vol. 1, pp. 854–857,
Seville, Spain, August 2007.

[11] J. Chew and C. Sullivan, “Verification, validation, and accred-
itation in the life cycle of models and simulations,” in
Proceedings of the Winter Simulation Conference, vol. 1, pp.
813–818, Orlando, Fla,USA, December 2000.

[12] P. J. Ashenden, G. D. Peterson, and D. A. Teegarden, The
System Designer’s Guide to VHDL-AMS, Morgan Kaufmann,
San Francisco, Calif, USA, 2003.

[13] R. C. Jaeger, Microelectronic Circuit Design, McGraw-Hill, New
York, NY, USA, 1997.

[14] D. Caughlin, “An integrated approach to verification, val-
idation, and accredition of models and simulations,” in
Proceedings of the Winter Simulation Conference, vol. 1, pp.
872–881, Orlando, Fla,USA, December 2000.

[15] “Flexray Physical Layer Conformance Test Specification Ver-
sion 1.0,” FlexRay Consortium, http://www.flexray.com/.

[16] C. Muller, M. Valle, R. Buzas, and A. Skoupy, “Mixed-mode
behavioral model of flexray physical layer transceiver,” in
Proceedings of the 19th European Conference on Circuit Theory
and Design (ECCTD ’09), pp. 527–530, Antalya, Turkey,
August 2009.

[17] NCV7341, “High-Speed Low Power CAN Transceiver,” 2007,
ON Semiconductors Inc., http://www.onsemi.com/.

[18] W. Prodanov, M. Valle, R. Buzas, and H. Pierscinski, “A
mixed-mode behavioral model of a controller-area-network
bus transceiver: a case study,” in Proceedings of the IEEE
International Behavioral Modeling and Simulation Workshop
(BMAS ’07), pp. 67–72, San Jose, Calif, USA, September 2007.


	1. Introduction
	2. Model Development Methodology
	2.1. Model Specification Definition.
	2.2. Model Design and Implementation.
	2.2.1. Conceptual Model Definition.
	2.2.2. Primitive Elements Definition.
	2.2.3. VHDL-AMS Primitive Elements Implementation.
	2.2.4. Primitive Elements Verification.
	2.2.5. VHDL-AMS Hierarchical Model Implementation.

	2.3. Tradeoff.
	2.4. Conformance Test.
	2.4.1. Model Verification.
	2.4.2. Model Validation.


	3. Results
	3.1. Flexray Physical Layer Transceiver.
	3.2. CAN Bus Transceiver.
	3.3. Advantages of Using Behavioral Simulation.

	4. Conclusion
	References

