
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2010, Article ID 601343, 15 pages
doi:10.1155/2010/601343

Research Article

An Embedded SystemDedicated to Intervehicle
Communication Applications

Xunxing Diao,1 Haiying Zhou,2 Kun-Mean Hou,1 and Jian-Jin Li1

1 LIMOS Laboratory, UMR 6158 CNRS, Blaise Pascal University Clermont-Ferrand II, Aubière 63173, France
2 School of Computer Science, Harbin Institute of Technology, Harbin 150001, China

Correspondence should be addressed to Haiying Zhou, haiyingzhou@hit.edu.cn

Received 1 December 2009; Revised 30 March 2010; Accepted 7 July 2010

Academic Editor: Guoliang Xing

Copyright © 2010 Xunxing Diao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To overcome system latency and network delay is essential for intervehicle communication (IVC) applications such as hazard
alarming and cooperative driving. This paper proposes a low-cost embedded software system dedicated to such applications. It
consists of two basic component layers: an operating system, named HEROS (hybrid event-driven and real-time multitasking
operating system), and a communication protocol, named CIVIC (Communication Inter Véhicule Intelligente et Coopérative).
HEROS is originally designed for wireless sensor networks (WSNs). It contains a component-based resource-aware kernel and a
low-latency tuple-based communication system. Moreover, it provides a configurable event-driven and/or real-time multitasking
mechanism for various embedded applications. The CIVIC is an autoconfiguration cooperative IVC protocol. It merges proactive
and reactive approaches to speed up and optimize location-based routing discovery with high-mobility nodes. Currently, this
embedded system has been implemented and tested. The experiment results show that the new embedded system has low system
latency and network delay under the principle of small resource consumption.

1. Introduction

Each year in Europe, 1,300,000 vehicle accidents result in
1,700,000 personal injuries. The financial cost of vehicle
accidents is evaluated at 160 billion Euros (approximately
the same cost in the USA [1]). Many IVC projects were
investigated [2–4] but the implementation aspects were not
detailed. To improve the highway safety, a low-cost and
a more reliable embedded IVC is needed especially for
applications like hazard alarming and cooperative driving
(e.g., collision avoiding). As one can imagine, such appli-
cations require extra effort to deal with real-time event and
network delay under the dynamic topology caused by highly
mobile network nodes; thus, we have proposed an auto-
configuration location-based IVC protocol named CIVIC in
[5, 6].

General purpose proactive (e.g., OLSR [7]) and reactive
protocols (e.g., AODV [8]) are not adapted to IVC appli-
cation due to high dynamic topology change. The CIVIC
protocol includes both proactive and reactive approaches
to make it suitable for IVC. The proactive approach is

the one-hop neighbour knowledge exploration. In order to
avoid network traffic overhead, the proactive intervals are
autoconfigured depending on the positions and speeds of
network nodes. Based on previous neighbour information,
CIVIC can then speed up and optimise the routing discovery.
The routing approach can be reactive or proactive depending
on application layer requiring. Either way, if destination node
is not in one-hop distance, CIVIC will select the best effective
node to forward routing requests by a directional resource-
aware broadcast mechanism.

The last experiment result of CIVIC protocol is shown
in [5]. Until this experiment, the tasks in CIVIC are imple-
mented as infinite loops. Tasks are driven by events (e.g.,
timer interrupt) and run in a nonpreemptive scheduling
mechanism. Such mechanism cannot assure the event-driven
tasks run in time when system is busy, and it is difficult to
achieve the intranode resource-aware.

To overcome these shortcomings, this paper proposes
a new low-memory footprint IVC design integrated an
operating system named HEROS. HEROS merges the advan-
tages from both event-driven and real-time multitasking



2 EURASIP Journal on Embedded Systems

mechanisms into a hybrid configurable component-based
mechanism. This hybrid mechanism can be adopted in
various applications driven by events but also required to
have real-time operations. For example, in the intervehicle
hazard alarming applications, when a vehicle detects the
hazard triggered by events, it may need to maintain real-
time communications to inform other vehicles for example
to avoid collision (in case of bad weather: smog, snow,
etc.).

A fundamental requirement for practical embedded
system is resource-aware, HEROS provides the new IVC
embedded system with intranode resource-aware mecha-
nism. Although the embedded system on vehicles may gain
better hardware supports, the characteristics of embedded
hardware still have to cope with resource constraints in
terms of CPU, memory, energy, and transmission distance.
The HEROS originally designed for WSNs with stringent
resource constraints. Its microkernel architecture allows
hybrid tasks to be run with low memory consumption.
Moreover, it provides a tuple-based intranode communi-
cation and synchronization system based on the parallel
programming language LINDA [9, 10]. It is the key technol-
ogy to enable the lightweight resource-aware design on our
embedded IVC system.

Summarizing, in the new IVC embedded system, HEROS
provides CIVIC with intranode mechanisms to run hybrid
tasks and manage hardware, while CIVIC constitutes a quick-
response internode communication stack on HEROS. The
designs have been implemented in LiveNode sensor board
[11], and experimented with a small network grouped by
nine nodes. The experiment results show the new design
embedded system has low system latency and network delay.
Thus it is adapted to IVC application such as collision
avoidance.

The remainder of the paper is organized as follow-
ing. The related works of HEROS and CIVIC will be
summarized in the next section. Section 3 introduces the
HEROS system microkernel. Section 4 presents the CIVIC
protocol. Section 5 explains how these two component layers
work together. Section 6 describes the evaluations of system
performance. In the last section, we present the conclusion
and the ongoing work.

2. RelatedWorks

2.1. Embedded Operating System. In the existing embedded
OSs, there are two common operation mechanisms: multi-
tasking and event-driven.

The real-time multitasking mechanism provides a solu-
tion for rapidly developing the time-sensitive applications
and it gives the full control over tasks [12]. However, this
mechanism consumes high resources in terms of energy,
CPU and memory. The existing embedded RTOSs such
as SDREAM [13], μC/OS-II [14], VxWorks, QNX, pSOS,
WinCE.NET, RTLinux, Lynxos, RTX, and HyperKernel are
not suitable for the embedded IVC system because they only
operate as this mechanism and it is resource consuming
(CPU and memory) comparing with our proposed solution
one.

To minimize resource consuming, many embedded OSs
were developed for WSN fields (called WSNOS: WSN
Operating System) such as TinyOS [15], MagnetOS [16],
Contiki [17], MantisOS [18], EYEOS [19], and SOS [20]
(sensor operating system). These WSNOSs meet the require-
ment of resource constraint. TinyOS adopts the event-
driven component-based structure and has a tiny memory
footprint. The rest of WSNOSs except Contiki adopt mul-
titasking concept. Similar to TinyOS, Contiki is based on
event-driven, but it may be configured to run in hybrid
mode: event-driven and multitasking. Contiki is not a native
hybrid WSNOS.

Note that, on one hand, a single task event-driven system
does not fit for hard real-time constraint. On the other
hand, in an event-driven mechanism (e.g., TinyOS), the
task switches is normally based on a nonpreemptive event-
loop. This mechanism has the advantage in low resource
consumption, so it is suitable for WSNs. However, the
existing event-driven embedded WSNOSs are essentially
implemented by a single processing mechanism; thus, they
may not be suitable for IVC applications, which require
complex real-time operations.

In HEROS, we merge these two operation mechanisms
into a configurable modular mechanism. This design is able
to adapt to more various WSN and IVC applications include
intelligent transportation, health care, military, and so forth.

2.2. IVC Protocol. The major features of CIVIC protocol are
to discover and maintain the routing path in high-mobility
embedded networks. The current routing protocols can be
classified into three classes: proactive, reactive, and hybrid.

The proactive routing protocols maintain up-to-date
routing tables for partial or entire network. It keeps the
message delay low because data can be sent to a destination
node without an immediate routing request. However, in
order to have correct routing paths, each node needs to
explore network routing periodically, thus network traffic
could be increased significantly. The main proactive pro-
tocols are OLSR (optimized link state routing) [7], DSDV
(destination-sequenced distance-vector) [21], and TBRPF
(topology dissemination based on reverse-path forwarding)
[22]. Moreover, the proactive routing protocols are not
suitable for IVC because the network topology changes
quickly due to the vehicle mobility.

The reactive routing protocols do not maintain routing
tables. They discover routing paths only when a demand
is received. Therefore, they are more efficient in terms of
bandwidth utilisation but along with additional message
delay. The main reactive protocols are DSR (dynamic source
routing) [23], AODV (ad hoc on demand distance vector)
[8], TORA (temporally-ordered routing algorithm) [24],
ABR (associativity-based routing) [25], and SSR (Signal
Stability Routing) [26].

The hybrid routing protocol combines the advantages
of the proactive and reactive protocols. An example is
ZRP (zone routing protocol) [27]. It includes two routing
components: a proactive intrazone routing component and a
reactive interzone routing component. The CIVIC protocol
has some similarities like ZRP. However, none of previous



EURASIP Journal on Embedded Systems 3

In

Out

Thread
I

Thread
II

Daemon

E
ta

sk In

Out

Thread
I

Thread
II

Thread
III

E
ta

sk

Daemon

In

Out

Figure 1: HEROS component-based architecture: thread and etask.

mentioned routing protocols have considered the particular-
ity of the IVC such as direction, location, and road traffic,
which will be explained in detail in Section 4.

3. HEROSMicrokernel

The cost and the efficiency of the embedded IVC system
are an important factor for car manufacturers and high-
way infrastructure management. To minimize the cost it is
essential to implement appropriate embedded hardware and
software (real-time operating system and communication
protocol) meeting the real-time IVC application.

In this section, the system architecture, the scheduling
mechanism, and the communication and synchronization
mechanism of HEROS microkernel are introduced, respec-
tively.

3.1. System Architecture. HEROS adopts the component-
based system architecture to perform the event-driven
and/or real-time operations. It contains two main system
components: thread and etask (event task).

Thread is the essential system component that performs
a single action in HEROS. A series of threads can be engaged
in complex real-time task under the control of a master etask.
Threads belong to an etask run parallel and corporately;
hence, they must be interruptible and preemptive. Each etask
must contain at least the general daemon thread, which
enables the related hardware to be switched into low-power
mode. For example, in an application with low wireless
data rate, most of time, the daemon thread can disable
the wireless access medium module (idle mode). Etask is
a packing widget that encapsulates a group of threads to
complete a task. Etasks are performed in sequence according
to the priority of etasks; hence, etasks are interruptible but
not preemptive. Within an etask, threads share tuple space
(buffer resources) and allocate private context stacks. After
an etask is completed, its tuple and stack will be released. This
design allows the embedded application to be scheduled for
various tasks with less memory footprint.

The communication of components (threads and etasks)
is via a mutual tuple space. In the first time, an etask is
activated, this etask generates a tuple space for its slave
threads. The tuples will not be released when leaving an etask.

Table 1: Structure of component control block.

ID Numeric ID of this component

STAT Current state of this component

PRI Priority of this component

MAX TIME Maximal lifetime of this component

CUR TIME Current runtime of this component

NXT ITEM Pointer of next component in the ready list

TUPLE ID Numeric ID of the thread’s tuple

SSP Start buffer pointer of the thread’s stack

CSP Current buffer pointer of the thread’s stack

Threads and etasks calls the IN/OUT system primitives to
exchange data and transfer message/signal via the relative
tuple space. A thread is triggered by signals coming from
other components or external peripherals. An etask is
activated only after one of its threads is triggered by a
signal. The component-based system architecture is shown
in Figure 1.

In a HEROS implementation with only one event
containing multiple threads, the threads can be scheduled
in fully real-time multitasking mode. In an implementation
with multiple events but each contains only one thread
(besides daemon thread), the tasks can be run in event-
driven mode like TinyOS. In software design, etask and
thread components are represents as two data structures:
etask control block (ECB) and thread control block (TCB)
as shown Table 1.

3.2. System Scheduling. HEROS adopts the two-level
priority-based scheduling mechanism to merge event-
driven and real-time tasks at one system. This mechanism
can provide a predictable scheduling with an invariable
scheduling time.

3.2.1. Priority Scheduling Mechanism. Due to the interrupt-
ible and nonpreemptive characterises, etasks are performed
in a typical event-driven mode. An active etask runs to com-
pletion until all threads of this etask has been terminated.
In view of the interruptible and preemptive characteristics,
threads are performed in a typical multitasking mode.
The elected thread can preempt any other lower priority



4 EURASIP Journal on Embedded Systems

Scheduler

Component
type?

Thread Etask

Suspend current thread

Select a thread from TCB,
set this thread to current thread

A first time to call
this thread?

Run current thread
in cold mode

Yes
No

Run current thread
in warm mode

Remove current etask from ECB

Select a etask from ECB,
set this etask to current etask

Select a thread from TCB of
current etask,

set this thread to current thread

Run current thread
in cold mode

Figure 2: HEROS system scheduling mechanisms.

threads at any execution point outside of system critical
section.

The priority of system components (etask and thread) are
calculated as the following expression. Defining Pcur is the
component priority, then

Pcur(t) =
(

1 +
t

Tmax

)
× Pcur(0), 0 � t � Tmax, (1)

where Pcur(0) and Tmax are the initialization constants and
Pcur(t) is a time function, 0 ≤ t ≤ Tmax. Pcur(0) and Tmax

indicate the initial component priority and the maximal
allowable lifetime “MAX TIME,” which are preallocated
when this component is activated at time 0 (t = 0). The
“CUR TIME” value Tcur can thus be expressed as follows:

Tcur(t) = Tmax − t, 0 � t � Tmax, (2)

where Tcur = 0 at time Tmax, which means that the
component elapses its time-slice and then will be terminated.

Both etasks and threads adopt the “priority-based”
scheduling mechanism, in which the etask scheduling is
nonpreemptive and the thread scheduling is preemptive.
The system-scheduling flowchart is shown in Figure 2 and
the main scheduling functions are listed in Table 2. The
execution time of scheduling functions is predictable and
deterministic.

Table 2: System scheduling functions.

In System Primitive, read data from tuple

Out System Primitive, write data into tuple

Etask Manager Perform etask scheduling mechanism

Thread Scheduler Perform thread scheduling mechanism

InsertThreadList Insert a thread to TCB and resort TCB items

DeleteThreadList Delete a thread in TCB and resort TCB items

InsertEtaskList Insert a etask to ECB and resort ECB items

DeleteEtaskList Delete a etask in ECB and resort ECB items

EtasktoThread Perform etask-to-thread conversions

3.2.2. Etask-to-Thread Conversion. Considering a specific
case where a higher priority etask εH is ready and at the same
time the current activated etask εL has the lower priority
comparing with εH one, then εH can only be elected to
run after εL has been terminated. Consequently, the above-
mentioned scheduling mechanism cannot meet the real-time
requirement.

One solution is to adopt the etask-to-thread conversion
scheme: εH can be treated as the thread τ with highest
priority in εL, so that τs can preempt any other active thread
of εL in view of the thread scheduling mechanism. The
scheme breaks down the obstacle between threads and etasks,
allowing the threads of an urgent etask to preempt the CPU
resource in real-time.



EURASIP Journal on Embedded Systems 5

In

Data is READY
in tuple?

Yes No

Read data from the tuple
buffer

DIS ALL IRQ

Update the state of the tuple

ENA ALL IRQ

Return

DIS ALL IRQ

Thread scheduler

Update the state of the thread

Update the state of the tuple

Figure 3: Functional descripticon of the IN system primitive.

Table 3: Structure of tuple table.

ID Numeric identifier: key of tuple

STAT Current tuple state: Free or Full

WRI HEAD Current writing buffer pointer

REA TAIL Current reading buffer pointer

MSG NUM Count of current message in tuple

SIZE Length of the ring buffer (constant)

STA ADD The start address of ring buffer (constant)

END ADD The end address of ring buffer (constant)

Let Pε and Pτ be the priorities of etasks and threads,
then by adopting the etask-to-thread conversion scheme, the
initialization priorities of the threads of εH are

P′cur τ(0) = Pcur τ(0) + (Pcur εH(0)− Pcur εL(t)), (3)

where P′cur τ(0) and Pcur τ(0) are the initial priorities of after
and before conversion of τ, and Pcur εH(0) and Pcur εL(t) are
the initial priority of εH and the current priority of εL.

3.3. System Communication. To simplify the system imple-
mentation, HEROS provides a uniform interface and a tuple-
based communication mechanism for the interactions of
system components. Basing upon the concept of parallel
language LINDA, HEROS adopts the tuple space and the
IN/OUT primitives for the message exchange and interpro-
cess communication (IPC).

3.3.1. Tuple Space. The tuple space consists of a set of tuples
(buffers), which are used to exchange data or manage signals
between components. In HEROS, each thread is allocated
a unique tuple, through which other components can send
data to activate this thread. Two kinds of interactions are
allowed for the system communication and synchronization:
the interior interaction between threads and the exterior
interaction between threads and peripherals.

Each tuple is allocated a critical resource that is a ring
buffer, in which data are loaded at the head and read from
the tail. Tuples are stored into a data table named tuple table,
shown in Table 3.

3.3.2. System Primitive. IN/OUT is the pair of system
primitives that is responsible for the communication and
data exchange between system components and peripherals.
The IN primitive is called when a thread needs to read data
from its related tuple. Defining μ is the tuple and τs is the
source thread, the functional description of the IN primitive
is shown in Figure 3.

(1) If (Data is ready in μ), then Read data from μ of τs,
and Update the state of μ;

(2) Else, update the state of (μ, τs), and then call
thread scheduler to suspend τs and start a new
scheduling.

The OUT primitive is called when an ISR (interrupt
service routine) or a thread needs to communicate with one
another. Defining μ is the tuple, τo is the object thread and



6 EURASIP Journal on Embedded Systems

ENA ALL IRQ

The owner etask is
current etask?

Thread schedulerEtask-to-thread
conversion

Yes Yes

The owner etask is
a urgent one?

No

No Yes

Return No The object thread is
a urgent one?

Update the state of the owner
etask

Update the state of the object
thread

Update the state of the tuple

DIS ALL IRQ

Write data into the tuple
buffer of the object thread

Out

Resort all items of ECB

Insert the owner etask into
ECB

No

The owner etask
is in ECB?

Yes

Resort all items of TCB of
the owner etask

Insert the object thread into
TCB of the owner etask

Figure 4: Functional description of the OUT system primitive.

εo is the owner etask, the functional description of the OUT
primitive is shown in Figure 4.

(1) Write data into μ of τo;

(2) Update the states of (μ, τo, εo);

(3) Call InsertThreadList to insert τo into TCB of εo, and
then resort the threads of this TCB;

(4) If (εo is not in ECB), then call InsertEtaskList to insert
εo into ECB and then resort the etasks of this ECB;

(5) If (εo is current etask and τo is the highest one
in TCB), then call thread scheduler to start a new
scheduling;

(6) If (εo is not current etask and εo is the highest one in
ECB), then call etask-to-thread to perform etask-to-
thread conversion.

4. CIVIC Protocol

The design of CIVIC protocol is based on the scenarios
of vehicular networks with dramatic changes of topolo-
gies according to location and time. In some scenar-
ios, for example at night and on bad weather, the net-
work density could get very low. In such scenarios, a
communication system purely in client/server mode or
in mobile ad hoc mode may not be appropriate. Since
the distribution of vehicular network is generally along
roads. The CIVIC assumes the roadside infrastructure
MMRS (multisupport, multiservice routers and servers)
can be deployed to support network access and QoS.
Figure 5 shows how a message is forwarded from one
node to another through mixed networking of ad hoc and
infrastructure.



EURASIP Journal on Embedded Systems 7

MMRS
MMRS

MMRS

Area with MMRS
(infrastructure)

Area without MMRS
(ad hoc)

Figure 5: Mixed ad hoc and infrastructure networks.

The second assumption of CIVIC protocol is that the
location and direction of network nodes could be obtained
by GPS (global positioning system) on vehicles or from
roadside MMRS.

4.1. Routing Mechanisms. Based on these two assumptions,
CIVIC protocol is run with the following two mechanisms.

4.1.1. One-Hop Link Stability. A common way to ensure
quick routing response is to keep stable connections. In a
high-mobility scenario like vehicular network, the survival
time of stable connections has great impact to QoS.

The stability of connection in CIVIC protocol is main-
tained by the neighbour knowledge exploration. The explo-
ration is proactive, it is implemented by the exchange of
“Hello” messages, and it must be performed only when
the link stability is out of date. The dynamic interval of
neighbour knowledge exploration is evaluated by Δt =
Min{Δtr} with equation set (4).

Δtr = ∞, if vmax
r = vs;

Δtr = R + xs − xmax
r

vmax
r − vs

, if xmax
r > xs, vmax

r > vs;

Δtr = R + xmax
r − xs

vs − vmax
r

, if xmax
r < xs, vmax

r < vs;

Δtr = xmax
r − xs
vs − vmax

r
, otherwise,

(4)

where R is the radio range in the worst case; xs is the location
of source node, and vs is its average speed; xmax

r is the location
of one of its neighbour nodes, and vmax

r is the speed of this
neighbour node. Both xmax

r and vmax
r are adjusted by the

worst case of GPS error. The equation set (1) means that
the interval of sending “Hello” messages depends on the
distances and the relative speeds between the source node
and its neighbour nodes.

After neighbour knowledge explorations, each node
stores its neighbour information for the further multihop
routing algorithm.

4.1.2. Multihop DANKAB. Due to resource constraints of
embedded system and negative effects from radio irregularity
[28], broadcast is a suitable transmitting scheme for IVC
routing algorithm. However, it is well known that broadcast
could cause serious redundancy, contention, and collision

S
α

β
R

D

S : Source node

R : Neighbour node of S
D : Destination node

Figure 6: DANKAB routing concept.

[29]. Therefore, it is important to determine a correct broad-
casting technique. DANKAB (directional area neighbour
knowledge adaptive broadcast) is therefore proposed.

When the destination node is not in one-hop distance,
DANKAB is used in the routing requests to find the next hop
of source node. Figure 6 illustrates this process with source
node S, destination node D, and routing node R. We define
the direction area as an angle α with a default value of ±30◦.
In order to reduce the number of messages in the network,
only the nodes within the direction area can broadcast the
message. If there is no node within the direction area, the
angle α will be gradually increased (e.g., 45◦, 90◦, and 180◦)
until the next hop is found. A node can be a candidate in the
next hop if cosα ≤ cosβ. The cosβ is calculated by law of
cosines

cosβ = Dis2
sd + Dis2

sr −Dis2
rd

2DissdDissr
. (5)

In (5), Dissd, Dissr, and Disrd are the Euclidian distances
between nodes S and D, S and R, and R and D, respectively.
The Euclidean direction is not appropriate for defining the
direction of mobile node when roads are too winding, but it
can be applied for a short segment of a road.

In an infrastructure network, the roadside MMRS can
provide the location of destination node D. In an ad hoc
network, a location request will be performed by simple
flooding to all directions. Other nodes in the same network
can store the location responded from destination node to
avoid resending such requests. The location of destination
node may change during this process, but the DANKAB is
based on broadcast, so there is no need for a very accurate
location of destination node.



8 EURASIP Journal on Embedded Systems

Figure 7: LiveNode platform.

When there is more than one node in the direction area,
two energy-aware methods can be adopted for selecting the
next candidate node. The first method is competitive broad-
cast. When a node in area α forwards (rebroadcasts) a routing
message, it sends with a delay based on the remaining energy,
thus the node with more energy will forward a message more
quickly. Other nodes with less energy will discard the same
routing message when they receive the first forward one. The
second method is to let the source node S selecting the node
for next hop. It requires the additional information about
remaining energy in neighbour knowledge explorations, but
it generates much less routing data. We use the second
approach for the implementation in this paper.

After defining the next hop of source node S, the
processes of DANKAB repeat hop-by-hop until the routing
message attains the destination node or reaches the preset
limitation of hop number.

If the routing path has been obtained, the data from
application layer will be transmitted. If the data rate is low,
DANKAB can also be integrated to the data sending, and the
routing request can be ignored. For the implementation in
this paper, the two mechanisms are separated.

4.2. Message Delivery Mechanisms. Based on the previous
mechanisms, the CIVIC has three groups of messages as
shown in Table 4.

The first group is for one-hop neighbour knowledge
exploration, which includes HELLO REQ (hello request)
and HELLO RPY (hello reply) messages. The second group
is for multihop routing request and reply preformed by
DANKAB. The ROUTE REQ SF is sent when the location of
destination node is unknown. This message is normally reply
by ROUTE RPY CIVIC. The ROUTE REQ CIVIC message
is sent when the location of destination node is known, and it
is normally replied by ROUTE RPY BY PATH. More details
of routing message will be described in the next part.

The data from application layer is contained by a
DATA SEND BY PATH message. To assure such message
reaches the destination node, a node can ask the destination
node to send back a acknowledge message, which is named
DATA ACK BY PATH.

5. SystemDesign

5.1. Hardware. Our hardware platform is LiveNode [11], a
versatile wireless sensor platform that enables to implement

Table 4: Message groups.

Group Name Max Size (Byte)

Hello
HELLO REQ 29

HELLO RPY 25

Routing

ROUTE REQ SF 28

ROUTE REQ CIVIC 29

ROUTE RPY CIVIC 48

ROUTE RPY BY PATH 28

Application
DATA SEND BY PATH 64

DATA ACK BY PATH 12

rapidly a prototype for different application domains. The
LiveNode hardware platform has been successfully used
in applications including telemedicine (wireless cardiac
arrhythmias detection), intervehicle communication [30],
and environmental data collection (FP6 EU project NeT-
ADDED).

As shown in Figure 7, the LiveNodes used for the
experiments have the three major modules including an
Atmel AT91SAM7S256 microcontroller (ARM7TDMI core),
a MaxStream XBee Pro chip to ensure wireless communica-
tions on 802.15.4 standard, and a GlobalSat ET-301 GPS chip
for specific GPS signal/data processing.

5.2. Software. The new embedded system can provide
adaptive task mechanisms for different IVC application
requirements. This section describes an event-driven soft-
ware design that has been tested. In this design, the flow of
computing process is driven by OS events such as packet
arriving, location updating, and timer noticing, thus it can
complement protocol stack works and leave low memory
footprint [31].

Figure 8 demonstrates the system stack and the event-
driven data flow. There are four major event-driven etasks
in the system. The TIMER RDY etask is driven by inter-
rupts from the microcontroller PIT (periodic interval
timer). The rest of etasks are mainly driven by interrupts
from the USART (universal synchronous/asynchronous
receiver/transmitter) ports connected to GPS module (US0)
or XBee module (US1). Figure 9 shows an example of
processing flow between etasks and threads. Only the etasks
and threads relating to the major system process are shown
in Figures 8 and 9.



EURASIP Journal on Embedded Systems 9

Hello reply

Routing reply and
forward

Hello request

CIVIC

Routing request

Update tables

Tasks

Application layer

Thread list

Update location

US0 RX RDY

USART 0 (GPS) PIT timer

Etask list

USART 1 (802.15.4 MAC)

TIMER RDY US1 TX RDY US1 RX RDY

Message out Message in

Heros

Figure 8: The system stack and the event-driven data flow.

. . .

US0 RX RDY

TIMER RDY

US1 TX RDY

US1 RX RDY

US1 TX RDY

. . .

Message out Push in MsgOutList

Message in Hello reply Routing reply and forward

Push in MsgOutListMessage out

Clear tables Hello request Routing request

Update locationGps in

Etask-to-etask
Inter-etask OUT/IN

Etask-to-thread
Intra-etask OUT/IN

(2)
(3)

(1) (1)

(2)
(3)

(1) (1)

Figure 9: The interactions between etasks and threads.



10 EURASIP Journal on Embedded Systems

TIMER RDY Etask Start End of TIMER RDY

Is time to activate
tables update thread

Is time to activate
hello req thread

Yes Remove outdated items from
Nei Tables and/or Route Table

No

Send HELLO REQ CIVIC

Is time to activate
routing req thread

Yes

No

No

Is destination
location avaiable

Yes Send
Route REQ CIVIC

Yes
Is source location

valid

Yes

No
Send Route REQ SF
with source location

Send Route REQ SF
without source location

No

No

Yes
Run application tasks . . .

Is time to activate
application related

threads . . .?

Figure 10: Dataflow of TIMER RDY Etask.

The TIMER RDY etask runs the periodic tasks, for
example, sending “Hello” messages, activating proactive
routing searches, and removing the outdated table items. The
tables need to be cleared periodically are the neighbour table
and the routing table. Figure 10 gives a zoom-in vision of the
TIMER RDY etask.

The US1 TX RDY etask handles the message outputs. To
avoid the sending intervals becoming too short, other etasks
should not directly send out messages. Instead, they push
messages into a buffer list called MsgOutList as the step one
shown in Figure 9. It will activate the US1 TX RDY etask
to check whether the last transmission has been finished.
If it has been finished, a message will be sent out by the
“Message Out” thread (Step 2); if not, the etask is end, and
a PIT timer will be activated to run the etask after a waiting
period (Step 3). In addition, for the time-sensitive designs,
the TIMER RDY etask can take control of the output related
to send message at a fix interval.

The etasks US0 RX RDY and US1 RX RDY contain
threads to process incoming raw data. The former deals with
the GPS data, the latter deals with the CIVIC data. The
major routing for these two etask is similar: (1) when the
input buffer is ready for data processing, a thread translates
the raw data into meaningful messages; (2) based on the
message types, the etask divide messages into the related
threads for further actions. Figure 11 shows the actions
in a US1 RX RDY etask. In addition, Figures 10 and 11

demonstrate the message delivery mechanism of CIVIC
protocol described in the last section.

6. System Evaluation

6.1. HEROS Evaluation

6.1.1. Memory Consumption. HEROS is dedicated to strict
resource-constrained mobile devices and embedded applica-
tions, it should have small resource consumption, especially
the memory consumption. Table 5 shows the memory
consumption of main functions in HEROS.

6.1.2. Execution Time of IN/OUT Primitives. The determin-
istic and predictable behaviours of system primitives are the
key features of a real-time operating system. In HEROS,
the execution time of system primitives is determined and
bounded between the minimal and maximal values. Table 6
presents the performance evaluation of IN/OUT primitives
at 48 MHz.

In the IN primitive, the maximal value is the execution
time of reading n bytes from the thread tuple when a message
is ready; the minimal value is the execution time of calling
thread scheduler when no data is available. In the OUT
primitive, the execution time is the time interval of writing n
bytes into the thread tuple and then calling InsertThreadList.
The message length n is limited between 0 and the length of



EURASIP Journal on Embedded Systems 11

US1 RX RDY Etask Start US1 RX RDY Etask End

Activate packet
processing thread

Is anew message
arrived?

No

Yes

Yes

No

Is it hello req?

Is it hello reply?
Yes

Send
PACK HELLO RPY CIVIC

Is it reply to me?
Yes

Update voisin table

No

No Forward packets and
update PacketFwdTable

No

Am I the destination
for routing req or

reply?

Yes

Is it civic routing req?

No

Is it SF routing req?

No

Yes

No

Yes Is it with
source location

Yes

Send
PACK ROUTE BY PATH

Send
PACK ROUTE RPY CIVIC

Is it routing reply? Yes Update routing table

No

Figure 11: Dataflow of US1 RX RDY Etask.

Table 5: Memory consumption of HEROS.

System functions Memory consumption (BYTE)

In 160

Out 124

Etask Manager 152

Thread Scheduler 216

InsertThreadList 152

DeleteThreadList 158

InsertEtaskList 184

DeleteEtaskList 152

EtasktoThread 92

Total
CODE 3572

DATA 1272

the tuple buffer (0 < n < N), thus the execution time of
IN/OUT primitives are also predictable.

6.1.3. System Latencies. The mechanisms of system schedul-
ing and interrupt handling are critical for the designs of

Table 6: Execution time of IN/OUT primitives.

Primitive In Out

Cost (cycles)
Max 149 + 46n∗

104 + 32n
Min 95

Time (μs) (48 MHz)
Max 3.101 + 0.957n

2.164 + 0.666n
Min 1.977

∗: n is the data length (byte), 0 < n < N , (N = the buffer length − 2);

RTOSs, which should promise the predictable and deter-
ministic system behaviours. System latencies are the key
metrics to evaluate the real-time performance of RTOSs.
In HEROS, the etask-to-etask switch latency and thread-
to-thread switch latency are used to evaluate the system
scheduling mechanism, and the interrupt response latency
and interrupt dispatch latency are used to rate the interrupt
handling mechanism.

(i) etask-to-etask switch latency: the time elapsed for
system switching from one etask to another. The
etask manager is called to run the next ready etask.
The belonging thread of this etask is activated in the
“cold” mode.



12 EURASIP Journal on Embedded Systems

Table 7: Performance evaluation of system latencies.

Latencies Cost (cycles) Time (μs) (48 MHz)

90 1.873

Etask-to-etask switch
Call etask manager to run the next etask.
The ready thread of this etask is performed
in “cold” mode;

891 (992) 1.8521 (2.062)

Thread-to-thread switch
Call thread scheduler to run the next thread
1: thread is performed in “cold” mode;
2: thread is performed in “warm” mode.

Interrupt response
Min. 29 0.604

Avg. 107 2.227

Max. 247 5.140

Interrupt dispatch
Min. 32 0.666

Avg. 68 1.415

Max. 176 3.662

(ii) thread-to-thread switch latency: the time elapsed for
system switching from the current thread to another.
The thread scheduler is called to run the next ready
thread. Note that the thread can be activated in the
“code” or “warm” mode.

(iii) Interrupt response latency: the time elapsed from
the last instruction of the interrupted components
and the first instruction in ISRs, which indicates
the rapidity of the system reaction to an external
interrupts.

(iv) Interrupt dispatch latency: the time interval to go from
the last instruction in the interrupt service routine to
the next thread scheduled to run, which indicates the
time needed to switch from interrupt mode to user
mode.

The evaluation results of system switch latencies and
interrupt latencies are presented in Table 7. The perfor-
mance results show that HEROS has deterministic system
switch/interrupt latencies satisfying the requirements of
most of real-time applications. Note that the latencies of
system switch are fixed with no concern of the numbers of
etask (thread).

6.1.4. Comparison with TinyOS. TinyOS has been tested
on ATmega128 (4 MHz) [32] and HEROS is tested on
AT91SAM7S256 (48 MHz). This paper only compares three
system operations (i.e., scheduling a task, context switch and
hardware interrupt latency) and the memory consumption
between HEROS and TinyOS, shown in Table 8. Note that
the operation of context switching happens between the two
threads in the “warm” mode. In order to support real-time
multitask operations, HEROS has more system overheads
than TinyOS but has similar system cycles for the basic
system operations.

6.2. CIVIC Evaluation. The first experiment is done in a
network with nine static sensors. A sensor is set as the

Table 8: Performance evaluation between HEROS and TinyOS.

HEROS
(AT91SAM7S256)

TinyOS (ATmega128)

Operations
Cost
(cycle)

Time
(μs)

Cost
(cycle)

Time
(μs)

Scheduling a task 43 0.895 46 11.5

Context Switch 56 1.165 51 12.75

Hardware
Interrupt (hw)

5 0.104 9 2.25

Hardware
Interrupt (sw)

61 1.269 71 17.75

OS Size (byte)

CODE 3572 1272

DATA 432 48

destination node. The other sensors keep sending routing
requests and application data to this destination sensor. We
implement all mechanisms of CIVIC protocol on HEROS for
the experiment. The maximum interval of US1 TX RDY for
message sending is set to be in 100 ms.

Since the sensors are static, we replace the GPS location
with a random location in a parking (about 80 × 60 meter
squares) of our campus, and sensors only response to
messages sent from the distance less than 50 meters. Because
each sensor actually receives all messages from the network,
it requires more operations by both CIVIC and HEROS.
This experiment focuses on testing the overall network
performance.

The experiment contains four identical subtests, each
runs 15 minutes, and then gets average values. Table 9
indicates the network performance. The loss rate is calculated
basing upon the missing serial number. When a message
outputs to the network by a sensor, the CIVIC protocol
attaches a serial number (one byte) to indicate its place in
the message sequence of the sensor. By monitoring the serial
number, we know the message loss rate for every sensor.



EURASIP Journal on Embedded Systems 13

Table 9: Individual sensor status.

Average S0 S1 S2 S3

Message number 2973 2207 3074 2995 3203

Message rate 3.41 2.46 3.63 3.67 3.57

Loss rate 4.13% 0.85% 6.54% 9.84% 1.02%

S4 S5 S6 S7 S8

Message number 3130 2734 3536 3190 2689

Message rate 3.51 3.14 3.90 3.64 3.20

Loss rate 1.51% 3.94% 2.77% 3.33% 7.34%

S0

S1

S5

S7

S2
S4

S6

S3

S8

Figure 12: Data sending flows to a destination node.

In general, most of sensors are sending routing requests
and application data to the accurate direction. Figure 12
shows an example of CIVIC routing topology. The S0 at the
corner is the destination node.

The message loss rate in this experiment should be
caused by network traffic overhead, interferences, shading,
and message collisions. As previous mention, all nine nodes
are actually receiving message from the whole network, so
they have the same conditions of the incoming network
traffic. Moreover, we can assume that the message rate in
Table 9 indicates the intranode performance of single node.
If a node cannot handle such incoming network traffic and
cause output message loss, the loss rate should be increased
with the message rate.

The implementation of first experiment consumes
42,736 K bytes memory without any optimization from com-
piler as shown in Table 10. DATA can be less than the shown
one because the experiment needs to allocate extra memory
to keep results. The memory consumption is majorly from
four sources: CIVIC protocol, GPS data processing, HEROS
microkernel, and hardware drivers.

The next experiment is to test the message delay and
bandwidth capability by excluding the network related
efforts. The experiment is done with two static sensors.
One sensor acts as a message sender. It keeps sending

Table 10: Memory consumption of this system.

Size (byte)

CODE 26,356

DATA 14,746

CONST 1,634

Sum 42,736

new messages with growing size and interval. The other
sensor acts as a receiver, and it acknowledges the incoming
message. The size of acknowledge is 5 bytes. If the sender
does not receive the acknowledgment of last message, the
same message will be resent three times. The size of message
increases from 5 bytes to 245 bytes. The interval of sending
message increases from 10 ms to 100 ms. All subtests perform
10 times and get average values. This experiment only enables
etasks for sending and receiving. The message delay and
resending count are used to evaluate network performances.
The “delay” in this paper means the timing between sending
a new message and receiving its acknowledgment.

The results of this experiment are shown in Figures
13 and 14. The experiment shows the limitation of this
embedded system.

Firstly, the results on message delay may not reflect on
the results of loss rate. It only indicates the US1 RX RDY
etask cannot get access to its processing thread because the
US1 TX RDY etask is too busy on sending message. The
design of etasks does not allow preemptive, thus it is normal.

Secondly, the increase rate of message delay is slow down
after the message size reaches about 100 bytes. The reason
is from the transmitting mechanism of Xbee clip and the
sequence of delay factors. The Xbee clip has an internal
100 bytes output buffer. When the message size is lower than
100 bytes, the packet will not be sent immediately. Thus,
the delay factors in a transmitting happen separately and
in succession. There are three major delay factors from the
transmissions in sender, over-the-air, and in receiver. When
the size of messages is more than 100 bytes, these three factors
happen simultaneously and the overall delay decreases.
Since the maximum message size of CIVIC protocol is
less than 64 bytes (at 100 ms sending intervals), the result
between 5 to 65 bytes is more important for evaluating
the system.

Thirdly, we can know from Figure 13 there is an initial
delay for all message sending. Figure 15 zooms in on the
initial delay. In the first column, we can find the delay
in sending is already 5 ms. However, each time when the
message size increases 5 bytes, the delay in sending only
increases 1-2 ms. Since only 1-2 ms is used in actual data
transmitting, the initial delay before transmitting is about
3-4 ms. The initial delay is from two sources: (1) after data
arrives to the buffers inside a XBee chip, the XBee chip need
to have its data processing; (2) the CSMA-CA in 802.15.4
standard needs time to sensing channels before transmitting
data. In addition, the bandwidth is about 5 bytes/ms between
5 bytes to 65 bytes. It is the information rate, not the raw data
rate.



14 EURASIP Journal on Embedded Systems

0

0.5

1

1.5

2

2.5

3

R
es

en
d

p
er

m
es

sa
ge

5 25 45 65 85 105 125 145 165 185 205 225 245
Message size (byte)

100

40

In
te

rv
al

(m
s)

Figure 13: Resend counts of all subtests.

0

20

40

60

80

100

120

D
ea

ly
p

er
m

es
sa

ge
(m

s)

5 25 45 65 85 105 125 145 165 185 205 225 245
Message size (byte)

100

40

In
te

rv
al

(m
s)

Figure 14: Message delays for all subtests.

7. Conclusion and OngoingWork

Embedded communication systems normally contain two
basic component layers: a protocol stacks to manage network
communications and an operating system to interface with
hardware and schedule tasks or events. Based on such struc-
ture, this paper presents a new low-cost and low-memory
footprint design and its implementation for embedded IVC
applications with CIVIC as protocol stack, and HEROS as
embedded OS.

HEROS proposes an Etask/Thread modular architecture
and adopts a tuple-based IN/OUT primitive communication
mechanism to provide both event-driven and real-time
multitasking operation modes. CIVIC adopts the DANKAB
mechanisms to provide a resource-awareness and rapid con-
vergence routing algorithm. By these designs, this system can
adapt to a wider range of IVC applications. At present, the
CIVIC protocol has been ported on HEROS to perform the
real-time multitasking and event-driven WSN applications.
The experiment results in Section 5 show that this embedded
system has small resource consumption and is adaptable
to different applications. Moreover, thanks to low message-
sending delay, the present design may be used to implement
low cost embedded collision avoidance device by combining
GPS receiver and IVC data.

0

5

10

15

20

25

30

D
ea

ly
p

er
m

es
sa

ge
(m

s)

5 10 15 20 25 30 35 40 45 50 55 60 65

Message size (byte)

10

5

11

6

12

7

13

8

14

9

15

10

16

11

17

12

18

13

19

14

20

15

21

16

22

17

With delay of Ack
Only sending delay

Figure 15: Delay per message between 5 and 65 bytes.

Currently, this low-cost embedded system is still under
development and evaluation, the result of network perfor-
mances is not so perfect, but it shows the adaptability of this
system to high-mobility scenarios.

The ongoing works of CIVIC are to reduce memory con-
sumption and continue improving its communication QoS.
For HEROS, its programming models are not completed,
thus a hardware abstract layer or interface will be provided in
future. Moreover, the current implementation will be carried
out on the intelligent multimodal transportation system in
Clermont-Ferrand city (France).

Acknowledgments

The authors would like to thank all colleagues who con-
tributed to the study. The authors would also like to
thank the reviewers for their remarks, which enable to
improve this paper. The authors are grateful for the EU
(NeT-ADDED FP6 EU project) and the French EGIDE
international cooperation plan (PHC PFCC No. 20974WG)
for their supports to this project.

References

[1] B. Fitzgibbons, R. Fujimoto, R. Guensler, M. Hunter, A.
Park, and H. Wu, “Simulation-based operations planning for
regional transportation systems,” in Proceedings of the 5th
Annual National Conference on Digital Government Research:
New Challenges and Opportunities, Seattle, Wash, USA, May
2004.

[2] Y. Shiraki, et al., “Development of an inter-vehicle communi-
cations system,” OKI Technical Review 187, vol. 68, pp. 11–13,
2001.

[3] M. Käsemann, et al., “A Simulation Study of a Location Service
for Position-Based Routing in Mobile Ad Hoc Networks,”
2002, http://www.et2.tu-harburg.de.

[4] M. Wurpts and R. Logan, “HLA inside and out: intra- and
inter-vehicle communications,” in Proceedings of the Interser-
vice/Industry Training, Simulation, and Education Conference
(I/ITSEC ’03), p. 9, 2003.

[5] X. Diao, M. Kara, J. Li et al., “Experiments on PAVIN
platform for cooperative inter-vehicle communication proto-
col (CIVIC),” in Proceedings of the IEEE Africon Conference,
Nairobi, Kenya, September 2009.



EURASIP Journal on Embedded Systems 15

[6] X. X. Diao, et al., “Cooperative inter-vehicle communication
protocol with low cost differential GPS,” Journal of Networks,
vol. 4, no. 6, pp. 445–457, 2009.

[7] T. Clausen and P. Jacquet, “Optimized Link State Routing
Protocol,” IETF RFC 3626, October 2003.

[8] T. Kosch, Ch. Schwingenschlögl, and L. Ai, “Information
dissemination in multihop inter-vehicle networks—adapting
the ad-hoc on-demand distance vector routing protocol
(AODV),” in Proceedings of the 5th IEEE International Confer-
ence on Intelligent Transportation Systems, Singapore, 2002.

[9] S. Ahuja, N. Carriero, and D. Gelernter, “Linda and friends,”
Computer, vol. 19, no. 8, pp. 26–34, 1986.

[10] D. Gelernter, “Generative communication in LINDA,” ACM
Transactions on Programming Languages and Systems, vol. 7,
no. 1, pp. 80–112, 1985.

[11] K. M. Hou, G. De Sousa, J. P. Chanet, et al., “LiveNode: LIMOS
versatile embedded wireless sensor node,” in Proceedings of the
7th International Conference on New Technologies of Distributed
Systems (NOTERE ’07), pp. 65–69, Marrakech, Morocco, June
2007.

[12] K. Raatikainen, “Operating system issues in wireless ad-hoc
networks,” in Proceedings of the Keynote Speech in International
Workshop on Wireless Ad-Hoc Networks, May 2005.

[13] H. Y. Zhou, K. M. Hou, and C. De Vaulx, “SDREAM: a
super-small distributed REAl-time Microkernel dedicated to
wireless sensors,” International Journal of Pervasive Computing
and Communications, vol. 12, no. 4, pp. 398–410, 2006.

[14] J. J. Labrosse, MicroC/OS-II: The Real-Time Kernel, CMP
Books, 2nd edition, 2002.

[15] P. Levis, S. Madden, J. Polastre, et al., “TinyOS: an operating
system for sensor networks,” in Ambient Intelligence: Part II,
pp. 115–148, Springer, Berlin, Germany, 2005.

[16] R. Barr, J. C. Bicket, D. S. Dantas et al., “On the need for
system-level support for ad hoc and sensor networks,” ACM
Operating System Review, vol. 36, no. 2, pp. 1–5, 2002.

[17] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki—a lightweight
and flexible operating system for tiny networked sensors,” in
Proceedings of the 29th Annual IEEE International Conference
on Local Computer Networks (LCN ’04), pp. 455–462, Novem-
ber 2004.

[18] S. Bhatti, J. Carlson, H. Dai et al., “MANTIS OS: an embedded
multithreaded operating system for wireless micro sensor
platforms,” Mobile Networks and Applications, vol. 10, no. 4,
pp. 563–579, 2005.

[19] S. Dulman and P. Havinga, “Operating system fundamentals
for the EYES distributed sensor network,” Progress Report,
Utrecht, The Netherlands, 2002.

[20] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava,
“A dynamic operating system for sensor nodes,” in Proceedings
of the 3rd International Conference on Mobile Systems, Applica-
tions, and Services (MobiSys ’05), pp. 163–176, 2005.

[21] C. E. Perkins and P. Bhagwat, “Highly Dynamic Destination
Sequence-Vector Routing (DSDV) for mobile computers,”
Computer Communication Review, vol. 24, no. 4, pp. 234–244,
1994.

[22] R. Ogier, F. Templi, and M. Lewis, “Topology dissemination
based on reverse-path forwarding (TBRPF),” IETF RFC 3684,
February 2004.

[23] D. B. Johnson, D. A. Maltz, and J. Broch, “DSR: the
dynamic source routing protocol for multi-hop wireless ad
hoc networks,” in Ad-Hoc Networking, C. E. Perkins, Ed., pp.
139–172, Addison-Wesley, New York, NY, USA, 2001.

[24] V. D. Park and M. S. Corson, “Highly adaptive distributed
routing algorithm for mobile wireless networks,” in Pro-
ceedings of the 16th IEEE Annual Conference on Computer
Communications (INFOCOM ’97), pp. 1405–1413, April 1997.

[25] C. K. Toh, “Long-lived ad-hoc routing based on the concept of
associativity,” IETF MANET Working Group, Internet Draft,
March 1999.

[26] R. Dube, C. D. Rais, K.-Y. Wang, and S. K. Tripathi, “Signal
stability-based adaptive routing (SSA) for ad hoc mobile
networks,” IEEE Personal Communications, vol. 4, no. 1, pp.
36–45, 1997.

[27] J. Schaumann, “Analysis of the Zone Routing Protocol,”
December 2002, http://www.netmeister.org/misc/zrp/zrp.pdf.

[28] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic,
“Impact of radio irregularity on wireless sensor networks,”
Proceedings of the 2nd International Conference on Mobile
Systems, Applications and Services (MobiSys ’04), pp. 125–138,
2004.

[29] Y.-C. Tseng, S.-Y. Ni, and E.-Y. Shih, “Adaptive approaches to
relieving broadcast storms in a wireless multihop mobile ad
hoc network,” IEEE Transactions on Computers, vol. 52, no. 5,
pp. 545–557, 2003.

[30] H. Y. Zhou, G. De Sousa, J.-P. Chanet et al., “An intelligent
wireless bus-station system dedicated to disabled, wheelchair
and blind passengers,” in Proceedings of the IET International
Conference on Wireless Mobile and Multimedia Networks
(ICWMMN ’06), p. 434, November 2006.

[31] M. Moubarak and M. K. Watfa, “Embedded operating systems
in wireless sensor networks,” in Guide to Wireless Sensor
Networks, S. Misra, I. Woungang, and S. C. Misra, Eds., pp.
323–346, Springer, New York, NY, USA, 2009.

[32] W. Maurer, “The Scientist and Engineer’s Guide to TinyOS
Programming,” 2004, http://ttdp.org/tpg/html.


	1. Introduction
	2. Related Works
	2.1. Embedded Operating System.
	2.2. IVC Protocol.

	3. HEROS Microkernel
	3.1. System Architecture.
	3.2. System Scheduling.
	3.2.1. Priority Scheduling Mechanism.
	3.2.2. Etask-to-Thread Conversion.

	3.3. System Communication.
	3.3.1. Tuple Space.
	3.3.2. System Primitive.


	4. CIVIC Protocol
	4.1. Routing Mechanisms.
	4.1.1. One-Hop Link Stability.
	4.1.2. Multihop DANKAB.

	4.2. Message Delivery Mechanisms.

	5. System Design
	5.1. Hardware.
	5.2. Software.

	6. System Evaluation
	6.1. HEROS Evaluation
	6.1.1. Memory Consumption.
	6.1.2. Execution Time of IN/OUT Primitives.
	6.1.3. System Latencies.
	6.1.4. Comparison with TinyOS.

	6.2. CIVIC Evaluation.

	7. Conclusion and Ongoing Work
	Acknowledgments
	References

