
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2009, Article ID 893897, 16 pages
doi:10.1155/2009/893897

Research Article

FPSoC-Based Architecture for
a Fast Motion Estimation Algorithm in H.264/AVC

Obianuju Ndili and Tokunbo Ogunfunmi

Department of Electrical Engineering, Santa Clara University, Santa Clara, CA 95053, USA

Correspondence should be addressed to Tokunbo Ogunfunmi, togunfunmi@scu.edu

Received 21 March 2009; Revised 18 June 2009; Accepted 27 October 2009

Recommended by Ahmet T. Erdogan

There is an increasing need for high quality video on low power, portable devices. Possible target applications range from
entertainment and personal communications to security and health care. While H.264/AVC answers the need for high quality video
at lower bit rates, it is significantly more complex than previous coding standards and thus results in greater power consumption
in practical implementations. In particular, motion estimation (ME), in H.264/AVC consumes the largest power in an H.264/AVC
encoder. It is therefore critical to speed-up integer ME in H.264/AVC via fast motion estimation (FME) algorithms and hardware
acceleration. In this paper, we present our hardware oriented modifications to a hybrid FME algorithm, our architecture based
on the modified algorithm, and our implementation and prototype on a PowerPC-based Field Programmable System on Chip
(FPSoC). Our results show that the modified hybrid FME algorithm on average, outperforms previous state-of-the-art FME
algorithms, while its losses when compared with FSME, in terms of PSNR performance and computation time, are insignificant. We
show that although our implementation platform is FPGA-based, our implementation results compare favourably with previous
architectures implemented on ASICs. Finally we also show an improvement over some existing architectures implemented on
FPGAs.

Copyright © 2009 O. Ndili and T. Ogunfunmi. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Motion estimation (ME) is by far the most powerful
compression tool in the H.264/AVC standard [1, 2], and
it is generally carried out in two stages: integer-pel then
fractional pel as a refinement of the integer-pel search.
ME in H.264/AVC features variable block sizes, quarter-
pixel accuracy for the luma component (one-eighth pixel
accuracy for the chroma component), and multiple reference
pictures. However the power of ME in H.264/AVC comes at
the price of increased encoding time. Experimental results
[3, 4] have shown that ME can consume up to 80% of
the total encoding time of H.264/AVC, with integer ME
consuming a greater proportion. In order to meet real-
time and low power constraints, it is desirable to speed
up the ME process. Two approaches to ME speed-up
include designing fast ME algorithms and accelerating ME in
hardware.

Considering the algorithm approach, there are tradi-
tional, single search fast algorithms such as new three-step
search (NTSS) [5], four-step search (4SS) [6], and diamond
search (DS) [7]. However these algorithms were developed
for fixed block size and cannot efficiently support variable
block size ME (VBSME) for H.264/AVC. In addition, while
these algorithms are good for small search range and low
resolution video, at higher definition for some high motion
sequences such as “Stefan,” these algorithms can drop into a
local minimum in the early stages of the search process [4].
In order to have more robust fast algorithms, some hybrid
fast algorithms that combine earlier single search techniques
have been proposed. One of such was proposed by Yi et al.
[8, 9]. They proposed a fast ME algorithm known variously
as the Simplified Unified Multi-Hexagon (SUMH) search
or Simplified Fast Motion Estimation (SFME) algorithm.
SUMH is based on UMHexagonS [4], a hybrid fast motion
estimation algorithm. Yi et al. show in [8] that with similar or

2 EURASIP Journal on Embedded Systems

even better rate-distortion performance, SUMH reduces ME
time by about 55% and 94% on average when compared with
UMHexagonS and Fast Full Search, respectively. In addition,
SUMH yields a bit rate reduction of up to 18% when com-
pared with Full Search in low complexity mode. Both SUMH
and UMHexagonS are nonnormative parts of the H.264/AVC
standard.

Considering ME speed-up via hardware acceleration,
although there has been some previous work on VLSI
architectures for VBSME in H.264/AVC, the overwhelming
majority of these works have been based on the Full Search
Motion Estimation (FSME) algorithm. This is because FSME
presents a regular-patterned search window which in turn
provides good candidate-level data reuse (DR) with regular
searching flows. A good candidate-level DR results in the
reduction of data access power. Power consumption for an
integer ME module mainly comes from two parts: data access
power to read reference pixels from local memories and
computational power consumed by the processing elements.
For FSME, the data access power is reduced because the
reference pixels of neighbouring candidates are considerably
overlapped. On the other hand, because of the exhaustive
search done in FSME, the computational complexity and
thus the power consumed by the processing elements, is
large.

Several low-power integer ME architectures with corre-
sponding fast algorithms were designed for standards prior
to H.264/AVC [10–13]. However, these architectures do
not support H.264/AVC. Additionally, because the irregular
searching flows of fast algorithms usually lead to poor
intercandidate DR, the power reduction at the algorithm
level is usually constrained by the power reduction at the
architecture level. There is therefore an urgent need for
architectures with hardware oriented fast algorithms for
portable systems implementing H.264/AVC [14]. Note also
that because the data flow of FME is very similar to that of
fractional pel search, some hardware reuse can be achieved
[15].

For H.264/AVC, previous works on architectures for
fast motion estimation (FME) [14–18] have been based on
diverse FME algorithms.

Rahman and Badawy in [16] and Byeon et al. in [17]
base their works on UMHexagonS. In [14], Chen et al.
propose a parallel, content-adaptive, variable block size, 4SS
algorithm, upon which their architecture is based. In [15],
Zhang and Gao base their architecture on the following
search sequence: Diamond Search (DS), Cross Search (CS)
and finally, fractional-pel ME.

In this paper, we base our architecture on SUMH
which has been shown in [8] to outperform UMHexagonS.
We present hardware oriented modifications to SUMH.
We show that the modified SUMH has a better PSNR
performance that of the parallel, content-adaptive variable
block size 4SS proposed in [14]. In addition, our results
(see Section 2) show that for the modified SUMH, the
average PSNR loss is 0.004 dB to 0.03 dB when compared
with FSME, while when compared to SUMH, most of
the sequences show an average improvement of up to
0.02 dB, while two of the sequences show an average loss

of 0.002 dB. Thus in general, there is an improvement over
SUMH. In terms of percentage computational time savings,
while SUMH saves 88.3% to 98.8% when compared with
FSME, the modified SUMH saves 60.0% to 91.7% when
compared with FSME. Finally, in terms of percentage bit
rate increase, when compared with FSME, the modified
SUMH shows a bit rate improvement (decrease in bit rate),
of 0.02% in the sequence “Coastguard.” The worst bit rate
increase is in “Foreman” and that is 1.29%. When compared
with SUMH, there is a bit rate improvement of 0.03% to
0.34%.

The rest of this paper is organized as follows. In Section 2
we summarize integer-pel motion estimation in SUMH and
present the hardware oriented SUMH along with simulation
results. In Section 3 we briefly present our proposed
architecture based on the modified SUMH. We also present
our implementation results as well as comparisons with prior
works. In Section 4 we present our prototyping efforts on
the XUPV2P development board. This board contains an
XC2VP30 Virtex-II Pro FPGA with two hardwired PowerPC
405 processors. Finally our conclusions are presented in
Section 5.

2. Motion Estimation Algorithm

2.1. Integer-Pel SUMH Algorithm. H.264/AVC uses block
matching for motion vector search. Integer-pel motion
estimation uses the sum of absolute differences (SADs), as
its matching criterion. The mathematical expression for SAD
is given in

SAD
(
dx,dy

) =
X−1∑

x=0

Y−1∑

y=0

∣
∣a
(
x, y

)− b
(
x + dx, y + dy

)∣∣,

(1)
(

MVx, MVy

)
= (

dx,dy
)∣∣

min SAD(dx,dy). (2)

In (1), a(x, y) and b(x, y) are the pixels of the current,
and candidate blocks, respectively. (dx,dy) is the displace-
ment of the candidate block within the search window.
X × Y is the size of the current block. In (2) (MVx, MVy)
is the motion vector of the best matching candidate
block.

H.264/AVC features seven interprediction block sizes
which are 16 × 16, 16 × 8, 8 × 16, 8 × 8, 8 × 4, 4 × 8, and
4×4. These are referred to as block modes 1 to 7. An up layer
block is a block that contains sub-blocks. For example, mode
5 or 6 is the up layer of mode 7, and mode 4 is the up layer of
mode 5 or 6.

SUMH [8] utilizes five key steps for intensive search,
integer-pel motion estimation. They are cross search,
hexagon search, multi big hexagon search, extended hexagon
search, and extended diamond search. For motion vector
(MV) prediction, SUMH uses the spatial median and up
layer predictors, while for SAD prediction, the up layer
predictor is used. In median MV prediction, the median
value of the adjacent blocks on the left, top, and top-right
(or top-left) of the current block is used to predict the

EURASIP Journal on Embedded Systems 3

MV of the current block. The complete flow chart of the
integer-pel, motion vector search in SUMH is shown in
Figure 1.

The convergence and intensive search conditions are
determined by arbitrary thresholds shifted by a blocktype
shift factor. The blocktype shift factor specifies the number
of bits to shift to the right in order to get the corresponding
thresholds for different block sizes. There are 8 blocktype
shift factors corresponding to 8 block modes: 1 dummy block
mode and the 7 block modes in H.264/AVC. The 8 block
modes are 16×16 (dummy), 16×16, 16×8, 8×16, 8×8, 8×4,
4× 8, and 4× 4. The array of 8 blocktype shift factors corre-
sponding, respectively, to these 8 block modes is given in

blocktype shift factor = {0, 0, 1, 1, 2, 3, 3, 1}. (3)

The convergence search condition is described in pseu-
docode in

(
min mcost <

(
ConvergeThreshold

� blocktype shift factor
[
blocktype

]))
,

(4)

where min mcost is the minimum motion vector cost. The
intensive search condition is described in pseudo-code in

⎛

⎜
⎜
⎜
⎜
⎝

(
blocktype == 1 &&

min mcost>
(
CrossThreshold1�blocktype shift factor

[
blocktype

])

)

||
(min mcost>(CrossThreshold2�blocktype shift factor [blocktype]))

⎞

⎟
⎟
⎟
⎟
⎠

,

(5)

where the thresholds are empirically set as follows:
ConvergeThreshold = 1000, CrossThreshold1 = 800, and
CrossThreshold2 = 7000.

2.2. Hardware Oriented SUMH Algorithm. The goal of our
hardware oriented modification is to make SUMH less
sequential without incurring performance losses or increases
in the computation time.

The sequential nature of SUMH arises from the fact that
there are a lot of data dependencies. The most severe data
dependency arises during the up layer predictor search step.
This dependency forces the algorithm to sequentially and
individually conduct the search for the 41 possible SADs in a
16 × 16 macroblock. The sequence begins with the 16 × 16
macroblock then computes the SADs of the subblocks in
each quadrant of the 16 × 16 macroblock. Performing the
algorithm in this manner consumes a lot of computational
time and power, yet its rate-distortion benefits can still be
obtained in a parallel implementation. In our modification,
we skip this search step.

The decision control structures in SUMH are another
feature that makes the algorithm unsuitable for hardware
implementation. In a parallel and pipelined implementation,
these structures would require that the pipeline be flushed
at random times. This is in turn wasteful of clock cycles as
well as adds more overhead to the hardware’s control circuit.

In our modification, we consider the convergence condition
not satisfied, and intensive search condition satisfied. This
removes the decision control structures that make SUMH
unsuitable for parallel processing. Another effect of this
modification is that we expect to have a better rate-distortion
performance. On the other hand, the expected disadvantage
of this modification is an increase in computation time.
However, as shown by our complexity analysis and results,
this increase is minimal and will also be easily compensated
for by hardware acceleration.

Further modifications we make to SUMH are the
removal of the small local search steps and the convergence
search step.

Our modifications to SUMH allow us to process in
parallel, all the candidate macroblocks (MB), for one current
macroblock (CMB). We use the so-called HF3V2 2-stitched
zigzag scan proposed in [19], in order to satisfy the data
dependencies between CMBs. These data dependencies arise
because of the side information used to predict the MV of
the CMB. Note that if we desire to process several CMBs in
parallel, we will need to set the value of the MV predictor to
the zero displacement MV, that is, MV = (0, 0). Experiments
in [20–22], as well as our own experiments [23], show that
when the search window is centered around MV = (0, 0), the
average PSNR loss is less than 0.2 dB compared with when
the median MV is also used. Figure 2 shows the complete
flow chart of the modified integer-pel, SUMH.

2.3. Complexity Analysis of the Motion Estimation Algorithms.
We consider a search range s. The number of search points
to be examined by FSME algorithm is directly proportional
to the square of the search range. There are (2s + 1)2 search
points. Thus the algorithm complexity of Full Search isO(s2).

We obtain the algorithm complexity of the modified
SUMH algorithm by considering the algorithm complexity
of each of its search steps as follows.

(1) Cross search: there are s search points both horizon-
tally and vertically yielding a total of 2s search points.
Thus the algorithm complexity of this search step is
O(2s).

(2) Hexagon and extended hexagon search: There are 6
search points each in both of these search steps, yield-
ing a total of 12 search points. Thus the algorithm
complexity of this search step is constant O(1).

(3) Multi-big hexagon search: there are (1/4)s hexagons
with 16 search points per hexagon. This yields a total
of 4s search points. Thus the algorithm complexity of
this search step is O(4s).

(4) Diamond search: there are 4 search points in this
search step. Thus the algorithm complexity of this
search step is constant O(1).

Therefore in total there are 1 + 2s + 12 + 4 + 4s search
points in the modified SUMH, and its algorithm complexity
is O(6s).

In order to obtain the algorithm complexity of SUMH,
we consider its worst case complexity, even though the

4 EURASIP Journal on Embedded Systems

Start: check predictors

Satisfy
convergence
condition?

Small local search

Satisfy intensive
search condition?

Cross search

Hexagon search

Multibig hexagon search

Up layer predictor search

Small local search

Extended hexagon search

Satisfy
convergence
condition?

Extended diamond search

Convergence search

Stop

Yes

No

No

Yes

No

Yes

Figure 1: Flow chart of integer-pel search in SUMH.

Start: check center and median MV predictor

Cross search

Hexagon search

Multibig hexagon search

Extended hexagon search

Extended diamond search

Stop

Figure 2: Flow chart of modified integer-pel search.

Table 1: Complexity of algorithms in million operations per second
(MOPS).

Algorithm
Number of search
points for search

range s = ±16

Number of MOPS
for CIF video at

30 Hz

FSME 1089 17103

Best case SUMH 5 78

Worst case SUMH 127 1995

Median case SUMH 66 1037

Modified SUMH 113 1775

algorithm may terminate much earlier. The worst case
complexity of SUMH is similar to that of the modified
SUMH, except that it adds 14 more search points. This
number is obtained by adding 4 search points each for 2
small local searches and 1 convergence search, and 2 search
points for the worst case up layer predictor search. Thus for
the worst case SUMH, there are in total 14+1+2s+12+4+4s
search points and its algorithm complexity is O(6s). Note
that in the best case, SUMH has only 5 search points: 1 for
the initial search candidate and 4 for the convergence search.

Another way to define the complexity of each algorithm
is in terms of the number of required operations. We can then
express the complexity as Million Operations Per Second
(MOPS). To compare the algorithms in terms of MOPS we
assume the following.

(1) The macroblock size is 16× 16.

(2) The SAD cost function requires 2×16×16 data loads,
16 × 16 = 256 subtraction operations, 256 absolute
operations, 256 accumulate operations, 41 compare
operations and 1 data store operation. This yields a
total of 1322 operations for one SAD computation.

(3) CIF resolution is 352×288 pixels = 396 macroblocks.

(4) The frame rate is 30 frames per second.

(5) The total number of operations required to encode
CIF video in real time is 1322× 396× 30× za, where
za is the number of search points for each algorithm.

Thus there are 15.7za MOPS per algorithm, where one
OP (operation) is the amount of computation it takes to
obtain one SAD value.

In Table 1 we compare the computational complexities
of the considered algorithms in terms of MOPS. As expected,
FSME requires the largest number of MOPS. The number of
MOPS required for the modified SUMH is about 10% less
than that required for the worst case SUMH and about 40%
more than that required for the median case SUMH.

2.4. Performance Results for the Modified SUMH Algorithm.
Our experiments are done in JM 13.2 [24]. We use the
following standard test sequences: “Stefan” (large motion),
“Foreman” and “Coastguard” (large to moderate motion)
and “Silent” (small motion). We chose these sequences
because we consider them extreme cases in the spectrum of
low bit-rate video applications. We also use the following

EURASIP Journal on Embedded Systems 5

Table 2: Simulation conditions.

Sequences Quantization parameter Search range Frame size No. of frames

Foreman 22, 25, 28, 31, 33, 35 32 CIF 100

Mother-daughter 22, 25, 28, 31, 33, 35 32 CIF 150

Stefan 22, 25, 28, 31, 33, 35 16 CIF 90

Flower 22, 25, 28, 31, 33, 35 16 CIF 150

Coastguard 18, 22, 25, 28, 31, 33 32 QCIF 220

Carphone 18, 22, 25, 28, 31, 33 32 QCIF 220

Silent 18, 22, 25, 28, 31, 33 16 QCIF 220

Table 3: Comparison of speed-up ratios with full search.

Quantization
Parameter

18 22 25 28 31 33 35

SUMH
Modified
SUMH

SUMH
Modified
SUMH

SUMH
Modified
SUMH

SUMH
Modified
SUMH

SUMH
Modified
SUMH

SUMH
Modified
SUMH

SUMH
Modified
SUMH

Foreman N/A N/A 48.55 8.16 41.55 6.86 32.68 5.66 25.87 4.77 21.68 4.23 19.11 3.74

Stefan N/A N/A 15.35 4.62 13.16 4.21 12.20 3.93 10.67 3.50 10.05 3.23 8.96 3.06

Mother-
daughter

N/A N/A 16.63 2.49 19.31 2.72 21.56 3.01 28.63 3.47 35.43 4.20 43.90 5.08

Flower N/A N/A 9.73 3.07 10.72 3.29 11.32 3.49 12.94 3.78 13.77 4.02 15.02 4.21

Coastguard 86.34 12.06 70.12 10.31 58.05 9.01 43.62 7.98 36.04 6.80 30.10 6.13 N/A N/A

Silent 21.86 3.54 16.74 3.18 13.17 2.99 11.90 2.82 9.29 2.66 8.56 2.64 N/A N/A

Carphone 24.67 4.14 29.44 4.62 37.12 5.38 46.97 6.02 53.97 7.07 64.07 8.82 N/A N/A

Table 4: Comparison of percentage time savings with full search.

Quantization
Parameter

18 22 25 28 31 33 35

SUMH
Modified
SUMH

SUMH
Modified
SUMH

SUMH
Modified
SUMH

SUMH
Modified
SUMH

SUMH
Modified
SUMH

SUMH
Modified
SUMH

SUMH
Modified
SUMH

Foreman N/A N/A 97.94 87.75 97.59 85.43 96.94 82.34 96.13 79.04 95.38 76.36 94.76 73.31

Stefan N/A N/A 93.48 78.38 92.40 76.29 91.80 74.61 90.63 71.46 90.05 69.05 88.83 67.35

Mother-
daughter

N/A N/A 93.98 60.00 94.82 63.34 95.36 66.85 96.50 71.22 97.17 76.21 97.72 80.35

Flower N/A N/A 89.72 67.45 90.67 69.62 91.16 71.37 92.27 73.56 92.71 75.14 93.34 76.27

Coastguard 98.84 91.71 98.57 90.30 98.27 88.91 97.70 87.47 97.22 85.29 96.67 83.70 N/A N/A

Silent 95.42 71.77 94.02 68.62 92.40 66.61 91.60 64.56 89.23 62.47 88.32 62.20 N/A N/A

Carphone 95.94 75.87 96.60 78.36 97.30 81.41 97.87 83.41 98.14 85.87 98.43 88.66 N/A N/A

sequences: “Mother-daughter” (small motion, talking head
and shoulders), “Flower” (large motion with camera pan-
ning), and “Carphone” (large motion). The sequences are
coded at 30 Hz. The picture sequence is IPPP with I-frame
refresh rate set at every 15 frames. We consider 1 reference
frame. The rest of our simulation conditions are summarized
in Table 2.

Figure 3 shows curves that compare the rate-distortion
efficiencies of Full Search ME, SUMH, and the modified
SUMH. Figure 4 shows curves that compare the rate-
distortion efficiencies of Full Search ME and the single- and
multiple-iteration parallel content-adaptive 4SS of [14]. In

Tables 3 and 4, we show a comparison of the speed-up
ratios of SUMH and the modified SUMH. Table 5 shows
the average percentage bit rate increase of the modified
SUMH when compared with Full Search ME and SUMH.
Finally Table 6 shows the average Y-PSNR loss of the
modified SUMH when compared with Full Search ME and
SUMH.

From Figures 3 and 4, we see that the modified SUMH
has a better rate-distortion performance than the proposed
parallel content-adaptive 4SS of [14], even under smaller
search ranges. In Section 3 we will show comparisons of
our supporting architecture with the supporting architecture

6 EURASIP Journal on Embedded Systems

31

32

33

34

35

36

37

38

39

40

41

Y-
P

SN
R

(d
B

)

500 1000 1500 2000 2500 3000 3500

Bitrate (kbps)

R-D curve (Stefan, CIF, SR = 16, 1 ref frame, IPPP...)

(a)

33

34

35

36

37

38

39

40

41

Y-
P

SN
R

(d
B

)

400 600 800 1000 1200 1400

Bitrate (kbps)

R-D curve (Foreman, CIF, SR = 32, 1 ref frame, IPPP...)

(b)

34

36

38

40

42

44

Y-
P

SN
R

(d
B

)

100 150 200 250 300 350 400

Bitrate (kbps)

R-D curve (Silent, QCIF, SR = 16, 1 ref frame, IPPP...)

Full search
SUMH
Modified SUMH

(c)

32

34

36

38

40

42

Y-
P

SN
R

(d
B

)

200 300 400 500 600 700 800 900 1000 1100

Bitrate (kbps)

R-D curve (Coastguard, QCIF, SR = 32, 1 ref frame, IPPP...)

Full search
SUMH
Modified SUMH

(d)

Figure 3: Comparison of rate-distortion efficiencies for the modified SUMH.

proposed in [14]. Note though that the architecture in [14] is
implemented on an ASIC (TSMC 0.18-μ 1P6M technology),
while our architecture is implemented on an FPGA.

From Figure 3 and Table 6 we also observe that the largest
PSNR losses occur in the “Foreman” sequence, while the least
PSNR losses occur in “Silent.” This is because the “Foreman”
sequence has both high local object motion and greater high-
frequency content. It therefore performs the worst under a
given bit rate constraint. On the other hand, “Silent” is a low
motion sequence. It therefore performs much better under
the same bit rate constraint.

Given the tested frames from Table 2 for each sequence,
we observe additionally from Table 6 that Full Search
performs better than the modified SUMH for sequences
with larger local object (foreground) motion, but lit-
tle or no background motion. These sequences include
“Foreman,” “Carphone,” “Mother-daughter,” and “Silent.”
However the rate-distortion performance of the modified
SUMH improves for sequences with large foreground and
background motions. Such sequences include “Flower,”
“Stefan,” and “Coastguard.” We therefore suggest that a yet
greater improvement in the rate-distortion performance of

EURASIP Journal on Embedded Systems 7

32

33

34

35

36

37

38
P

SN
R

(d
B

)

700 900 1100 1300 1500 1700 1900

Bitrate (kbps)

R-D curve (Stefan, CIF, SR = 32, 1 ref frame, IPPP...)

(a)

32

33

34

35

36

37

38

P
SN

R
(d

B
)

170 270 370 470 570 670

Bitrate (kbps)

R-D curve (Foreman, CIF, SR = 32, 1 ref frame, IPPP...)

(b)

32

33

34

35

36

37

38

P
SN

R
(d

B
)

120 220 320

Bitrate (kbps)

R-D curve (Silent, CIF, SR = 32, 1 ref frame, IPPP...)

FS
Proposed content-adaptive parallel-VBS 4SS
Single iteration parallel-VBS 4SS

(c)

32

33

34

35

36

37

38

P
SN

R
(d

B
)

600 1000 1400 1800

Bitrate (kbps)

R-D curve (Coastguard, CIF, SR = 32, 1 ref frame, IPPP...)

FS
Proposed content-adaptive parallel-VBS 4SS
Single iteration parallel-VBS 4SS

(d)

Figure 4: Comparison of rate-distortion efficiencies for parallel content-adaptive 4SS of [25] (Reproduced from [25]).

the modified SUMH algorithm can be achieved by improving
its local motion estimation.

For Table 3, we define the speed-up ratio as the ratio
of the ME coding time of Full Search to ME coding time
of the algorithm under consideration. From Table 3 we
see that speed-up ratio increases as quantization parameter
(QP) decreases. This is because there are less skip mode
macroblocks as QP decreases. From our results in Table 3,
we further calculate the percentage time savings t for ME
calculation, according to

t =
(

1 − 1
r

)
× 100, (6)

where r are the data points in Table 3. The percentage time
savings obtained are displayed in Table 4. From Table 4, we
find that SUMH saves 88.3% to 98.8% in ME computation
time compared to Full Search, while the modified SUMH
saves 60.0% to 91.7%. Therefore, the modified SUMH does
not incur much loss in terms of ME computation time.

In our experiments we set rate-distortion optimization
to high complexity mode (i.e., rate-distortion optimization
is turned on), in order to ensure that all of the algorithms
compared have a fair chance to yield their highest rate-
distortion performance. From Table 5 we find that the

Table 5: Average percentage bit rate increase for modified SUMH.

Sequences
Compared with

Full search SUMH

Foreman 1.29 −0.04

Stefan 0.40 −0.34

Mother-daughter 0.15 −0.05

Flower 0.19 −0.17

Coastguard −0.02 −0.03

Silent 0.56 −0.33

Carphone 0.27 −0.06

average percentage bit rate increase of the modified SUMH
is very low. When compared with Full Search, there is a bit
rate improvement (decrease in bit rate), in “Coastguard” of
0.02%. The worst bit rate increase is in “Foreman” and that
is 1.29%. When compared with SUMH, there is a bit rate
improvement (decrease in bit rate), going from 0.04% (in
“Coastguard”) to 0.34% (in “Stefan”).

From Table 6 we see that the average PSNR loss for the
modified SUMH is very low. When compared to Full Search,
the PSNR loss for modified SUMH ranges from 0.006 dB to

8 EURASIP Journal on Embedded Systems

0.03 dB. When compared to SUMH, most of the sequences
show a PSNR improvement of up to 0.02 dB, while two of
the sequences show a PSNR loss of 0.002 dB.

Thus in general, the losses when compared with Full
Search are insignificant, while on the other hand there is
an improvement when compared with SUMH. We therefore
conclude that the modified SUMH can be used without
much penalty, instead of Full Search ME, for ME in
H.264/AVC.

3. Proposed Supporting Architecture

Our top-level architecture for fast integer VBSME is shown
in Figure 5. The architecture is composed of search window
(SW) memory, current MB memory, an address generation
unit (AGU), a control unit, a block of processing units (PUs),
an SAD combination tree, a comparison units and a register
for storing the 41 minimum SADs and their associated
motion vectors.

While the current and reference frames are stored off-
chip in external memory, the current MB (CMB) data and
the search window (SW) data are stored in on-chip, dual-
port block RAMS (BRAMS). The SW memory has N 16×16
BRAMs that store N candidate MBs, where N is related to the
search range s. N can be chosen to be any factor or multiple
of |s| so as to achieve a tradeoff between speed and hardware
costs. For example, if we consider a search range of s = ±16,
then we can choose N such that N ∈ {. . . , 32, 16, 8, 4, 2, 1}.
The AGU generates addresses for blocks being processed.

There are N PUs each containing 16 processing elements
(PEs), in a 1D array. A PU shown in Figure 6 calculates
16 4 × 4 SADs for one candidate MB while a PE shown in
Figure 8 calculates the absolute difference between two pixels,
one each from the candidate MB and the current MB. From
Figure 6, groups of 4 PEs in the PU calculate 1 column of
4× 4 SADs. These are stored via demultiplexing, in registers
D1–D4 which hold the inputs to the SAD combination tree,
one of which is shown in Figure 7. For N PUs there are N
SAD combination trees. Each SAD combination tree further
combines the 16 4 × 4 output SADs from one PU, to yield a
total of 41 SADs per candidate MB. Figure 7 shows that the
16 4 × 4 SADs are combined such that registers D6 contain
4× 8 SADs, D7 contain 8× 8 SADs, D8 contain 8× 16 SADs,
D9 contain 16×8 SADs, D10 contain 8×4 SADs, and finally,
D11 contains the 16 × 16 SAD. These SADs are compared
appropriately in the comparison unit (CU). CU consists of
41 N-input comparing elements (CEs). A CE is shown in
Figure 9.

3.1. Address Generation Unit. For each of N MBs being
processed simultaneously, the AGU generates the addresses
of the top row and the leftmost column of 4 × 4 sub-blocks.
The address of each sub-block is the address of its top left
pixel. From the addresses of the top row and leftmost column
of 4×4 sub-blocks, we obtain the addresses of all other block
partitions in the MB.

The interface of the AGU is fixed and we parameterize
it by the address of the current MB, the search type and the

Table 6: Average Y-PSNR loss for modified SUMH.

Sequences
Compared with

Full search SUMH

Foreman 0. 0290 dB −0. 0065 dB

Stefan 0. 0058 dB −0. 0125 dB

Mother-daughter 0. 0187 dB −0. 0020 dB

Flower 0. 0042 dB −0. 0002 dB

Coastguard 0. 0078 dB 0. 0018 dB

Silent 0. 0098 dB 0. 0018 dB

Carphone 0. 0205 dB −0. 0225 dB

Table 7: Search passes for modified SUMH.

Pass Description

1-2 Horizontal scan of cross search. Candidate
MBs seperated by 2 pixels

3-4 Vertical scan of cross search. Candidate MBs
seperated by 2 pixels

5 Hexagon search has 6 search points

6–13 Multi-big hexagon search has (1/4)(|s|)
hexagons, each containing 16 search points

14 Extended hexagon search has 6 search points

15 Diamond search has 4 search points

search pass. The search type is modified SUMH. However
we can expand our architecture to support other types of
search, for example, Full Search, and so forth. The search pass
depends on the search step and the search range. We show
for instance, in Table 7 that there are 15 search passes for the
modified SUMH considering a search range s = ±16. There
is a separation of 2 pixels between 2 adjacent search points in
the cross search, therefore address generation for search pass
1 to 4 in Table 7 is straightforward. For the remaining search
passes5–15, tables of constant offset values are obtained
from JM reference software [24]. These offset values are
the separation in pixels, between the minimum MV from
the previous search pass, and the candidate search point. In
general, the affine address equations can be represented by

AEx = iCx, AEy = iCy , (7)

where AEx and AEy are the horizontal and vertical addresses
of the top left pixel in the MB, i is a multiplier, Cx and Cy are
constants obtained from JM reference software.

3.2. Memory. Figures 10 and 11 show CMB and search
window (SW) memory organization for N = 8 PUs.
Both CMB and SW memories are synthesized into BRAMs.
Considering a search range of s = ±16, there are 15 search
passes for the modified SUMH search flowchart shown in
Figure 2. These search passes are shown in Table 7. In each
search pass, 8 MBs are processed in parallel, hence the SW
memory organization is shown in Figure 11. SW memory is
128 bytes wide and the required memory size is 2048 bytes.
For the same search range s = ±16, if FSME was used
along with levels A and B data reuse, the SW size would be

EURASIP Journal on Embedded Systems 9

Candi-
date MB
N − 2

Candi-
date MB
N − 1

Candi-
date MB

N

Candi-
date MB

1

Candi-
date MB

2

Candi-
date MB

3
· · ·

SW memory

PU 1 PU 2 PU 3 · · · PU N − 2 PU N − 1 PU N

CE 1 CE 2 CE 3 CE 41· · · · · ·Comparison unit

SAD combination tree

Register that stores minimum 41 SADs and associated MVs

To external memory

C
on

tr
ol

u
n

it
AGU

Current MB
(CMB)

memory

Figure 5: The proposed architecture for fast integer VBSME.

D1 D2 D3 D4 D1 D2 D3 D4

PE 1 PE 2 PE 3 PE 4 PE 5 PE 6 PE 7 PE 8 PE 9 PE 10 PE 11 PE 12 PE 13 PE 14 PE 15 PE 16

+ +

+

DemuxCntr

D1 D2 D3 D4

D5 D5 D5 D5 D5 D5 D5 D5 D5 D5 D5 D5 D5 D5 D5 D5

D1 D2 D3 D4

+ +

+

DemuxCntr

+ +

+

DemuxCntr

+ +

D0D0D0D0D0D0D0D0

+

DemuxCntr

Figure 6: The architecture of a Processing Unit (PU).

48 × 48 pixels, that is 2304 bytes [25]. Thus by using the
modified SUMH, we achieve an 11% on-chip memory
savings even without a data reuse scheme.

In each clock cycle, we load 64 bits of data. This means
that it takes 256 cycles to load data for one search pass and
3840 (256 × 15) cycles to load data for one CMB. Under
similar conditions for FSME it would take 288 clock cycles
to load data for one CMB. Thus the ratio of the required
memory bandwidth for the modified SUMH to the required
memory bandwidth for FSME is 13.3. While this ratio is
undesirably high, it is well mitigated by the fact that there

are only 113 search locations for one CMB in the modified
SUMH, compared to 1089 search locations for one CMB in
FSME. In other words, the amount of computation for one
CMB in the modified SUMH is approximately 0.1 that for
FSME. Thus there is an overall power savings in using the
modified SUMH instead of FSME.

3.3. Processing Unit. Table 8 shows the pixel data schedule
for two search passes of the N PUs. In Table 8 we are
considering as an illustrative example the cross search and
a search range s = ±16, hence the given pixel coordinates.

10 EURASIP Journal on Embedded Systems

Top
SAD

Top
SAD

Top
SAD

Top
SAD

Bottom
SAD

Bottom
SAD

Bottom
SAD

Bottom
SAD

+ + + +

+ +

+

+

+ + + +

D5

D6D6D6D6D6D6D6

D7

D5

D6

D8

D9

D10

D11D7

D7 D7 D7

D8D9D9D8

D10 D10 D10 D10

D11

D10 D10 D10 D10

D6

D5D5D5D5D5D5D5D5D5D5D5D5D5D5D5

+ + + +

+ +

+

+ + + +

+ +

Top
4× 4 SAD

Bottom
4× 4 SAD

4× 4 SAD

4× 8 SAD

8× 8 SAD

8× 16 SAD

16× 8 SAD

8× 4 SAD

16× 16 SAD

Figure 7: SAD Combination tree.

Table 8: Data schedule for processing unit (PU).

Clock PU1 · · · PU8 Comments

1–16
(−15, 0)–(0,0) (−1,0)–(14,0)

Search pass 1: left horizontal scan of cross search... · · ·
...

(−15, −15)–(0, −15) (−1, −15)–(14, −15)

17– 32
(1, 0)–(16,0) (15,0)–(30,0)

Search pass 2: right horizontal scan of cross search... · · ·
...

(1, −15)–(16, −15) (15, −15)–(30, −15)

33–48
(0, 15)–(15,15) (0, 1)–(15, 1)

Search pass 3: top vertical scan of cross search... · · ·
...

(0, 0)–(15, 0) (0, −14)–(15, −14)

49–64
(0, −1)–(15, −1) (0, −15)–(15, −15)

Search pass 4: bottom vertical scan of cross search... · · ·
...

(0, −16)–(15, −16) (0, −30)–(15, −30)
...

...
...

...

Table 8 shows that it takes 16 cycles to output the 16 4 × 4
SADs from each PU.

3.4. SAD Combination Tree. The data schedule for the SAD
combination is shown in Table 9. There are N SAD combina-

tion (SC) trees, each processing 16 4×4 SADs that are output
from each PU. It takes 5 cycles to combine the 16 4× 4 SADs
and output 41 SADs for the 7 interprediction block sizes in
H.264/AVC: 1 16 × 16 SAD, 2 16 × 8 SADs, 2 8 × 16 SADs,
4 8×8 SADs, 8 8×4 SADs, 8 4×8 SADs, and 16 4×4 SADs.

EURASIP Journal on Embedded Systems 11

RegisterAbsolute
difference

Candidate
MB
pixel

Current
MB
pixel

Control
signals

+

Figure 8: Processing element (PE).

Table 9: Data schedule for SAD combination (SC) unit.

Clock SC1 SC2 · · · SC8

17 16 4× 4 SAD 16 4× 4 SAD 16 4× 4 SAD

18
8 4× 8 SAD 8 4× 8 SAD 8 4× 8 SAD

8 8× 4 SAD 8 8× 4 SAD 8 8× 4 SAD

19 4 8× 8 SAD 4 8× 8 SAD 4 8× 8 SAD

20
2 8× 16 SAD 2 8× 16 SAD 2 8× 16 SAD

2 16× 8 SAD 2 16× 8 SAD 2 16× 8 SAD

21 1 16× 16 SAD 1 16× 16 SAD 1 16× 16 SAD

3.5. Comparison Unit. The data schedule for the CU is
shown in Table 10. The CU consists of 41 CE, each
element processing N SADs of the same interprediction
block size, from the N PUs. Each CE compares SADs in
twos. It therefore takes log2N + 1 cycles to output the 41
minimum SADs. Thus given N = 8, the CU consumes 4
cycles.

3.6. Summary of Dataflow. The dataflow represented by the
data schedules described variously in Tables 8–10 may be
summarized by the algorithmic state machine (ASM) chart
shown in Figure 12. The ASM chart also represents the
mapping of the modified SUMH algorithm in Figure 2, to
our proposed architecture in Figure 5.

In our ASM chart, there are 6 states and 2 decision
boxes. The states are labeled S1 to S6, while the decision
boxes are labeled Q1 and Q2. In each state box, we provide
the summary description of the state as well as its output
variables in italic font.

From Figure 12 we see that implementation of the
modified SUMH on our proposed architecture IP core starts
in state S1 when the motion vector (MV) predictors are
checked. This is done by the PowerPC processor which is
part of our SoC prototyping platform (see Section 4). The
MV predictors are stored in external memory and accessed
from there by the PowerPC processor. The output from state
S1 is the MV predictors. In the next state S2, the minimum
MV cost is obtained and mode decision is done to obtain the
right blocktype. This is also done by the PowerPC processor
and the outputs of this state are the minimum MV, its SAD

Control signals

AGU input

Min SAD

MV

N SADs

Min SADN-input
comparator

Figure 9: Comparing element (CE).

16 pixels

16
pi

xe
ls

8 bytes 8 bytes

...

Figure 10: Data arrangement in current macroblock (CMB)
memory.

128 pixels

16
pi

xe
ls

8 bytes 8 bytes 8 bytes 8 bytes

...

· · ·

Figure 11: Data arrangement in search window (SW) memory.

cost, its blocktype, and its address. The minimum MV cost is
obtained by minimizing the cost in

Jmotion
(−→m, REF | λmotion

)

=SAD
(
dx,dy, REF,−→m)+ λmotion·

(
R
(−→m−−→p

)
+R(REF)

)
,

(8)

where −→m = (mx,my)T is the current MV being considered,
REF denotes the reference picture, λmotion is the Lagrangian
multiplier, SAD(dx,dy, REF,−→m) is the SAD cost obtained as
in (1),−→p = (px, py) is the MV used for the prediction, R(−→m−
−→
p) represents the number of bits used for MV coding, and,
R(REF) is the bits for coding REF.

In the state S3, some of the outputs from state S2
are passed into our proposed architecture IP core. In state
S4, the AGU computes the addresses of candidate blocks,
using the address of the MV predictor as the base address,
and the control unit waits for the initialization of search
window data in the BRAMs. The output of state S4 is

12 EURASIP Journal on Embedded Systems

Table 10: Data schedule for comparison unit (CU).

Clock CE1–CE16 CE17–CE32 CE33–CE36 CE37–CE40 CE41

22 8 4× 4 SAD
8 4× 8 SAD

8 8× 8 SAD
8 8× 16 SAD

8 16× 16 SAD
8 8× 4 SAD 8 16× 8 SAD

23 4 4× 4 SAD
4 4× 8 SAD

4 8× 8 SAD
4 8× 16 SAD

4 16× 16 SAD
4 8× 4 SAD 4 16× 8 SAD

24
2 4× 4 SAD

2 4× 8 SAD
2 8× 8 SAD

2 8× 16 SAD
2 16× 16 SAD

2 8× 4 SAD 2 16× 8 SAD

25
1 4× 4 SAD

1 4× 8 SAD
1 8× 8 SAD

1 8× 16 SAD
1 16× 16 SAD

1 8× 4 SAD 1 16× 8 SAD

S1: check MV predictors in PowerPC
MVs

S2: obtain min MV cost and perform mode decision in PowerPC

min MV, min SAD cost, blocktype and base address

S3: min MV, min SAD cost and address in IP core
min MV, min SAD cost, and base address

S4: AGU computes addresses of candidate blocks from base address,
and control unit waits for initialization of BRAM data for search pass

addresses, BRAM initialization complete

S5: PUs and SCs compute SADs for search pass
addresses, SADs

S6: obtain min SAD for search pass and update base address from addresses

base address, 41 min SADs, 41 min MVs

Q1: last
search pass of

step?

Q2: last search pass
of modified SUMH?

No Yes

No

Yes

IP core

Figure 12: Algorithmic state machine chart for the modified SUMH algorithm.

the addresses of the candidate blocks and a flag indicating
that BRAM initialization is complete. In state S5, the
processing units and SAD combination trees compute the
SADs of the candidate blocks. The output of S5 is the
computed SADs and unchanged AGU addresses. In state
S6, the CU compares these SADs with previously computed
SADs and obtains the 41 minimum SADs. The outputs
of S6 are the 41 minimum SADs and their corresponding
addresses.

In the decision block Q1, we check if the current search
pass is the last search pass of a particular search step, for
example, the cross search step. If no, we continue with other
passes of that search step. If yes, we go to decision block Q2.
In Q2 we check if it is the last search pass of the modified
SUMH algorithm. If no, we move onto the next search step,
for example, hexagon search. If yes, we check for the MV
predictors of the next current macroblock, according to the
HF3V2 2-stitched zigzag scan proposed in [19].

EURASIP Journal on Embedded Systems 13

Table 11: Synthesis results.

Process (μm) 0.13 (FPGA)

Number of slices 11.4K

Number of slice flip flops 16.4K

Number of 4-input LUTs 18.7K

Total equivalent gate count 388K

Max frequency (MHz) 145.2

Algorithm Modified SUMH

Video specifications CIF 30-fps

Search range ±16

Block size 16× 16 to 4× 4

Minimum required frequency (MHz) 24.1

Number of 16× 8-bit dual-port RAMs 129

Memory utilization (Kb) 398

Voltage (V) 1.5

Power consumed (mW) 25

3.7. Synthesis Results and Analysis. The proposed architec-
ture has been implemented in Verilog HDL. Simulation and
functional verification of the architecture was done using the
Mentor Graphics ModelSim tool [26]. We then synthesized
the architecture using the Xilinx sythesis tool (XST). XST
is part of the Xilinx integrated software environment (ISE)
[27]. After synthesis, place and routing is done targeting the
Virtex-II Pro XC2VP30 Xilinx FPGA on our development
board. Finally we obtain power analysis for our design, using
the XPower tool which is also part of Xilinx ISE.

Our synthesis results are shown in Table 11. From
Table 11 we see that our architecture can achieve a maximum
frequency of 145.2 MHz. The FPGA power consumption of
our architecture is 25 mW obtained using Xilinx XPower
tool. The total equivalent gate count is 388 K.

Our simulations in ModelSim support our dataflow
described in Sections 3.1 to 3.6. We find that it takes 27
cycles to obtain the minimum SAD from each search pass,
after initialization. The 27 cycles are obtained from 1 cycle
for the AGU, 1 cycle to read data from on-chip memory, 16
cycles for the PU, 5 cycles for the SAD combination tree,
and 4 cycles for the comparison unit. Therefore, it takes
405 (15 × 27) cycles to complete the search for 1 CMB, 1
reference frame, and s = ±16. For a CIF image (396 MBs) at
30 Hz and considering 5 reference frames, a minimum clock
frequency of approximately 24.1 (405 × 396 × 30 × 5) MHz
is required. Thus with a maximum possible clock speed of
145.2 MHz, our architecture can compute in real-time CIF
sequences within a search range of±16 and using 5 reference
frames.

We provide Table 12 which compares our architecture
with previous state-of-the-art architectures implemented on
ASICs. Note that a direct comparison of our implementation
with implementations done on ASIC technology is impos-
sible because of the fact that the platforms are different.
ASICs still provide the highest performance in terms of
area, power consumed, and maximum frequency. However,
we provide Table 12 not for direct comparisons, but to
show that our implementation achieves ASIC-like levels of

performance. This is desirable because it indicates that an
ASIC implementation of our architecture will yield even
better performance results. Our Verilog implementation
was kept portable in order to simplify FPGA to ASIC
migration.

From Table 12 we see that our architecture achieves
many desirable results. The most remarkable is that the
power consumption is very low despite the fact that our
implementation is done on an FPGA which typically con-
sumes more power than an ASIC. Besides the low power
consumption of our architecture, other favorable results are
that the algorithm we use has better PSNR performance than
the algorithms used in the other works. We also note that
our architecture achieves the highest maximum frequency.
By extension our architecture is the only one that can support
high definition (HD) 1080 p sequences at 30 Hz, a search
range s = ±16 and 1 reference frame. This would need a
minimum frequency of approximately 85.9 MHz.
In the next section we discuss our prototyping efforts and
compare our results with similar works.

4. Architecture Prototype

The top-level prototype design of our architecture is shown
in Figure 13. It is based on the prototype design in [25]. In
[25], Canals et al. propose an FPSoC-based architecture for
Full Search block matching algorithm. Their implementation
is done on a Virtex-4 FPGA.

Our prototype is done on the XUPV2P development
board available from Digilent Inc. [28]. The board contains
a Virtex-II Pro XC2VP30 FPGA with 30,816 Logic Cells, 136
18-bit multipliers, 2,448 Kb of block RAM, and two PowerPC
Processors. There are several connectors which include a
serial RS-232 port for communication with a host personal
computer. The board also features JTAG programming via
on-board USB2 port as well as a DDR SDRAM DIMM that
can accept up to 2 Gbytes of RAM.

The embedded development tool used to design our
prototype is the Xilinx Platform Studio (XPS), in the Xilinx
Embedded Development Kit (EDK) [29]. The EDK makes
it relatively simple to integrate user Intellectual Property
(IP) cores as peripherals in an FPSoC. Hardware/software
cosimulation can then be done to test the user IP.

In our prototype design, as shown in Figure 13, we
employ a PowerPC hardcore embedded processor, as our
controller. The processor sends stimuli to the motion
estimation IP core and reads results back for comparison.
The processor is connected to the other design modules, via
a 64bit processor local bus (PLB).

The boot program memory is a 64 kb BRAM. It contains
a bootloop program necessary to keep the processor in
a known state after we load the hardware and before we
load the software. The PLB connects to the user IP core
through an IP interface (IPIF). This interface exposes several
programmable interconnects. We use a slave-master FIFO
attachment that is 64-bits wide and 512 positions deep. The
status and control signals of the FIFO are available to the user
logic block. The user logic block contains logic for reading

14 EURASIP Journal on Embedded Systems

Table 12: Comparison with other architectures implemented on ASICS.

Chao’s et al. [11]
Miyakoshi’s
et al. [12]

Lin’s [13] Chen’s et al. [14] This Work

Process (μm) 0.35 0.18 0.18 0.18 0.13 FPGA

Voltage (V) 3.3 1.0 1.8 1.3 1.5

Transistors count 301 K 1000 K 546 K 708 K 388 K

Maximum
frequency (MHz)

50 13.5 48.67 66 145.2

Video Spec. CIF 30-fps CIF 30-fps CIF 30-fps CIF 30-fps CIF 30-fps

frequency (MHz) 50 13.5 48.67 13.5 24.1

Algorithm Diamond search Gradient decent 4SS
Single-Iteration
Parallel VBS 4SS
w/1-ref.

Hardware
oriented SUMH

Block size 16×16 and 8×8
16× 16 and
8× 8

16× 16 16× 16 to 4× 4 16× 16 to 4× 4

power (mW) 223.6 6.56 8.46 2.13 25

Normalized
Power (1.8 V,
0.18 μm)∗

17.60 21.25 8.46 4.08 69.02

Architecture
1D tree. No data
reuse scheme

1D tree. No data
reuse scheme

1D tree. Level A
data reuse
scheme

2D tree. Level B
data reuse
scheme

1D tree. No data
reuse scheme

Can support
HD1920 × 1080 p

No No No No Yes

∗
Normalized power = Power× (0.182/process2)× (1.82/voltage2).

PowerPC

IPIF control

Read control

Read FIFO

Write control

Write FIFO

Write control Read control

Status and control

Pixel data memory

Motion estimation IP core

User logic

64-bit PLB bus

Boot program
memory

PLB IPIF

Figure 13: FPSoC prototype design of our architecture.

and writing to the FIFO and the Verilog implementation of
our architecture.

During operation, the PowerPC processor writes input
stimuli to the FIFO and sets status and control bits. The

Table 13: Comparison with other FPSOC architectures.

Canals et al. [25] This work

FPSoC FPGA Virtex-4 Virtex-II Pro

Algorithm Full Search Hardware oriented
SUMH

Video format QCIF QCIF

Search range ±16 ±16

Number of slices 12.5 K 11.4 K

Memory utilization
(Kb)

784 398

Clock frequency
(MHz)

100 100

user logic reads the status and control signals and when
appropriate, reads data from the FIFO. The data passes into
the IP core and when the ME computation is done, the
results are written back on the FIFO. The PowerPC reads the
results and does a comparison with expected results to verify
accuracy of the IP. Intermediate results during the operation
are sent to a terminal on the host personal computer, via the
RS-232 serial connection.

We target QCIF video for our prototype, in order to
compare our results with the results in [25]. Table 13 shows
this comparison. We see from Table 13 that our architecture
consumes less FPGA resources and has a lower memory
utilization. Again, we note that a direct comparison of both
architectures is complicated by the fact that different FPGAs

EURASIP Journal on Embedded Systems 15

were used in both prototyping platforms. The work in [25]
is based on a Virtex-4 FPGA which uses 90-nm technology,
while our work is based on Virtex-II Pro FPGA which uses
130-nm technology.

5. Conclusion

In this paper we have presented our low power, FPSoC-
based architecture for a fast ME algorithm in H.264/AVC. We
described our adopted fast ME algorithm which is a hardware
oriented SUMH algorithm. We showed that the modified
SUMH has superior rate-distortion performance compared
to some existing state-of-the-art fast ME algorithms. We also
described our architecture for the hardware oriented SUMH.
We showed that the FPGA-based implementation of our
architecture yields ASIC-like levels of performance in terms
of speed, area, and power. Our results showed in addition,
that our architecture has the potential to support HD 1080 p
unlike the other architectures we compared it with. Finally
we have discussed our prototyping efforts and compared
them with a similar prototyping effort. Our results showed
that our implementation uses less FPGA resources.

In summary therefore, the modified SUMH is more
attractive than SUMH because it is hardware oriented. It
is also more attractive than Full Search because Full Search
is hardware oriented, it is much more complex than the
modified SUMH and thus will require more hardware area,
speed, and power for implementation.

We therefore conclude that for low power handheld
devices, the modified SUMH can be used without much
penalty, instead of Full Search, for ME in H.264/AVC.

Acknowledgments

The authors acknowledge the support from Xilinx Inc.,
the Xilinx University Program, the Packard Foundation
and the Department of Electrical Engineering, Santa Clara
University, California. The authors also thank the editor and
Reviewers of this journal for their useful comments.

References

[1] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,” IEEE
Transactions on Circuits and Systems for Video Technology, vol.
13, no. 7, pp. 560–576, 2003.

[2] G. J. Sullivan, P. Topiwala, and A. Luthra, “The H.264/AVC
advanced video coding standard: overview and introduction
to the fidelity range extensions,” in Proceedings of the 27th
Conference on Applications of Digital Image Processing, vol.
5558 of Proceedings of SPIE, pp. 454–474, August 2004.

[3] H.-C. Lin, Y.-J. Wang, K.-T. Cheng, et al., “Algorithms and
DSP implementation of H.264/AVC,” in Proceedings of the
Asia and South Pacific Design Automation Conference (ASP-
DAC ’06), pp. 742–749, Yokohama, Japan, January 2006.

[4] Z. Chen, P. Zhou, and Y. He, “Fast integer pel and fractional
pel motion estimation for JVT,” in Proceedings of the 6th
Meeting of the Joint Video Team (JVT) of ISO/IEC MPEG and
ITU-T VCE, Awaji Island, Japan, December 2002, JVT-F017.

[5] R. Li, B. Zeng, and M. L. Liou, “New three-step search
algorithm for block motion estimation,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 4, no. 4, pp.
438–442, 1994.

[6] L.-M. Po and W.-C. Ma, “A novel four-step search algorithm
for fast block motion estimation,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 6, no. 3, pp.
313–317, 1996.

[7] J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim,
“A novel unrestricted center-biased diamond search algorithm
for block motion estimation,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 8, no. 4, pp. 369–377,
1998.

[8] X. Yi, J. Zhang, N. Ling, and W. Shang, “Improved and
simplified fast motion estimation for JM,” in Proceedings of the
16th Meeting of the Joint Video Team (JVT) of ISO/IEC MPEG
and ITU-T VCEG, Posnan, Poland, July 2005, JVT-P021.doc.

[9] X. Yi and N. Ling, “Improved normalized partial distortion
search with dual-halfway-stop for rapid block motion estima-
tion,” IEEE Transactions on Multimedia, vol. 9, no. 5, pp. 995–
1003, 2007.

[10] C. De Vleeschouwer, T. Nilsson, K. Denolf, and J. Bor-
mans, “Algorithmic and architectural co-design of a motion-
estimation engine for low-power video devices,” IEEE Trans-
actions on Circuits and Systems for Video Technology, vol. 12,
no. 12, pp. 1093–1105, 2002.

[11] W.-M. Chao, C.-W. Hsu, Y.-C. Chang, and L.-G. Chen, “A
novel hybrid motion estimator supporting diamond search
and fast full search,” in Proceedings of IEEE International
Symposium on Circuits and Systems (ISCAS ’02), vol. 2, pp.
492–495, Phoenix, Ariz, USA, May 2002.

[12] J. Miyakoshi, Y. Kuroda, M. Miyama, K. Imamura, H.
Hashimoto, and M. Yoshimoto, “A sub-mW MPEG-4 motion
estimation processor core for mobile video application,”
in Proceedings of the Custom Integrated Circuits Conference
(ICC ’03), pp. 181–184, 2003.

[13] S.-S. Lin, Low-power motion estimation processors for mobile
video application, M.S. thesis, Graduate Institute of Electronic
Engineering, National Taiwan University, Taipei, Taiwan,
2004.

[14] T.-C. Chen, Y.-H. Chen, S.-F. Tsai, S.-Y. Chien, and L.-G.
Chen, “Fast algorithm and architecture design of low-power
integer motion estimation for H.264/AVC,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 17, no. 5, pp.
568–576, 2007.

[15] L. Zhang and W. Gao, “Reusable architecture and complexity-
controllable algorithm for the integer/fractional motion esti-
mation of H.264,” IEEE Transactions on Consumer Electronics,
vol. 53, no. 2, pp. 749–756, 2007.

[16] C. A. Rahman and W. Badawy, “UMHexagonS algorithm
based motion estimation architecture for H.264/AVC,” in
Proceedings of the 5th International Workshop on System-on-
Chip for Real-Time Applications (IWSOC ’05), pp. 207–210,
Banff, Alberta, Canada, 2005.

[17] M.-S. Byeon, Y.-M. Shin, and Y.-B. Cho, “Hardware archi-
tecture for fast motion estimation in H.264/AVC video
coding,” in IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. E89-A, no. 6, pp.
1744–1745, 2006.

[18] Y.-Y. Wang, Y.-T. Peng, and C.-J. Tsai, “VLSI architecture
design of motion estimator and in-loop filter for MPEG-4
AVC/H.264 encoders,” in Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS ’04), vol. 2, pp. 49–
52, Vancouver, Canada, May 2004.

16 EURASIP Journal on Embedded Systems

[19] C.-Y. Chen, C.-T. Huang, Y.-H. Chen, and L.-G. Chen,
“Level C+ data reuse scheme for motion estimation with
corresponding coding orders,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 16, no. 4, pp. 553–558,
2006.

[20] S. Yalcin, H. F. Ates, and I. Hamzaoglu, “A high performance
hardware architecture for an SAD reuse based hierarchical
motion estimation algorithm for H.264 video coding,” in Pro-
ceedings of the International Conference on Field Programmable
Logic and Applications (FPL ’05), pp. 509–514, Tampere,
Finland, August 2005.

[21] S.-J. Lee, C.-G. Kim, and S.-D. Kim, “A pipelined hard-
ware architecture for motion estimation of H.264/AVC,” in
Proceedings of the 10th Asia-Pacific Conference on Advances
in Computer Systems Architecture (ACSAC ’05), vol. 3740
of Lecture Notes in Computer Science, pp. 79–89, Springer,
Singapore, October 2005.

[22] C.-M. Ou, C.-F. Le, and W.-J. Hwang, “An efficient VLSI
architecture for H.264 variable block size motion estimation,”
IEEE Transactions on Consumer Electronics, vol. 51, no. 4, pp.
1291–1299, 2005.

[23] O. Ndili and T. Ogunfunmi, “A hardware oriented integer
pel fast motion estimation algorithm in H.264/AVC,” in
Proceedings of the IEEE/ECSI/EURASIP Conference on Design
and Architectures for Signal and Image Processing (DASIP ’08),
Bruxelles, Belgium, November 2008.

[24] H.264/AVC Reference Software JM 13.2., 2009,
http://iphome.hhi.de/suehring/tml/download.

[25] J. A. Canals, M. A. Martı́nez, F. J. Ballester, and A. Mora,
“New FPSoC-based architecture for efficient FSBM motion
estimation processing in video standards,” in Proceedings of
the International Society for Optical Engineering, vol. 6590 of
Proceedings of SPIE, p. 65901N, 2007.

[26] Mentor Graphics ModelSim SE User’s Manual—Software
Version 6.2d, 2009, http://www.model.com/support.

[27] Xilinx ISE 9.1 In-Depth Tutorial, 2009, http://download
.xilinx.com/direct/ise9 tutorials/ise9tut.pdf.

[28] Xilinx Virtex-II Pro Development System, 2009, http://
www.digilentinc.com/Products/Detail.cfm?Prod=XUPV2P.

[29] Xilinx Platform Studio and Embedded Development Kit,
2009, http://www.xilinx.com/ise/embedded/edk pstudio.htm.

	1. Introduction
	2.Motion Estimation Algorithm
	2.1. Integer-Pel SUMH Algorithm
	2.2. Hardware Oriented SUMH Algorithm
	2.3. Complexity Analysis of the Motion Estimation Algorithms
	2.4. Performance Results for the Modified SUMH Algorithm

	3. Proposed Supporting Architecture
	3.1. Address Generation Unit
	3.2. Memory
	3.3. Processing Unit
	3.4. SAD Combination Tree
	3.5. Comparison Unit
	3.6. Summary of Dataflow
	3.7. Synthesis Results and Analysis

	4. Architecture Prototype
	5. Conclusion
	Acknowledgments
	References

