
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2009, Article ID 856962, 10 pages
doi:10.1155/2009/856962

Research Article

An Embedded Software Platform for Distributed
Automotive EnvironmentManagement

Ralf Seepold, NatividadMartı́nez Madrid, Jesús Sáez Gómez-Escalonilla,
and Alvaro Reina Nieves

Departamento de Ingenieŕıa Telemática Escuela Politécnica Superior Universidad Carlos III de Madrid,
Avenida Universidad 30, 28911 Leganés, Madrid, Spain

Correspondence should be addressed to Ralf Seepold, ralf.seepold@uc3m.es

Received 2 September 2008; Revised 9 December 2008; Accepted 27 January 2009

Recommended by Markus Kucera

This paper discusses an innovative extension of the actual vehicle platforms that integrate intelligent environments in order to
carry out e-safety tasks improving the driving security. These platforms are dedicated to automotive environments which are
characterized by sensor networks deployed along the vehicles. Since this kind of platform infrastructure is hardly extensible and
forms a non-scalable process unit, an embedded OSGi-based UPnP platform extension is proposed in this article. Such extension
deploys a compatible and scalable uniform environment that allows to manage the vehicle components heterogeneity and to
provide plug and play support, being compatible with all kind of devices and sensors located in a car network. Furthermore,
such extension allows to autoregister any kind of external devices, wherever they are located, providing the in-vehicle system with
additional services and data supplied by them. This extension also supports service provisioning and connections to external and
remote network services using SIP technology.

Copyright © 2009 Ralf Seepold et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Cars are equipped with an increasing number of sensors
mainly integrated (and provided) by car manufacturers
and thus directly connected to the proprietary internal
bus of a vehicle. While the amount of internal sensors is
increasing, also external sensors play a growing important
role. Examples are wearable sensor networks, specific devices
connected to health care monitoring or sensors connected to
PDA devices, like GPS trackers. These external sensors can
provide additional data to in-vehicle systems that are not
available via in-car sensors, like passengers’ health status and
health files in case of an accident. All these retrieved data
can be used by the system developed within the “intelligent
vehicles” in order to deploy intelligent environments. They
are based on applications that are able to infer risk situation
and act to prevent or mitigate them.

The main target of this work is to develop an open
in-car service platform that provides an abstraction layer
to all devices accessible through the vehicle area network

(VAN). Such layer will allow a seamless integration of on-
board sensors as well as the services provided by any kind
of connectable device located under the vehicle network
coverage on the one hand side and the possibility to
establish connections to services located in external (remote)
networks. It will deploy a uniform execution environment
that allows the applications running over it to access in a
standard way to the information, and services offered by
the connected sensors, devices and servers. In the same way,
the developed platform implements the required routines
to manage the connectivity toward both the existing vehicle
networks (CAN Bus, FlexRay, LIN, etc.) and the external
ones (Wifi, UMTS, and GPRS), as well as to act as an access
point toward several kinds of local area network deployed
within the car environment (Wifi, Bluetooth, Zigbee, etc.).
Thus, when the term “platform” is mentioned, it refers to
a car gateway implemented within a vehicle including all
connectivity and abstraction routines.

This car gateway will provide not only the connectivity
module, able to connect to all devices inside the car, but



2 EURASIP Journal on Embedded Systems

it will establish also secure connections on demand to any
external network. As a result, it will be possible to register
services located within foreign destinations (remote devices).
Additionally, the car gateway can work in a reverse mode
registering any application that runs on the gateway to offer
its services also to VANs as within an external network. In
this way, it will act as a server so that any client (i.e., home
gateway) can access to the functionality implemented and
published over this platform.

As an important feature and requirement for the ease
of use, sensors and devices need to be discovered and
configured without user intervention. This allows adding and
removing this kind of peripherics dynamically while it does
not impose additional effort in setting up new devices or
modifying the current platform configuration.

Besides providing raw data on demand, actuators can be
connected to the car gateway, deriving further functionality
after extracting information from the pool of data made
available via the new platform. It is even possible that sensors
located inside the car provide data storage via the integration
platform for later analysis of vehicle status or passenger
status.

Proprietary solutions are based on a set of sensors directly
connected to a process unit that is responsible for the
connected actuators supervision (cf. Figure 1). This archi-
tecture provides neither openness nor flexibility, because
these connections are individually configured for each sensor
type, and the process unit operation is considered to be
customized. It is obvious that this model does not scale in
a dynamic environment that has been mentioned before.

The solution proposed in this study is based on a fully
distributed model in which each device is connected to the
VAN, both wired and wireless. It also connects to devices
attached to the CAN-Bus, and finally the car gateway (e.g.,
a dedicated light weighted embedded car PC) that can serve
as the hardware platform (see Figure 2). This architecture
supports a distributed and scalable model, which allows
installing additional devices. That is, because the car PC
provides all routines required to register and to interconnect
most of the devices, it allows dynamic discovery of new
devices and it installs the appropriate drivers.

Since additional sensors or actuators do not belong to
the initial configuration of the static car infrastructure, it
is assumed that they can join or leave the network in a
dynamic way. Some device typology examples can be found
in e-care environments which are tracking vital signals or
other interesting parameters belonging to person monitoring
capabilities integrated in wearable devices or as additional
accessories [1]. All these target devices have one part in
common: they will be incorporated into the car network,
acting as servers for new features (services) registered in
the car gateway (i.e., A/V cameras, A/V contents server,
reproduction devices, smart infant seats, etc.). These will
help to develop new added value e-safety applications like
enriched emergency calls, driver and passengers wellness
monitoring, and so forth.

In the following section, the new approach is compared
to the state of the art and additional information about
selected standards are also given. Section 3 explains the

User interface

Sensor 1

Sensor 2

Optional sensor

Process unit

Actuator 1

Actuator 2

Optional actuator

Figure 1: Dedicated sensors.

Sensor 1

Sensor 2

Optional sensor

Actuator 1

Actuator 2

Optional actuator

Car gateway

Figure 2: Sensor network.

design of the car gateway architecture and the integration
platform embedded into the gateway. Then, Section 4 will
describe the prototype implementation of the developed
system. Finally, Section 5 summarizes the results obtained
and Section 6 gives a brief outlook on the future work.

2. State of the Art

2.1. Current Initiatives. Nowadays, there are several ini-
tiatives running that try to develop embedded platforms
installed within a vehicle system. They allow integrating the
communication with all the different devices located into the
car, so that both the information and the control of these
devices are available. Furthermore, some of these initiatives
also pursue to provide the vehicle with connectivity toward
the external world, so that it can connect with any external
servers located in Internet.

One of these initiatives is the proposal announced by
Visteon, TACNET [2]. This technology is based on a central
processing unit in charge of monitoring devices installed into
a concrete vehicle. Thus, this solution does not provide any
kind of scalability, since it is only compatible with devices
previously installed and configured in the system.

Another similar initiative is implemented in the EASIS
(electronic architecture and system engineering for inte-
grated safety systems) project [3]. This one tries to develop
an integration platform that manages both the sensor and
control systems located in the car; in addition, it provides
a gateway to connect to external devices. This platform



EURASIP Journal on Embedded Systems 3

purpose is to deploy the necessary infrastructure to support
a future software environment that will use this platform
features in order to implement its functionalities.

There are many other similar initiatives as the “web-
based control system” [4] implemented by the department
for Information and Communication Engineering of Daegu
University, or “DRIVE” [5] implemented by Telefonica I+D
that try to achieve the in-vehicle devices integration, in order
to homogenize the access to them. As can be seen, all these
initiatives are focused on their systems adaptation to the
existing devices and protocols, or on the new network archi-
tectures development specifically developed for sensor and
actuators networks, as the (LIN local interconnect network)
project [6]. Therefore, all of these activities will have the
same scalability and incompatibility problem because vehicle
devices that implement noncompliant protocols will not be
accessible via their platforms.

Finally, one of the most important initiatives regard-
ing these issues is (AUTOSAR Automotive open software
architecture) [7]. It defines a platform that deploys an
open automotive software architecture, capable of managing
the heterogeneity of the sensors and devices connected
with the vehicle. Furthermore, it is characterized by a run
time environment (RTE) where applications defined by
the providers will be deployed so that they are abstracted
from the complexity under them, being able to access to
the device and sensor data in a standard way. Thus, this
initiative is able to solve the scalability and compatibility
problems, standardizing both the in-car devices access and
the applications installed over the RTE. However, this
platform is only focused on solving the connection with
devices and sensors directly linked to the vehicle using the
CAN, FlexRay, or LIN interface. It is not compatible with
many other devices that are involved into the car environ-
ment, like PDAs, media players, and so forth. Due to this
restriction, this initiative has several constrains related to the
connectivity and infotainment issues, limiting its capabilities
to standard vehicle functions and not being compatible
with telematics applications. To solve these restrictions, this
initiative proposes to use the OSGi technology in order
to develop a parallel framework. Thus, all the connections
and devices not compatible with the actual development
would be managed by dedicated modules (bundles) installed
over this secondary framework. This solution has several
drawbacks, first of all is that nowadays there are not many
advances in this area and the integration of AUTOSAR and
OSGi still have not been defined. Furthermore, this solution
does not rely on the compatibility features of the AUTOSAR
architecture, being necessary to create specific modules to
solve the interaction with any new device.

Due to this, the system developed in this paper search to
develop a platform that solves the above mentioned lacks. It
will create an abstraction layer that allows the applications
installed over this one not only to auto-register and manage
the services and data provided by any kind of sensor or
device, but also to publish some of their functionalities, act-
ing as a server towards the external word. These features will
allow to deploy the infrastructure for the implementation
of new added-value applications like enriched emergency

calls, environment monitoring, driver status inference, data
exchange between two vehicles, and so forth characterized
by the cooperation between many different kind of devices
and servers. Furthermore, its architecture will be completely
compatible with the AUTOSAR initiative, so that both
platforms can run in a complementary way.

2.2. Technologies Overview. The main technologies needed
to develop the platform are as follows. Firstly, a universal
plug and play protocol that provides automatic discovery and
configuration of new devices brought into the car network.
Due to several reasons, those will be exposed in the next sub-
sections; UPnP [8] has been selected as the discovery and
autoconfiguration protocol.

Additionally, the platform is going to have a framework
that implements a dynamic component model, so the
sensors and any other devices could be attached to the local
network but without the necessity to touch the original car
configuration. In this way, the components can be added or
removed dynamically and will be recognized by the system
transparently. The platform is going to be installed on an
OSGi [9] framework, so that OSGi UPnP services can map
vehicle devices. As a result, the platform can register and offer
services as OSGi services.

Finally, the session initializing protocol SIP [10, 11] will
be used to provide communication to external networks
capability, and mobility features, so that it can be located and
accessible at any moment.

More details about these technologies and why they have
been selected will be discussed in the following subsections.

2.2.1. UPnP. UPnP is an open and distributed software
architecture that defines common protocols and procedures
sequences in order to install interoperability between devices
connected to the same local network. These features are as
follows:

(i) easy management of heterogeneous devices,

(ii) automatic and dynamic discovery of devices,

(iii) management and support of services,

(iv) standardized behavior by the UPnP forum,

(v) small footprint,

(vi) UPnP provides a particular architecture to AV,

(vii) UPnP is compatible with QoS techniques,

(viii) UPnP offers a client/server architecture.

As mentioned, UPnP is an expanding technology, since
more and more commercial devices are compliant to this
standard. Furthermore, this technology maintains a small
footprint so that it is assumed that UPnP is suited well for
a prototype implementation of new sensors.

UPnP specification implements architectures and proce-
dures to offer value-added services. The relevant parts cover
the QoS subsystem, security subsystem, and AV services. All
of them are well defined and some are well implemented
as the UPnP standard architecture and the AV subsystem
[12, 13].



4 EURASIP Journal on Embedded Systems

Together with the OSGi framework, UPnP allows to
publish registered services like framework services which can
be made available by any application installed on top of
it. In the same way, any internal service implemented by a
developed application can be published as an UPnP service
using this technology.

DPWS (devices profiles for web services) [14] also offers
a dynamic component model like UPnP, and it also provides
the necessary routines which implement a similar dynamic
UPnP behavior. Furthermore, this technology is not limited
to a local domain, and thus DPWS offers a possibility to
publish devices-services registered by its infrastructure to the
external world. But on the other hand, this technology is not
sufficiently expanded yet in case it is compared with UPnP.
Additionally, regarding the footprint of both technologies,
UPnP is more suitable for constrained environment, because
while the most lightweight implementations of DPWS are
using around 100 KB of dynamic memory, UPnP can run
correctly using less than 45 KB.

Given this, DPWS technology has been discarded in the
first phase of the project, and UPnP technology will be
integrated into the embedded platform.

2.2.2. OSGi. OSGi technology will be used in order to
constitute the services platform infrastructure, since this
technology allows developing a flexible and lightweight
environment, which is aimed at developing dynamic service
platforms.

This specification defines a framework that implements
a dynamic component system. It possesses necessary prim-
itives, and it allows to use modules already deployed in the
same environment. In this way it offers new applications
services which can be used by others. Based on Java, this
framework makes it possible to deploy a multiplatform
solution, which is independent of the underlying operating
system as well as the kind of hardware where the platform is
running.

All independent modules are called bundles, and they
implement small, reusable, and collaborative components.
These are managed by the OSGi platform that provides
routines permitting to realize a dynamically discovery in
order to establish a collaboration between them, as well as
to start, stop, and remove these services via a specific bundle
without the necessity of restart the platform.

The OSGi framework offers routines in charge of imple-
menting the UPnP features, which are able to publish a
specific service offered as a bundle of an UPnP service
towards a local domain.

Another possible platform alternative would have been
the .NET framework, but finally it was discarded due to
the restrictions in the communication between applications,
and in addition to the lack of a robust support mechanism
to maintain extensible and dynamic systems as it has been
analyzed by the article “Developing an OSGi-like Service
Platform for .NET” [15]. Furthermore this decision allows
this platform to be fully compatible with AUTOSAR initia-
tive, so that both system can be running and cooperating in
the same ECU or car-PC.

2.2.3. Session Initiation Protocol (SIP). SIP is a signaling
protocol developed to initialize, modify, and terminate a
user interactive sessions characterized by the intervention
of multimedia elements like video, voice, instant messaging,
online games and virtual reality.

This protocol offers personal and terminal mobility over
WANs, so that any device that incorporates an SIP agent can
be located and connected wherever it is. In addition, this
protocol solves problems related to the device handover and
multihoming.

Furthermore, the SIP protocol offers extended features
related to authentication, encryption, and quality of service
control that supplies capabilities to establish an external
communication between two different sub domains.

Other technologies as alternatives to SIP are DDNS [16]
and MOBIKE [17]. DDNS is based on the use of dynamic
DNSs. In contrast, this technology does not support both
handover and multihoming. On the other hand, (IKEv2
mobility and multihoming MOBIKE) is based on the use
of the signaling protocol that integrates IPsec and IKEv2.
This protocol is based on the security associations that are
created by the device’s IPs. This one provides handover and
multihoming support, but the technology is not able to
locate a specific device into different domains.

All the previous technologies are located at the appli-
cation level of the OSI stack. Additionally, there exist
some other solutions based on network and transport
level protocols, like MIP (Mobile IP) [18] and mSCTP
[19] respectively. Both ones are suitable solutions for our
problem, but they are based on external infrastructures that
support their functioning. At this point, and given that SIP
has the best features and requires the least infrastructure, all
these technologies were discarded, and SIP has been selected
as the appropriate protocol.

3. PlatformDesign

The main objective of this project is based on developing a
platform that deploys a homogeneous OSGi-UPnP environ-
ment. This platform will allow to implement applications in
an OSGi environment and to hide the complexity related to
the device control and information obtaining. In this way,
the car gateway provides an open platform capable of auto-
registering all devices located in the VAN, as well as their
services and events, and it converts them into OSGi services
accessible by any applications developed over this platform.
In the same way, it allows to connect with any device or server
located at the external network, so that it can register them
as local services, like in the previous case.

Furthermore, this platform will implement the required
routines, so that any application installed over the OSGi
framework can publish its services as UPnP services towards
the VAN and external network in order to make them
accessible by any UPnP client.

The platform has been designed to be a fully modular
system capable of deploying each of its functionality in
blocks that are totally disjoint. In this way, the design
option provides the ability to replace any block without any



EURASIP Journal on Embedded Systems 5

Data exchange and service access

Subscription
manager

AV
subsystem QoS Device/service

access

Event &
notifications

Configuration
manager

Security Device/service
inventory

Platform
virtual device

SIP agent UPnP protocol stack Virtualization
module

Transparent connectivity

CALM IME NME CME Addressing

Figure 3: Platform architecture.

inconsistency in the system, so that the platform can be
updated continuously.

The modular structure proposed can be seen in Figure 3.
In the following subsections each layer of the system will be
presented and exhaustively described.

3.1. Transparent Connectivity. Transparent connectivity is in
charge of managing the communication between the vehicle
and the external servers, as well as any device or sensor
located within the vehicle environment. To this end, this
module analyzes and selects the best communication tech-
nology possible or available (GPRS, UMTS, Wifi, Bluetooth.
Zigbee, Ethernet, etc.) for the given service requirements
and user preferences (always best connected (ABC)). This
layer tries to adapt the networking process to the vehicular
environment. To do this, its architecture is based on the
CALM proposal (continuous air interface for long and
medium range) [20].

Based on TCP/IP stack, this layer is formed by two sub-
modules, as it can be seen in Figure 3. Firstly, the “CALM”
module, which is formed by the next three coordinated
entities: “interface manager entity” (IME), “network manager
entity” (NME), and “CALM manager entity” (CME). IME
entity is in charge of asking about the communication
medium status, find the available resources at each moment
considering the signal properties (signal strength, data
rate, etc.) and maintain updated the stored information
about the interface status. On the other hand, NME is
responsible for considering the quality of service require-
ments for each application and compares them with each
communication interface status. So, NME entity determines
the optimum network selection, based on certain selection
rules. Finally, CME entity acts as this module brain, super-
vising and managing the process execution and offering
towards the upper layer the API to interact with this
system.

Secondly, the “addressing” module is in charge of
implementing the addressing of all the connected devices.
This layer acts as an “access point” for any device located
in the VAN, providing private IP addresses to all of them.
Therefore, any connected device is going to be addressed in
the same way.

All these modules have been developed as kernel mod-
ules, which act directly over the operative system routines in
charge of carrying out the connectivity tasks.

3.2. Data Exchange and Service Access: Functionality Descrip-
tion. This subsystem defines the main part of the platform,
which manages the heterogeneity of the connected car
gateway devices and it provides a homogeneous environment
to higher levels so that they can access in a transparent way to
all the services offered. This is possible thanks to the routines
implemented in order to publish and control all services
provided by each device that is located both in the VAN and
in any other external network.

Based on UPnP and OSGi, this allows incorporating,
removing, and configuring new devices in a dynamic way
without any human intervention.

Since not all connected devices will be compliant to the
UPnP specification, this subsystem is responsible for imple-
menting all required routines allowing the final platform to
be abstracted from any proprietary protocols provided by
these sensors and devices. In this way, this layer will emulate
the UPnP behavior of each device that does not support
this technology, and thus acting as a driver for non-UPnP
compliant components. Additionally, an SIP agent has been
developed in this layer, providing all required routines to
interconnect the car gateway to external devices. This feature
supports mobility of the platform in different networks.

Additionally, several modules are deployed to provide
local and external car gateway communication. These man-
agement tasks include the following duties.



6 EURASIP Journal on Embedded Systems

(i) Check for services offered by the connected devices
and publish them as an OSGi services.

(ii) Publish OSGi services implemented over the frame-
work as UPnP services towards local or external
networks.

(iii) Manage events belonging to the connected devices.

(iv) Manage quality of service in the connections between
the car gateway and each device, located in both
foreign or local networks.

(v) Manage traffic security generated between compo-
nents.

(vi) Manage AV connections between all AV components.

Each module implements an interface so that any other
entity can configure it or access to its functionality. All of
them will be described in more detail in the next section.

3.3. Data Exchange and Service Access: Layer Modules Descrip-
tion. The “data exchange and access service” layer (see
Figure 3) is described in this sub-section. It is important to
note that since the platform is based on OSGi framework,
each module is implemented as a bundle installed and
initialized in the OSGi framework. The communication
methods, employed to connect the different modules and
the upper layers (applications installed over this platform),
are based on the mechanisms the bundles have in order
to publish their services. Concretely, while the interaction
between modules is going to be based on the Java libraries
published by them; the interfaces offered by each module
towards the upper levels will be based on OSGi services they
publish and install over the framework.

UPnP Protocol Stack. This module is an implementation of
the UPnP protocol stack. Apart from the protocols within the
UPnP specification, this module implementation provides
with higher abstraction Java libraries for developing generic
UPnP devices and control points.

UPnP technology has been developed to be suitable
in local domains. This is due to the mechanisms used to
carry out the devices auto-discovery stage, because it is
based on broadcasting. The UPnP stack implemented within
this module tries to solve this constraint, extending such
discovery mechanism. This extension is based on an on
demand registration, sending unicast discovery messages
(SSDP) towards the devices located at external networks.
Therefore, this allows our platform to register and use the
services implemented by any device, anywhere it is located.

Configuration Manager. This module implements the UPnP
client, the “control point.” This one is in charge of registering
automatically all devices and services located inside the
VAN. It sends this information to the correspondent module
in charge of storing and publishing it (“devices/services
inventory”). This one is based on the services the “UPnP
Protocol Stack” module publishes internally.

Devices/Services Inventory. This module consists of a repos-
itory where the descriptions of all the devices connected
to the platform are stored, containing all the information
about the services and data published by them. In order to
reach this target, it publishes an interface that is used by
the “configuration manager” in order to add and remove all
detected services descriptions, once a determinate device has
been registered. Specifically, the information is stored in this
module is:

(i) device/service identification

(ii) device/service capabilities (video, audio, data, etc.)

(iii) device/service services interfaces

(iv) device/service configuration interfaces

(v) data formats supported by the device (XML, codec,
streaming, etc.).

The persistence mechanism that uses this module is
based on a lightweight database where a simple relational
model has been defined. Once all information has been
stored, this module is in charge of publishing it towards the
other modules, so that they can use it to carry out their
objectives.

Devices/Services Access. This module is in charge of convert-
ing all the UPnP services, registered by the UPnP control
point, into OSGi services. It defines the presentation layer
of the services offered by the platform to the upper layer. Its
functioning is based on the information retrieved from the
previous module. Therefore, each OSGi service implemented
is based on the UPnP description that each UPnP device has
published.

Once the conversion has been done, this module registers
the new services within the OSGi framework, where they will
be able to be accessed by any application that runs over our
platform.

Subscription Manager. This will publish services that allow
upper layer applications to subscribe to asynchronous events
coming from the device network. This module will offer the
following services.

(i) Subscribe and unsubscribe to certain notifications
coming from the sensor and device network. This
service will permit to realize a subscription according
to several criteria such as device family, device type,
specific capacity, and so forth.

(ii) Subscribe and unsubscribe to events published when
certain new devices are attached to the network (e.g.,
camera, specify sensor).

(iii) Query the system about the ontology of devices (fam-
ilies, types), provides capacities the callback channel
on which the application wants to be notified.

This module use the asynchronous communication
mechanism implemented by UPnP protocol to define high-
level functionalities mentioned above. Furthermore, it is also



EURASIP Journal on Embedded Systems 7

in charge of managing the keep-alive messages sent by the
devices. In case this module notices a possible drop of a node,
it tries to contact the device, but in case it is not possible, it
proceeds to notify this event to the “configuration manager”
which will proceed to eliminate the stored references to this
device.

Events and Notifications. Based on the services published
by the previous module, it completes the asynchronous
communication mechanism of the platform. This module
defines a confluence point responsible for centralizing the
management of all events produced within the devices
and sensors network. It acts as events router, in charge
of receiving the events published by any connected device
and routing them to the correspondent interested parties
(platform modules or upper applications).

Its functioning is based on the eventualization mecha-
nism implemented by Java. Each interested party registers its
listener in this module, so when an UPnP event is received it
is converted into a Java event by this module and notified to
the interested entities.

QoS. Module in charge of managing the platform communi-
cations QoS. It is based on the QoS specification done by
UPnP forum [21] (see Figure 4). This module implements
the quality of service manager (QoS manager) and the policy
manager (QoS policy Holder), offering the interface that
allows the upper applications and platform modules (i.e., AV
Subsystem) to invoke the VAN QoS control routines. In this
way, before realizing a data transfer, the quality of service
requirements are tested on the transmission channel, so if the
quality is not ensured the connection will not be established.

To carry out this operation, this module makes use of a
service published by any UPnP device that supports quality
of service control (QoS device service). Such service provides
the “QoS manager” with the necessary information about the
device status as well as its connected networks.

The functioning of this module is independent of the
connection typology (local domain or external network).
While in the local domain case this module ensure by
itself the quality within the communication, this system
makes use of the routines implemented by the “transparent
connectivity” layer in the connection with external devices to
carry out the quality ensuring between networks.

Security. This module is in charge of providing the necessary
routines to ensure the confidentiality and integrity in the
platform communications. It works over the UPnP protocol
stack, encrypting the messages exchanged into the UPnP
control phase. The discovery and the description phases are
intended to be public phases so they will not be encrypted.

Its objective is filtering the communications between the
UPnP client that resides into this platform (“configuration
manager”) and any connected device, using an encryption
system based on public key cryptography algorithms. Thus,
the information delivered trough the network cannot be
unencrypted by any other UPnP peer but the invoking client
and the receiver device.

This module introduces a little overhead in the commu-
nication process. This is due to the necessary key negotiation
in order to prepare the system to do the encryption process.
Once this negotiation is done, the module is ready to encrypt
any message.

Platform Virtual Device. This module contains the required
routines to publish on demand any functionality imple-
mented into a certain application (implemented over the
platform) as an UPnP service. According with the (model
view controller MVC) paradigm, while the business logic is
implemented by each application, this module will define the
presentation logic of these published services.

This procedure allows any UPnP client located within
the VAN coverage to register and make use of these services
implemented by such applications in a transparent way.

AV Subsystem. This module, based on the UPnP AV spec-
ification mentioned above, is in charge of handling all
A/V communication. It implements the AV control point
functionalities, extending the capabilities of the UPnP client
deployed in the “configuration manager.” This module
offers a range of services to the upper layer that allows
controlling the AV flows between media servers and renders.
Thus, applications installed in the framework only have to
determine which devices want to communicate to, and what
action they want to execute (run, stop, rewind). As a result,
the control point will provide the functionality required.

Additionally, this makes use of the “QoS” module
functionality in order to ensure the quality of service of all
the flows it manages.

SIP Agent. This module justification is mainly due to the
platform mobile nature, and the local character of the UPnP
technology. UPnP is oriented towards local networks, so it
does not implement any mechanism that allows a client to
register services published in external networks. Besides that,
the platform will be located in a mobile environment, so it
is necessary to take this into account. The reason is that the
connectivity to the platform needs to be maintained always.

To solve both two problems, the SIP module implements
an agent in charge of maintaining the connectivity between
devices residing in an external server and in the car gateway,
using an external SIP server (SIP proxy). As long as a
connection between the car gateway and a device located
in an external network is active, an SIP session will be
established between both, using the external SIP server to
manage the platform mobility feature. Once the SIP session
has been established, a dialogue between both devices is
possible.

Finally, it is necessary to clarify that the SIP agent always
maintains updated the information within the SIP server
about the vehicle location, which allows any external client
to retrieve the network level address of the vehicle, enabling
to access to the platform.

VirtualizationModule. This module is responsible for imple-
menting a virtualization of each non-UPnP device located



8 EURASIP Journal on Embedded Systems

Set policy
(unspecified interface) QoS policy

holder

Traffic descriptor (2) Traffic policy (3)

Request QoS (1)
Control point QoS manager

Traffic descriptor (4)

Traffic
importance
converted to
specific layer
2 QoS

QoS device service QoS device service QoS device service

Layer 2
802.3/802.11

device

Layer 2
802.3/802.11

device

Layer 2
802.3/802.11

device

Traffic
Streams

Traffic
Streams

Source Intermediate Sink

Figure 4: Local QoS subsystem.

in the platform’s VAN. It acts as a concentrator for the
information received from the different non-UPnP sensors
and devices attached to the vehicle. It defines the interfaces
towards them, using the IEEE 1451.X smart transducer
standards [22]. Specifically, it makes use of IEEE 1451.5
protocol that covers the wireless communication protocol
standards such as 802.15.1 (Bluetooth), 802.15.4 (Zigbee)
and 802.11b/g (Wifi). On the other hand, it use the IEEE
1451.6 protocol to implement the interface towards the CAN
Bus.

Over the previous interfaces, it implements the IEEE
1451.0 protocol to provide a uniform set of commands to
access any sensors or device in the 1451-based networks.
This protocol will act as a concentrator of all the other ones,
redirecting the request done to a determinate device towards
the correspondent IEEE 1451.X module.

Finally, this module makes use of the services published
by “UPnP protocol stack” module to implement a generic
UPnP server. This UPnP device publishes a set of generic
services which maps all the commands offered by the IEEE
1451.0 protocol. Furthermore, this device is characterized
by a set of state variables that store the value of each
sensor at any time and publish UPnP events when this
value changes. In this way, all the iteration with non-UPnP
devices is done using this module, which virtualizes the
UPnP behavior.

4. Prototype Implementation

The platform described in this paper has been deployed in a
prototype. The main goal of this prototype is to check the
suitability and adaptation of this system for the vehicular
environment, as well as to test its correct functioning. The
architecture of the implemented system, which can be seen
in Figure 5, is characterized by the next layers.

UPnP

OSGi

JVM DB

Linux operating system

UMTS WiFi Bluetooth Zigbee WiMax

Drivers LIN FlexRay MOST CAN

Hardware

Figure 5: Platform structure.

Hardware. Composed of a Via EPIA CN 1300 mother board
with a C7 processor. This module has 1 GB of RAM. It will
be connected to a Xenarc 700TXV-B screen.

These hardware specifications are proper to the con-
strained computers that are installed into the vehicles. This
is going to allow to check if the developed software is suitable
for these kinds of environments.

Operating System. Linux kernel version 2.6 has been selected
to implement the platform operative system because it is
free software and it is an open source initiative. It provides
the robustness, potency, and reliability required by the
system. Furthermore, it allows to execute several services and
multiple applications like simultaneous processes running in
parallel, essential requirement for the developed platform.

JVM. Java has been selected to separate the platform from
the OS and to provide portability. For the development, the
JVM 1.6 version implemented by SUN has been used. It has
been necessary to use this version because it provides new



EURASIP Journal on Embedded Systems 9

routines that are required by some functions, like the QoS
management.

Framework. OSGi has been selected to act as the develop-
ment framework because it provides versatility and modular-
ity needed by the platform. Specifically, the implementation
selected for the prototype has been the Equinox framework
version 3.2.2. This distribution is a free implementation of
the OSGi specification release 4.

Plug & Play Technology. The UPnP protocol stack imple-
mentation developed by “Ciberlink” [23] has been taken as
reference to create the extended UPnP protocol stack used
in order to create the UPnP client (control point) as well
as the servers (devices) which are implemented into the car
gateway.

Database. The persistence mechanism has been imple-
mented using SQLite version 3.5.6. This database manager
has been selected in order to achieve the balance between
a satisfactory throughput and a small footprint. This will
facilitate the integration in small portable devices.

Carriage Return Introduced. Once the complete system has
been implemented and run correctly, platform behaved
as expected. The platform is completely suitable to the
vehicle sensor and actuators network already deployed, being
capable of retrieving all data and services offered by them
and translating them into OSGi services and Java events.
The same result has been obtained with several new-age
UPnP devices (e.g., the pocket PC Nokia 880 or mobile
phone Nokia N80) and with servers implemented in both
and attached to the VAN and in an external network. Finally,
regarding the platform services publication, it was possible
to verify that the developed system is able to act as a server
towards the VAN and the external world, so that any UPnP
client can register such services and make use of them,
independently of its location and the vehicle mobility.

This implementation helped us to detect some lacks.
The main issue is the integration of vehicle sensors and
actuators with respect to their compatibility. Even though,
the platform offers standard access to the vehicle network,
each vehicle company uses proprietary standards to access
to its devices. Due to that, it was necessary to tune the
platform towards sensors of a limited number of companies.
Furthermore, due to security reasons the platform will not
actively interact with the car network, but being able to
access to the sensor status in a read-only way. The current
prototype does not support real-time features, which might
be an upcoming issue when further proceeding with the
integrations tasks with AUTOSAR and OSGi. For the current
application area real-time features are beyond the scope of
the implementation.

5. Conclusion

It is more and more common that intelligent environments
are present in daily lives. This project tries to establish

the fundaments to integrate different isolated intelligent
environments that are located in a vehicle network as well
as to deploy a system capable of recognizing and registering
all kind of devices and sensors not belonging to the vehicle
in order to provide the in-car system with the value-added
services and data captured by them. The main objective
is to offer a platform that allows connecting all kinds of
devices, independent from their technology, localization, and
communications interface they use, while maintaining the
ease of plug and play. Furthermore, the platform developed
allows the vehicle to play a server role, being able to publish
a set of services towards the external world, so that any client
can make use of them.

The system deployed in this approach combines the
use of technologies such as UPnP, OSGi, and SIP to reach
this target. This integration provides a common protocol to
interact with registered devices in a dynamic environment
in which it is possible to install, remove, or control any
sensor or device without prior configuration, in case the
device is accessible. The developed platform implements the
necessary functionality able to resolve disadvantages arising
from the mentioned heterogeneity, as far as communication
protocols are concerned. The platform mobility support is
maintained with the help of routines that manage changes
of vehicle addressing when it is moving, and furthermore,
provide access to external networks.

Additionally to all these functionality, the described
abstraction layer also hides problems that may occur in pro-
prietary solutions, maintaining the flexibility on a device’s
compatibility as well as on the platform’s scalability.

6. FutureWork

One of the main future works planted after this project is
regarding the real-time capabilities. Nowadays, the devel-
oped platform does not support real-time requirements,
not being suitable for certain applications that require this
kind of features. In these cases, these applications have to
be developed over another system like AUTOSAR, so that
both platforms can run in a complementary way. Therefore,
the principal research line is based on the adaptation
to a middleware that supports hard and soft real-time
requirements as well the provision of the necessary routines
to manage them.

Related to the plug and play requirements, the platform
must be able to register all devices and publish them in the
vehicle’s PAN network. Currently, the platform is based on
UPnP as plug and play technology, and this implies that
all devices need to be compliant to UPnP. In other cases,
it is necessary to make use of the “device virtualization”
module that acts as a driver and is in charge of translating
the proprietary communication protocol. A future work line
is to develop a module parallel to UPnP in the “data exchange
and service access”, that allows to register and interconnect
these devices automatically, as well as to improve the “device
virtualization” module so that it can be compatible with
any vehicle kind of devices making use of the standards
developed by AUTOSAR.



10 EURASIP Journal on Embedded Systems

Acknowledgments

The Car Gateway system has been partly developed inside the
Caring Cars [24] project, financed by the Spanish Ministry
of Industry under project number FIT-330215-2007-1 and
the InCare project, financed by the Spanish Ministry of
Education, and Science under project number TSI2006-
13390-C02-01 respectively.

References

[1] “Intelligent Healthcare Monitoring based on Semantic Inter-
operability Platform (SAPHIRE),” Deliverable 3.1.1, 2008,
http://www.srdc.metu.edu.tr/webpage/projects/saphire/index
.php.

[2] TACNET by Visteon Aftermarket Operations: Innovative-
Law Enforcement Equipment, April 2008, http://www
.evisteon.com/.

[3] EASIS, April 2008, http://www.easis-online.org/wEnglish/
news easis/news.shtml?navid=1.

[4] T.-H. Kim, S.-I. Lee, Y.-D. Lee, and W.-K. Hong, “Design
and evaluation of in-vehicle sensor network for web based
control,” in Proceedings of the 13th Annual IEEE International
Symposium and Workshop on Engineering of Computer Based
Systems (ECBS ’06), pp. 209–218, Potsdam, Germany, March
2006.

[5] C. Pinart, I. Lequerica, I. Barona, P. Sanz, D. Garcı́a, and
D. Sánchez-Aparis, “DRIVE: a reconfigurable testbed for
advanced vehicular services and communications,” in Pro-
ceedings of the 1st Workshop on Experimental Evaluation and
Deployment Experiences on Vehicular Networks (WEEDEV ’08),
pp. 1–18, Innsbruck, Austria, March 2008.

[6] “Local Interconnect Network (LIN) / SAE J2602,” April
2008, http://www. freescale.com/webapp/sps/site/homepage
.jsp?nodeId=02WcbfNZnLnRys.

[7] AUTOSAR (AUTomotive Open Sortware ARchitecture), Jan-
uary 2009, http://www.autosar.org/.

[8] Universal Plug and Play (UPnP) Forum, April 2008, http://
www.upnp.org/.

[9] Open Service Gateway Initiative (OSGi) Alliance, April 2008,
http://www.osgi.org/.

[10] SIP, Session Initialization Protocol, Internet Engineering Task
Force (IETF), Network Working Group RFC: 3261, 2002,
http://tools.ietf.org/html/rfc3261.

[11] SIP Forum (a Swedish non-profit association) and SIP Forum
LLC, April 2008, http://www.sipforum.org.

[12] Universal Plug and Play (UPnP) Forum, UPnP AV
Architecture:1, June 2002, http://www.upnp.org/specs/
av/UPnP-av-AVArchitecture-v1- 20020622.pdf.

[13] Universal Plug and Play (UPnP) Forum, MediaServer V
2.0 and MediaRenderer V 2.0, March 2006, http://www
.upnp.org/specs/av/.

[14] Devices Profiles for Web Services (DPWS), February 2006,
http://schemas.xmlsoap.org/ws/2006/02/devprof/.

[15] C. Escoffier, D. Donsez, and R. S. Hall, “Developing an OSGi-
like service platform for .NET,” in Proceedings of the 3rd
IEEE Consumer Communications and Networking Conference
(CCNC ’06), vol. 1, pp. 213–217, Las Vegas, Nev, USA, January
2006.

[16] DynDNS, April 2008, http://www.dyndns.com.
[17] P. Eronen, “IKEv2 Mobility and Multihoming Protocol

(MOBIKE), Internet Engineering Task Force,” RFC 4555
(Proposed Standard), June 2006.

[18] C. Perkins, “IP Mobility Support,” RFC 2002, IETF, October
1996.

[19] Ł. Budzisz, R. Ferrús, A. Brunstrom, et al., “Towards
transport-layer mobility: evolution of SCTP multihoming,”
Computer Communications, vol. 31, no. 5, pp. 980–998, 2008.

[20] ISO TC 204 Working Group, “CALM project,” September
2008, http://www.calm.hu/.

[21] Universal Plug and Play (UPnP) Forum, Quality of Service V
2.0, October 2006, http://www.upnp.org/specs/qos/.

[22] K. Lee, “IEEE 1451: a standard in support of smart transducer
networking,” in Proceedings of the 17th IEEE Instrumentation
and Measurement Technology Conference (IMTC ’00), vol. 2,
pp. 525–528, Baltimore, Md, USA, May 2000.

[23] S. Konno, Tokyo, Japan, April 2008, http://www.cybergarage
.org/.

[24] Caring Cars, MEDEA+ project 2A-403, financed by the
Spanish Ministry of Industry under project Num. FIT-330215-
2007-1, 2008, http://www.medeaplus.org/.


	1. Introduction
	2. State of the Art
	3. PlatformDesign
	4. Prototype Implementation
	5. Conclusion
	6. FutureWork
	Acknowledgments
	References

