Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2010, Article ID 458085, 8 pages
doi:10.1155/2010/458085

Research Article

Composition Kernel: A Software Solution for Constructing

a Multi-OS Embedded System

Yuki Kinebuchi, Kazuo Makijima, Takushi Morita, Alexandre Courbot,

and Tatsuo Nakajima

Department of Computer Science, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan

Correspondence should be addressed to Yuki Kinebuchi, yukikine@dcl.info.waseda.ac.jp

Received 2 December 2009; Accepted 12 October 2010

Academic Editor: Chun Jason Xue

Copyright © 2010 Yuki Kinebuchi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Modern high-end embedded systems require both predictable real-time scheduling and high-level abstraction interface to their
OS kernels. Since these features are difficult to be balanced by a single OS, some methods that accommodate multiple different
versions of OS kernels, typically real-time OS and general purpose OS, into a single device have been proposed. The hybrid kernel,
one of those methods, executes a general purpose OS kernel as a task of real-time OS which can support those features with
reasonable engineering effort. However when adapting the approach to various combinations of OS kernels, which is required
in the real-world embedded system design, the engineering effort of modifying the kernel becomes not negligible. This article
introduce a method called a composition kernel which uses a thin abstraction layer for accommodating kernels without making
direct dependencies between them. The authors developed the abstraction layer on an SH-4A processor and executed kernels on
top of it. The amount of modifications to the kernels was significantly smaller than that in related work, while introducing only

negligible verhead to the performance of the kernels.

1. Introduction

One of the difficulties of designing an OS kernel for
embedded systems is supporting both predictable real-
time scheduling and high-level abstraction interface. For
instance, modern cell-phones need to execute both real-
time control software (such as a radio transmitter device
controller) and function-rich applications (such as a web
browser, a media player). Traditionally, small real-time
operating systems (RTOSs), that supports predictable real-
time scheduling, were used for embedded system software
development. Today, along with the expansion in the variety
of functions provided by a single embedded device, general
purpose operating systems (GPOSs) are widely used in
modern embedded system development. GPOS offers a high-
level abstraction interface which eases the development of
function-rich applications. However, with GPOS kernels, it
is hard to provide predictable scheduling because their large
code base makes the activities in the kernel indeterministic.
Various studies indicates that a lot of engineering effort

is required for extending function-rich kernels to support
predictable real-time scheduling [1, 2].

Instead of putting effort in extending a large and
complex kernel to support predictable scheduling, there are
relatively straightforward approaches to use both RTOS and
GPOS kernels in a single device. One is a hardware-based
approach which assigns dedicated hardware set to each OS.
For instance, modern mobile phones use a MultiProcessor
System on Chip (MPSoC) to assign a dedicated processor
to each OS kernel [3]. Another approach uses a hypervisor,
or a virtual machine monitor (VMM), which multiplexes
a physical device into multiple virtual devices that each of
them is capable of executing an OS. Although virtualization
technologies for embedded systems have attracted attentions
these past years, they are not widely adopted by real-world
products because only few embedded processors support
virtualization extensions.

A hybrid kernel is an OS kernel architecture which
executes a GPOS kernel on top of a RTOS kernel [4-6]. The
GPOS kernel runs as a task of the underlying RTOS kernel.



Some previous studies have proven that the hybrid kernel
is applicable to use in real-world embedded systems [7, 8].
Hybrid kernel balances predictable real-time scheduling and
highly abstracted interface. Furthermore, it does not rely
on a specific MPSoC. A disadvantage of hybrid kernel
design is that the GPOS kernel depends on the interface
of the underlying RTOS kernel. Typically embedded device
manufacturers use diverse RTOS kernels depending on real-
time constraints, software properties they own, and so forth.
Although the engineering cost of modifying a GPOS kernel
to a RTOS task is reasonably small, the engineering cost to
support various combinations of RTOS kernels and GPOS
kernels will introduce significant engineering effort.

This paper proposes a method called a composition
kernel which enables to constructs a multiOS-kernel system
with minimal engineering effort and without sacrificing
the performance of the OS kernels. The method is based
on a thin abstraction layer which multiplexes a processor.
The OS kernels do not depend on each other but on
the underlying abstraction layer which exposes an interface
almost identical to the real processor instructions. Thus,
it requires less engineering effort than the hybrid kernel
and introduces only negligible overhead. The abstraction
layer ease the developments of multiOS-kernel systems with
various combinations of RTOSs and GPOSs.

The contributions of this paper are proposing the
composition kernel method, and showing its validity by
implementing and evaluating it using real-world software
and hardware. We developed an abstraction layer named
SPUMONE from scratch to run on the SH-4A processor
architecture [9]. SPUMONE can execute the TOPPERS/JSP
[10] RTOS (TOPPERS/JSP is a RTOS kernel with the
uITRON specification, which is an OS interface specification
for embedded systems widely used in the Japanese industry,)
the OKL4 microkernel [11] and the Linux kernel on top
of it. Its design and implementation is simple and efficient
to accommodate multiple OSs together with a few dozen
lines of modifications to both OS kernels while maintaining
the real-time responsiveness of the RTOS. The remainder
of the paper is organized as follows. Section 2 introduces
some related work on system designs using multiple OS
kernels and compare them with our contributions. Section 3
describes the design and the implementation of our method.
Section 4 shows the results of the evaluations showing
that our method requires small engineering effort and
offers low overhead. Section 5 discusses the necessity of
strong isolation for embedded multiOS-based system. Finally
Section 6 concludes this paper.

2. Related Work

Various approaches are proposed to balance real-time
responsiveness and high-level abstraction on a single device.
One of the approaches is modifying a GPOS kernel to
support real-time responsiveness [2, 12]. The real-time
patch extends Linux to support kernel preemption [12].
It achieves a few hundred pseconds latency [13], but still
the result is slower by a factor of ten comparing to typical
RTOSs. Although these approaches are potentially capable

EURASIP Journal on Embedded Systems

of supporting real-time response time, it is challenging to
maintain their response time through continuous revisions
of the OSs. In addition, porting all the software from the
RTOS to Linux would impose substantial engineering cost.

Instead of supporting both real-time responsiveness and
high-level abstraction interface by a single version of an OS
kernel, modern embedded systems use multiple versions of
OS kernels: typically a RTOS kernel and a GPOS kernel in
one device. The most simple approach of accommodating
multiple kernels is assigning a dedicated set of hardware to
each OS kernel. For instance, by using MPSoC, a dedicated
processor core and memory is assigned to each OS kernel.
Hardware-based multiOS-kernel design is straightforward,
however the cost of developing a MPSoC is not flexible
compared to software-based approach. The decision of
adopting hardware or software depends on constraints,
therefore cannot say which is better. In this paper we focus
on software-based multiOS-kernel designs.

Another approach is using a hypervisor, or a virtual
machine monitor (VMM). It is a similar idea to the
MPSoC based approach, but the underlying hardware is
virtually multiplexed by software. It can accommodate RTOS
and GPOS into a single embedded device without any
modifications or with just minimal modifications to the
OS kernels [14-17]. Hypervisor’s design is broadly classified
into full virtualization and paravirtualization. A hypervisor
that supports full virtualization exposes a virtual hardware
interface identical to a real hardware interface. OSs can be
executed without any modification on full virtualization. On
the other hand, implementing full virtualization complicates
the design of the hypervisor itself or requires hardware
support [18]. Unfortunately the hardware virtualization
support is still an unfamiliar feature for embedded system
processors. This motivates embedded system hypervisors to
use paravirtualization for their system design [19-21]. In
this case, the engineering cost required for paravirtualizing
a guest OS kernel is problematic for manufacturers. In
addition, switching the privilege level between a guest OS and
a hypervisor will entail performance degradation. Further-
more the OS isolation can spoil the real-time responsiveness
and system throughput.

Another approach is the hybrid kernel, a GPOS kernel
built on top of a RTOS kernel. RTLinux [4] replaces Linux
kernel’s hardware abstraction layer (HAL) with its own ver-
sion of a microkernel (or a RTOS kernel). The microkernel
is executed in privileged mode together with the Linux
kernel. Its interrupt response time is a few yseconds, which
is comparable to typical RTOSs. However the microkernel
exposes an specific programming interface, which prevents
reusing real-time applications developed for other RTOSs. In
contrast, some hybrid kernels use existing RTOS kernels for
their microkernel layers. Linux on ITRON replaces the Linux
HAL with an existing uITRON compatible RTOS [6]. This
architecture enables the system to reuse both the software
developed for Linux and the yITRON RTOS specification.
The hybrid kernel provides high real-time responsiveness
comparable to an traditional RTOS along with exposing
high-level abstraction interface by reusing existing GPOS
kernels.



EURASIP Journal on Embedded Systems

The problem of hybrid kernels is the dependencies
between a GPOS kernel and a RTOS kernel. The GPOS
kernel depends on the interface exposed by the underlying
RTOS kernel. Typically embedded device manufacturers use
diverse RTOS kernels depending on real-time constraints,
software properties they own, applications supported, and
so froth. Even though the engineering cost of modifying a
GPOS kernel to run as a RTOS task is reasonably small,
the engineering cost for supporting various combinations of
RTOS kernels and GPOS kernels is problematic. Adeos [22]
and Xenomai [23] provide a low-level abstraction interface
for building RTOS compatible layer, which is similar to a
composition kernel. However, Adeos depends on the 4 ring
levels supported by the Intel processor architecture, which
cannot be applied to the other typical embedded processor
architectures supporting only 2 privilege levels. Xenomai
exposes an abstraction interface in the user level of Linux,
whose purpose is to support a programming environment
compatible with existing RTOSs. Its goal is to support the
transparent porting of RTOS applications but not RTOS
kernels.

The composition kernel method can execute an OS
kernel on top of it with minimal engineering effort, which
gives a flexibility of accommodating various combinations
of OS kernels in a single device. In order not to penalize
performance, our abstraction layer executes the OS kernels
as well as itself in the same privileged level. This also reduces
the engineering cost of modifying OS kernels, because a
majority of privileged instructions can be executed directly
by a processor and only a minimal set of instructions needs to
be emulated. Furthermore, The abstraction layer multiplexes
only minimal hardware resources. The other resources are
exclusively assigned to each OS by simply reconfiguring each
OS kernel not to access the same devices.

3. Design and Implementation

This section introduces a composition kernel, a method
for constructing an embedded device with multiple OSs.
The method is based on a simple abstraction layer called
SPUMONE and some modifications to OS kernels.

3.1. SPUMONE. SPUMONE (Software Processing Unit,
Multiplexing ONE into two or more) is a thin software layer
for multiplexing a single physical processor into multiple
virtual ones. Unlike hypervisors, SPUMONE itself and OS
kernels are executed in privileged mode as shown in Figure 1.
If an OS does not support user land, its applications would
be executed in privileged mode altogether.

This contributes to minimize the overhead and the
amount of modifications to the OS kernels. Furthermore
it makes the implementation of SPUMONE itself simple.
Executing OS kernels in nonprivileged mode complicates
the implementation of the abstraction layer, because various
privileged instructions have to be emulated. The majority
of the kernel and application instructions, including the
privileged instructions, are executed directly by the real
processor, and only the minimal instructions are emulated by
SPUMONE. These emulated instructions are invoked from

Unprivileged
‘ App ‘ App ‘ App
RT || RT || RT
App || App || App GPOS
[ RTOS ]

VCPU _ VCPU :
....................... AT — ’
[ CPU ]

Privileged

Figure 1: SPUMONE based system on a single-core processor.

the OS kernels in a simple function call; it eliminates the
overhead of trapping between privileged and nonprivileged
mode for system-calls and hypercalls.

Since the interface has no binary compatibility with the
original processor interface, we simply modify the source
code of OS kernels, a method known as paravirtualization
[15, 17]. Thus we assume we have access to the source code of
the OS kernels. The modifications required to the OS kernels
are described in detail in Section 3.2.

3.1.1. Virtual Processor Scheduling. A processor is multi-
plexed by scheduling the execution of OS kernels. The
execution states of the OSs are managed by a data structure
that we call a virtual processor. When switching the execution
of the virtual processors, all the hardware registers are stored
into the corresponding virtual processor’s register table, and
then loaded from the table of the virtual processor executing
next. The mechanism is similar to the process paradigm of
a classical OS, but in addition it also saves the privileged
control registers, that is, the entire processor state.

The scheduling algorithm of virtual processors is a fixed
priority preemptive scheduling. A virtual processor bound to
the RTOS will gain a higher priority than a virtual processor
bound to the GPOS in order to maintain the real-time
responsiveness. This means the GPOS is executed only when
the virtual processor for the RTOS is in an idle state and
has no task to execute. The process or task scheduling is left
up to an OS kernel so the scheduling model for each OS is
maintained as is. The idle RTOS resumes its execution when
it receives an interrupt. The interrupt for RTOS preempts
the GPOS immediately, even when the GPOS is disabling
interrupts.

3.1.2. Interrupt/Trap Delivery. Interrupt virtualization is a
key feature of SPUMONE. It investigates interrupts before
delivering them to each OS. When SPUMONE receives an
interrupt, it looks up the interrupt destination table to see
to which OS the interrupt should be sent. The assignment of
interrupt sources and OSs is statically defined. Traps are also
sent to SPUMONE first, then are directly forwarded to the
currently executing OS. To let SPUMONE receive interrupts



before the OS kernels, we modified the entry point of the
interrupts to SPUMONE’s vector table. The entry point of
each OS is notified to SPUMONE via a virtual instruction
for registering their vector table.

When the interrupt triggers an OS switch, all the registers
of the current OS are saved into the register stack, then the
register stack for the other OS is loaded. Finally the execution
branches into the entry point of the destination OS. The
processor registers are setup just as if the real interrupt
occurred, so the code of the OS kernel’s entry points do not
need to be modified.

The interrupt enable and disable instructions are also
replaced by the virtual instruction interface. Typically OS
disables all interrupt sources when entering a critical section.
In our approach, by leveraging the interrupt priority leveling
(IPL) mechanism of the processor, we assign the higher
half of the interrupt priority levels to the RTOS and the
lower half to the GPOS. When the GPOS tries to block
the interrupts, it modifies its interrupt mask to the middle
priority. The RTOS may therefore preempt the GPOS even
when disabling the interrupts (Figure 2(1)). On the other
hand when the RTOS is running, the interrupts are blocked
by the processor (Figure2(2)). These blocked interrupts
could be sent immediately when the GPOS is dispatched.

3.2. OS Kernel Modifications. The following describes the
points of the OSs to be modified in order to run on top of
SPUMONE.

3.2.1. Interrupt Vector Table Register Instruction. The instruc-
tion registering the address of a vector table is modified
to notify the address to SPUMONE’s interrupt manager.
Typically this instruction is invoked once during the OS
initialization.

3.2.2. Interrupt Enable and Disable Instructions. The instruc-
tions enabling and disabling interrupts are typically provided
as kernel internal APIs that are typically coded as inline
functions or macros in the kernel source code. For the GPOS,
we replace those APIs with the instructions enabling the
entire level of interrupts and disabling only low priority
interrupts. For the RTOS, we replace those APIs with
the instructions enabling only high priority interrupts and
disabling the entire level of interrupts. Therefore, interrupts
assigned to the RTOS are immediately delivered to the RTOS,
and the interrupts assigned to the GPOS are blocked during
the RTOS execution.

Figure 3 shows the interrupt priority level (IPL) assign-
ment for each OS, which we used in the evaluation environ-
ment.

3.2.3. Physical Memory. A fixed physical memory area is
assigned to each OS. The physical address for the guest
OSs can be simply changed by modifying the configuration
file or their source code. Virtualizing the physical memory
would impose a large code into the virtualization layer and
substantial performance overhead. In addition, unlike the
virtual machine monitor for enterprise systems, embed-
ded systems have a fixed number of OSs. According to

EURASIP Journal on Embedded Systems

GPOS tasks

GPOS ISR

RTOS tasks

RTOS ISR

SPUMONE

g Interrupt for GPOS

1 Interrupt for RTOS

FIGURE 2: Interrupt delivery mechanism.

these reasons we assigned fixed physical memory area for
each OS.

3.2.4. Idle Instruction. On areal processor, an idle instruction
suspends a processor till it receives an interrupt. On a
virtualized environment, this is used to yield the use of real
processor to another guest OS. We prevent the execution
of this instruction by replacing it with the SPUMONE API.
Typically this instruction is embedded in a specific part of
kernel, which is fairly easy to find.

3.2.5. Peripheral Devices. Peripheral device assignments are
done by modifying the configuration of each OS in such
a way that it does not share the same peripherals. The
embedded multiOS-kernel system is designed to use different
OSs for managing different devices. For instance, an RTOS
is used for controlling specific peripherals such as a radio
transmitter and some digital signal processors, and a GPOS
for controlling a display and buttons.

However some devices cannot be assigned exclusively to
each OS because both systems need to use them. For instance,
an interrupt controller need to be shared. Usually the OS
clears some I/O registers during its initialization. In the case
of running on SPUMONE, the OS booting after the first one
should be careful not to clear or overwrite the settings of the
OS executed first. We modified the Linux initialization code
to preserve the settings done by TOPPERS.

4. Evaluation

We evaluated the engineering cost of modifying the guest OS
kernels, the basic overhead introduced to the OSs running
on SPUMONE, and finally the real-time responsiveness of
an RTOS running on SPUMONE. The evaluation is done
on the SH-2007 reference board, with the SH-4A 400 MHz
processor and 128 MB memory. We use TOPPERS/JSP 1.3
as RTOS and Linux 2.6.24.3 as GPOS. Linux is configured
to mount an NFS share exported by the host machine and a
compact flash card formatted in ext2.



EURASIP Journal on Embedded Systems

IPL: Internal priority level

Int. disable —>[ 0xf [¢<— Int. disable

Timer IPL —>| Oxa

TOPPERS Linux

Serial IPL —> 0x6

Time and
oxl K— Serial IPL

Int. enable —>{ 0x0 — [Int. enable

(a) Native OS

FIGURE 3: The interrupt priority levels assignment.

4.1. Engineering Cost. The first evaluation is the engineering
cost of reusing the RTOS and the GPOS by comparing the
number of modified lines of code (LOC) in each guest OS
kernel. Table 1 is a list of the modified files in Linux. Table 2
shows the amount of code added and removed from the
original OS kernels. Since we could not find RTLinux, RTAI,
OK Linux for the SH-4A processor architecture, we evaluated
them developed for the x86 architecture. OK Linux is a Linux
kernel virtualized to run on the L4 microkernel. For OK
Linux, we only counted the code added to the architecture
dependent directory arch/14 and include/asm-14. The
comparison would not be fair in a precise sense, however
as the table shows, it is clear that our approach requires
significantly small modifications to the Linux kernel. This
result is achieved thanks to executing guest OS in privileged
mode.

4.2. Basic Overhead. For evaluating the basic overhead of
SPUMONE, we measured the overhead of interrupt handling
delay, and the time to build the Linux kernel on top of
native (an unmodified OS running on bare-metal hardware)
Linux and modified Linux, respectively. Table 3 shows the
average and the worst case CPU cycles spent to handle the
interrupts sent to native TOPPERS and modified TOPPERS.
In the average case SPUMONE imposes 0.67 us overhead to
the delay. The worst case overhead shows the time required
to save the state of Linux and restore the state of TOPPERS.
The increased delay is sufficiently small and predictable for
executing real-time applications.

Table 4 shows the time required to build Linux kernel
on native Linux and modified Linux executed on top of
SPUMONE together with TOPPERS. TOPPERS only receives
the timer interrupts every 1 ms, and executes no other task.
The result shows that SPUMONE and TOPPERS impose
an overhead of 1.4% to Linux performance. Note that the
overhead includes the cycles consumed by TOPPERS. The
result shows that the overhead of the virtualization to the
system throughput is sufficiently small.

5
IPL: Internal priority level
Int. disable —>[ 0xf
Timer IPL —>| 0xd
TOPPERS
Serial [IPL —>| 0Oxa
Int. enable —>| 0x8
0x7 |<— Int. disable
Linux
Time and
0x1_[¢— Serial IPL
0x0 _k— Int. enable
(b) Modified OS
100000 T T T T T T T
10000 E
— 1000 1
£
j=)
RS
< 100} :
o
£
<
e 10 H E
1 H 4
0.1 H ‘ 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Delay (us)
—— No stress

FiGure 4: Dispatch delay (no stress on Linux without IPL
modification).

4.3. Effect of Linux Load to TOPPERS Real-Time Properties.
We measured how activities on Linux affects the dispatch
delays of a TOPPERS periodic task in the experimental
multiOS-kernel environment. The periodic task runs every
1 ms. The delays are sampled 100,000 times during the
measurement. A dispatch delay is the time spent between
the hardware interrupt trigger and the beginning of the
periodic task. TOPPERS executes only the periodic task;
there are no other TOPPERS tasks that affect dispatch delays
of the periodic task. Delays were fixed to 2 ys when executing
TOPPERS by itself.

We measured delays without and with applying the IPL
assignment (described in Section 3.2, Figure 3) to the Linux
kernel, while executing stress [24] on Linux with different
options. In the graphs (Figures 4-11), y-axes show the
number of times in the log scale that the task executed



EURASIP Journal on Embedded Systems

TaBLE 1: A list of the modifications to the Linux kernel.

File Function/variable Description

.config CONFIG-MENORY_START Modified to use the upper half (64 MB) of the main memory
CONFIG_MEMORY_SIZE

setup.c $h2007_setup(char **cmdline.p) Modified not to overwrite the value in the interrupt controller

setup-sh7780.c intc2_irqg_table

register set by TOPPERS

The interrupt source table. Removed one of the serial devices which is
used by TOPPERS

head.S Flag register initial value Modified IPL, not to block the interrupts for TOPPERS
traps.c per-_cpu_trap_init(void) Replaced the vector table register instruction with SPUMONE API
raw_local _irq disable(void)
irqflags.h _raw_local_irq_disable(void) Modified not to mask the interrupts assigned to TOPPERS
raw_local_irqg restore(void)
processor.h cpu-sleep() Replaced the idle instruction with the SPUMONE API
100000 T T T T T T T 100000 T T T T T T T

10000 K 10000 7
— 1000 H — 1000 E
g =
3 3
£ £
5 1004 5 100} :
2, 2
g =
< <
e 10 e 10 - 1

1 1H 4
0.1 0.1
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Delay (us) Delay (us)
—— No stress —— stress -c 32

FI1GURE 5: Dispatch delay (no stress on Linux with IPL modifica-
tion).

100000 ; ; ; ; . . .
10000 H
1000 }
=)
j=)
E
o 100 H
=
=]
<
A 10 H
1 L
01 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Delay (us)
—— stress -c 32

FIGURg 6: Dispatch delay (CPU stress on Linux without IPL
modification).

Figure 7: Dispatch delay (CPU stress on Linux with IPL
modification).

100000 . . . . . . .
10000 ;
1000 ;
=
=1
£
5 100 ]
=
g
<
w 10 4
1 ]
0.1 ‘ : s s
0 20 40 60 80 100 120 140

Delay (us)
—— stress -d 32 --hdd-bytes 32MB

F1cUre 8: Dispatch delay (NFS read/write stress on Linux without
IPL modification).



EURASIP Journal on Embedded Systems

TaBLE 2: The total number of modified LOC in *.c, *.S, *.h,
Makefiles.

oS Added LOC Removed LOC
Linux on SPUMONE (Linux 2.6.24.3) 161 8
RTLinux 3.2 (Linux 2.6.9) 2798 1131
RTAI 3.6.2 (Linux 2.6.19) 5920 163

OK Linux (Linux 2.6.24) 28149 —

TasLE 3: The delay of handling the timer interrupts in TOPPERS.
Over 20,000 interrupts were measured to obtained the average and
the worst case time.

Configuration CPU Clocks Time Overhead
(us) (us)
TOPPERS (native) ~ 2'¢28¢ 102 025 —
worst 102 0.26 —
TOPPERS average 367 0.92 0.67
on SPUMONE worst 1582 3.96 3.70
TABLE 4: Linux kernel build time.
Configuration Time Overhead
Linux only 68 m5.898s —
Linux and TOPPERS on SPUMONE 69 m3.091s 1.4%

with the delay at x-axes. Figures 4, 6, 8 and 10 show
results using Linux without the IPL assignment. Figures
5, 7, 9 and 11 show results using Linux with the IPL
assignment. Figures 4 and 5 show the delays while Linux
is unloaded. Figures 6 and 7 show the delays while Linux
is loaded with CPU bound operations (stress -c 32).
Figures 8 and 9 show the delays while Linux is loaded
with the read and write operations against the NFS share
(stress -d 32 --hdd-bytes 32MB). Figures 10 and 11
show the delays while Linux is loaded with the read and write
operations against the CF card file system (stress -d 32
--hdd-bytes 32MB).

The measurements with the CPU bound operations show
similar results with and without the IPL assignment. The
measurement with the CF card operations and without the
IPL assignment, shows maximum delay of 111 us. With the
IPL assignment, the maximum delay is reduced to 34 ys.
Comparing these results to the measurements done by [13],
with a 1.8 GHz Athlon processor which shows the maximum
delay of a few hundred y seconds, we can see that our
measurements with 400 MHz SH processor achieves fairly
small dispatch delays.

5. Do We Need Strong Isolation for
Embedded Multi-OS-Based System?

Strong isolation among guest OSs is an attractive feature for
constructing a secure and reliable embedded system [20].
However, unlike the VMMs used in the area of enterprise
systems, most embedded systems consist of a fixed number
of OSs. In addition, because the guest OSs are statically
decided by the hardware manufacturer, they can be assumed

7

100000

10000

_ 1000
£
=1
G}

° 100
oy
g
<

L 10

1

01 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Delay (us)
—— stress -d 32 --hdd-bytes 32MB

FiGure 9: Dispatch delay (NFS read/write stress on Linux with
IPL modification).

100000 T T T T T T T

10000
— 1000
£
=1
£
% 100
2,
£
<
e 10

| H ‘
0.1 “ n 1
0 20 40 60 80 100 120 140
Delay (us)

—— stress -d 32 --hdd-bytes 32MB

F1Gure 10: Dispatch delay (CF read/write stress on Linux without
IPL modification).

as “trustworthy” OSs. Furthermore, even though the guest
OS kernels are isolated, most of the security attacks rely
on vulnerability of user level applications. Therefore even if
guest OS kernels are isolated, once one of the OSs is attacked,
the entire system can be taken over by attacking the other OS
via an inter-OS communication channel.

Moreover, relocating OS kernels in privileged mode may
degrade the reliability of the system: The kernels running
at the same privilege level are able to corrupt each other.
However, in a multiOS platform, even though the failure of
real-time applications are not propagated to the other part
of the system by isolating those OSs, it is a fatal error for the
system to continue its service.

These discussions motivated us to remove strong isola-
tion support from our light-weight virtualization layer. To
increase the reliability and the security of embedded systems



100000
10000 1
_ 1000 .
g
j=}
£
5 100 i
oy
g
<
i 10 -
1 4
01 1 1 1 1 1 1

0 20 40 60 80 100 120 140
Delay (us)

—— stress -d 32 --hdd-bytes 32MB

FiGure 11: Dispatch delay (CF read/write stress on Linux with
IPL modification).

with limited computation power and electricity, we need an
approach different from desktop and enterprise systems.

6. Conclusion

This paper introduced a method called a composition kernel
which constructs an embedded device using both RTOS
and GPOS with minimal engineering cost. The approach
removes the strong dependencies between OS kernels and
instead, let them depend on the underlying thin abstraction
layer which requires minimal modification to the OS kernels
running on top of it. Our approach executes the abstraction
layer and the OS kernels in privileged mode altogether in
order to reduce the performance overhead and engineering
cost of virtualization. The evaluation shows our approach
requires significantly small modifications compared with
related work. At the same time it introduces negligible
overhead to the real-time responsiveness of the guest RTOS.
Furthermore, the method offers flexibility of combining
various RTOSs and GPOSs on top of embedded devices with
small engineering effort.

References

[1] “FSMLabs: RTLinux,” http://www.fsmlabs.com/.

[2] Y. Ishiwata and T. Matsui, “Development of Linux which has
advanced real-time processing function,” in Proceedings of the
Annual Conference on Robotics Society of Japan (RS] ’98), pp.
355-356, 1998.

[3] J. Chen, C. P. Young, D. W. Chang et al., “Building multi-kernel
embedded system on pac multi-core platform,” in Proceedings
of the International Conference on Quality Software, pp. 465—
472, 2010.

[4] V. Yodaiken, “The RTLinux manifesto,” in Proceedings of the
5th Linux Expo, 1999.

[5] P. Mantegazza, E. Dozio, and S. Papacharalambous, RTAI:
Real Time Application Interface, vol. 2000, Specialized Systems
Consultants, Seattle, Wash, USA, 2000.

EURASIP Journal on Embedded Systems

[6] H. Takada, T. Kindaichi, and S. Hachiya, “Linux on ITRON: a
hybrid operating system architecture for embedded systems,”
in Proceedings of the Symposium on Applications and the
Internet (SAINT) Workshops, IEEE Computer Society, 2002.

[7] M. Humphrey, E. Hilton, and P. Allaire, “Experiences using
rt-linux to implement a controller for a high speed magnetic
bearing system,” in Proceedings of the 5th IEEE RealTime
Technology and Applications Symposium, pp. 121-130, 1999.

[8] P. Mendoza, J. Vila, I. Ripoll, S. Terrasa, and P. Pérez, “Devel-
oping CAN based networks on RT-Linux,” in Proceedings of
the 8th International Conference on Emerging Technologies and
Factory Automation (ETFA 01), pp. 161-167, October 2001.

[9] “Renesas Electronics: SH-4A Software Manual,” http://doc-
umentation.renesas.com/eng/products/mpumcu/rej09b0003
_shda.pdf.

[10] “TOPPERS Project: TOPPERS,” http://www.toppers.jp/.

11] “Open Kernel Labs: OKL4 community site,” http://okl4.org.

12] 1. Molnar, “The realtime preemption patch,” 2009, http://www
.kernel.org/pub/linux/kernel/projects/rt/.

[13] L. Abeni, A. Goel, C. Krasic, J. Snow, and J. Walpole, “A
measurement-based analysis of the real-time performance of
linux,” in Proceedings of the 8th IEEE Real-Time and Embedded
Technology and Applications Symposium, pp. 133—-142, 2002.

[14] R. Goldberg, “Survey of virtual machine research,” IEEE
Computer, vol. 7, no. 6, pp. 34—45, 1974.

[15] P. Barham, B. Dragovic, K. Fraser et al., “Xen and the art of
virtualization,” in Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP °03), pp. 164-177, ACM
Press, 2003.

[16] J. Sugerman, G. Venkitachalam, and B. H. Lim, “Virtualizing
I/O devices on VMware workstation’s hosted virtual machine
monitor,” in Proceedings of the General Track: 2002 USENIX
Annual Technical Conference, pp. 1-14, USENIX Association,
2001.

[17] A. Whitaker, M. Shaw, and S. Gribble, “Denali: lightweight

virtual machines for distributed and networked applications,”

in Proceedings of the USENIX Annual Technical Conference, pp.

195-209, 2002.

R. Uhlig, G. Neiger, D. Rodgers et al., “Intel virtualization

technology,” Computer, vol. 38, no. 5, pp. 48-56, 2005.

H. Hirtig, M. Hohmuth, J. Liedtke, and S. Schonberg, “The

performance of p-kernelbased systems,” in Proceedings of the

16th ACM Symposium on Operating Systems Principles, pp. 66—

77, 1997.

[20] G. Heiser and A. Sydney, “The role of virtualization in

embedded systems,” in Proceedings of the Ist Workshop on

Isolation and Integration in Embedded Systems (IIES °08),

Glasgow, UK, April 2008.

“VirtualLogix: VirtualLogix VLX,” http://www.virtuallogix

.com/.

[22] K. Yaghmour, “Adaptive domain environment for operating
systems,” Opersys inc, 2001.

[23] P. Gerum, “Xenomai-Implementing a RTOS emulation frame-
work on GNU/Linux,” 2004.

[24] “Amos Waterland: stress,” http://weather.ou.edu/~apw/pro-
jects/stress/.

(18

[19

(21



	1. Introduction
	2. Related Work
	3. Design and Implementation
	3.1. SPUMONE.
	3.1.1. Virtual Processor Scheduling.
	3.1.2. Interrupt/Trap Delivery.

	3.2. OS Kernel Modifications.
	3.2.1. Interrupt Vector Table Register Instruction.
	3.2.2. Interrupt Enable and Disable Instructions.
	3.2.3. Physical Memory.
	3.2.4. Idle Instruction.


	4. Evaluation
	4.1. Engineering Cost.
	4.2. Basic Overhead.
	4.3. Effect of Linux Load to TOPPERS Real-Time Properties.

	5. Do We Need Strong Isolation for Embedded Multi-OS-Based System?
	6. Conclusion
	References

