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1. Introduction

For many years, the study of gamma photons have led scien-
tists to understand more deeply the complex processes that
occur in the Universe, for example, remnants of supernova
explosions, cosmic rays interactions with interstellar gas,
and so forth. In the 1960s, it has finally been possible to
develop efficient measuring instruments to detect gamma-
ray emissions, thus enabling to validate the theoretical
concepts. Most of these instruments were built in order
to identify the direction of gammas rays. Since gamma
photons are not deflected by interstellar magnetic fields, it
becomes possible to determine the position of the source
accurately. In this context, Imaging Atmospheric Cherenkov
Telescopes constitute the most sensitive technique for the
observation of high-energy gamma-rays. Such telescopes
provide a large effective collection area and achieve excellent
angular and energy resolution for detailed studies of cosmic
objects. The technique relies upon Cherenkov light produced
by the secondary particles once the gamma-ray interacts
with the atmosphere at about 10 km of altitude. It results
a shower of secondary particles, that also may interact
with the atmosphere producing other particles according
to well-known physical rules. By detecting shower particles
(electrons, muons, protons), it is then possible to reconstruct

the initial event and determine the precise location of a
source within the Universe.

In order to determine the nature of the shower, it is
important to analyze its composition, that is, determine
the types of particles that have been produced during
the interaction with the atmosphere. This is performed
by studying the different images that are collected by the
telescopes and that are generally representative of the particle
type. For example, gamma-ray showers usually have thin,
high-density structures. On the other hand, protons are quite
broad with low density.

The major problem in these experiments is that the
number of images to be collected is generally huge and the
complete storage of all events is impossible. This is mainly
due to the fact that data-storage capacity is limited and that
it is impossible to keep track of all incoming images for off-
line analysis.

In order to circumvent this issue, a trigger system is
often used to select the events that are interesting (from a
physicist’s point of view). This processing must be performed
in real time and is very tightly constrained in terms of latency
since it is compatible with the data acquisition rate of the
cameras. The role of such triggering system is to rapidly
decide whether an event is to be recorded for further studies
or rejected by the system.
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The organization of this paper is given as follows: the
context of our work is presented in Section 2. Section 3
describes the algorithms that are envisaged in order to build a
new trigger system. Considerations on hardware implemen-
tations are then provided in Section 4 and Section 5 describes
the results in terms of timing and resource usage.

2. The HESS Project

The High-Energy Stereoscopic System (HESS) is a system
of imaging Cherenkov telescopes that strive to investigate
cosmic gamma rays in the 100 GeV to 100 TeV energy range
[1]. It is located in Namibia at an altitude of 1800 m where
the optical quality is excellent. The Phase-I of this project
went into operation in Summer 2002 and consists of four
Large Cherenkov Telescopes (LCT), each of 107 m2 mirror
area in order to provide a good stereoscopic viewing of the
air showers. The telescopes are arranged on a square of 120 m
sides, enabling thus to optimize the collection area.

The cameras of the four telescopes serve to capture and
record the Cherenkov images of air showers. They have
excellent resolution since the pixel size is very small: each
camera is equipped of 960 photomultiplier tubes (PMTs) that
are assimilated to pixels.

An efficient trigger scheme has also been designed in
order to reject background such as the light of the night
sky that interferes with measurements. Next sections describe
both phases of the project in terms of triggering issues.

2.1. Phase-I. The trigger system of the HESS Phase-I project
is devised in order to make use of the stereoscopic approach:
simultaneous observation of interesting images must be
required in order to store a specific event [2]. This coinci-
dence requirement reduces the rate of background events,
that is, events that may be assimilated to night sky noise. It is
composed of two separate levels (L1 and the central trigger).

At the first level, a basic threshold is applied on signals
collected by the camera. A trigger occurs if the signals in
M pixels within a 64-pixel sector of the camera exceed a
value of N photoelectrons. This enables to get rid of isolated
pixels and thus to eliminate the noise. The pixel signals are
sampled using 1 GHZ Analogue Ring Samplers (ARSs) [3]
with a ring buffer depth of 128 cells. Following a camera
trigger, the ring buffer is stopped and its content is digitized,
summed and written in an FPGA buffer. After read-out, the
camera is ready for the next event, and further processing
may be performed including the transmission of data via
optical cable to the PC processor farm located in the control
building.

The Central Trigger System (CTS) consists in implement-
ing the coincidence between the four telescopes. It identifies
the status of the telescopes and writes this information as well
as an absolute time (measured by a GPS) into an FIFO (First-
in First-out) memory for each system coincidence. Once the
data have been written in this FIFO, the CTS is ready to
process new incoming events, about 330 nanoseconds after
the coincidence occurred. The FIFO memory has a depth of

SAMSAM

L1

L1

L1

L1

LCT4LCT1

LCT2 LCT3SAM SAM

CAN

CANCAN

CAN

Central
trigger
system

Figure 1: Schematic of the HESS Trigger System.

L1accept
~100 kHz

L2accept/L2reject
~3.5 kHz

L1

L2PreL2

VLCT

Analog
image

SAM CAN FIFO

1

1

Classified
data

12

Figure 2: Schematic of the VLCT Trigger System.

16000 events and is read out asynchronously. A schematic
illustration of the HESS trigger system is depicted in Figure 1.

2.2. Phase-II. Since its inception in 2002, the HESS project
keeps on delivering very significant results. In this very
promising context, researchers of the collaboration have
decided to improve the initial project by adding a new Very
Large Central Telescope (VLCT) in the middle of the four
existing ones. This new telescope should permit to increase
the sensitivity of the global system as well as improving
resolution for high-energy particles. It is composed of 2048
pixels which represent the energy of the incident event.

Considering the new approach, the quantity of data to be
collected would drastically increase, and it becomes necessary
to build a new trigger system in order to be compatible with
the new requirements of the project.

One of the most challenging objectives of the HESS
project is to detect particles which energy are below 50 GeV.
In this energy range, it is not conceivable to use all telescopes
(since the smallest ones cannot trigger), and only the fifth
telescope may be used in a monoscopic mode.

The structure of the new triggering system is depicted in
Figure 2. Data coming from the VLCT camera consist of 2048
pixels values which are first stored in a Serial Analog Memory
(SAM). In parallel, data are also sent to a level 1 trigger (L1)
whose structure is described in Section 2.1. The L1 trigger
applies a basic analog threshold on the pixel’s values and
generates a binary signal indicating whether an event has to
be kept (L1accept) or rejected (L1reject). In the case where an
event is accepted, the entire image is converted into digital
patterns. These data are stored in FIFO memories until a
L2accept/L2reject signal coming from a second level trigger
(L2) is generated.
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Figure 3: Gamma (1–4), muon (5-6), and proton (7-8) images of
different energies.

In parallel, data are sent to the PreL2 stage which
thresholds the incoming pixels according to 3 energy levels.
Each pixel value is coded into 2 bits corresponding to 3 states
of energies. These images are then sent to the L2 Trigger.
L1 and L2 trigger decisions are expected at average rates of
100 KHz and 3.5 KHz, respectively. Examples of simulated
images are depicted in Figure 3.

3. The HESS2 L2 Triggering System

In order to cope with the new performances of the HESS
Phase-II system, an efficient L2 trigger scheme is currently
being built. Like all triggers, it aims to provide a decision
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Figure 4: Overview of Hillas moments.

regarding the interest of a particular event. In this context,
two parallel studies have been led in order to identify the best
algorithms to implement at that level. The first study relied
on the Hillas parameters which are seen as a classical solution
in astrophysics pattern recognition. The second study that
has been envisaged is to use pattern recognition tools such as
neural networks associated with an intelligent preprocessing.
Both approaches are described in the next sections.

3.1. The First Approach

3.1.1. Hillas Parameters. Hillas parametrization has been
introduced in [4]. The retained method consists in isolating
image descriptors which are based on image shape param-
eters such as length (L) and width (W) as well as an angle
(α). The α angle represents the angle of the image with
the direction of the emitting source location (see Figure 4).
This approach globally considers that gamma’s signatures are
mainly elliptical in shape whereas other particle’s signatures
are most irregular. This assumption is often the case in
practice. Nevertheless, signatures strongly depend on the
distance between the impact point of the ray shower and
the telescope. This may lead to various types of images for
the same event nature and constitutes a real challenge for
identification (see Figure 3).

3.1.2. The Classifier. In this first approach, the classifier
consists in applying thresholds on the hillas parameters
(or a combination of these parameters) computed on the
incoming images in order to distinguish gamma signatures
between all collected images. One of the best parameters that
have been identified as a good discriminator is the Center
of Gravity (CoG). This parameter represents the center of
gravity of all illuminated pixels within the ellipse.

In this case, the recognition of particles is performed
according the following rule:

(a) if CoG < t, then the event is recognized as a gamma
particle;

(b) if CoG ≥ t and α < 20 deg, then the event is
recognized as a gamma particle;

(c) otherwise, the event is rejected.

t is a parameter which is adjusted according to the data
set.
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The major drawback of such approach is that the
considered thresholds consist of constant values. Thus, a
lack of flexibility is to be deplored. For example, it does not
allow to take into consideration the various conditions of the
experiment that may have a significant impact on the shape
of signatures.

3.2. Intelligent Preprocessing. The second studied approach
aims to make use of algorithms that already brought
significant results in terms of pattern recognition. Neural
networks are good candidates because they are a powerful
computational model. On the other hand, their inherent
parallelism makes them suitable for a hardware imple-
mentation. Although used in different fields of physics,
these algorithms based on neural networks have successfully
been implemented and have already proved their efficiency
[5, 6]. Typical applications include particle recognition
in tracking systems, event classification problems, off-line
reconstruction of event, and online trigger in High-Energy
Physics.

From the assumption that neural networks may be
useful in such experiments, we have proposed a new
Level 2 (L2) trigger system enabling to implement rather
complex processing on the incoming images. The major issue
with neural networks resides in the learning phase which
strives to identify optimal parameters (weights) in order
to solve the given problem. This is true when considering
unsupervised learning in which representative patterns have
to be iteratively presented to the network in a first learning
phase until the global error has reached a predefined
value.

One of the most important drawbacks of this type of
algorithms is that the number of weights strongly depends on
the dimensionality of the problem which is often unknown
in practice. This implies to find the optimal structure of the
network (number of neurons, number of layers) in order to
solve the problem.

Moreover, the curse of dimensionality [7] constitutes
another challenge when dealing with neural networks. This
problem expresses a correlation between the size of the
network and the number of examples to furnish. This
relation is exponential, that is, if the network’s size becomes
significant, the number of training examples may become
relatively huge. This cannot be considered in practice.

In order to reduce the size of the network, it is possible
to simplify its, task that is, reduce the dimensionality of the
problem. In this case, a preprocessing step aims at finding
correlations on data and at applying basic transformations
in order to ease the resolution. In this study, we advise to use
an “intelligent” preprocessing based on the extraction of the
intrinsic features of the incoming images.

The structure of the proposed L2 trigger is depicted in
Figure 5. It is divided into three stages. A rejection step aims
to eliminate isolated pixels and small images that cannot be
processed by the system. A second step consists in applying
a preprocessing on incoming data. Finally, the classifier takes
the decision according to the nature of the event to identify.
These different steps are described in the following sections.
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Figure 5: Schematic of the HESS Phase-II Trigger System.

3.2.1. The Rejection Step. The rejection step has two signif-
icant roles. First, it aims to remove isolated pixels that are
typically due to background. These pixels are eliminated by
applying a filtering mask on the entire image in order to
keep the only relevant information, that is, clusters of pixels.
This consists in testing the neighborhood of each pixel of the
image. As the image has an hexagonal mesh grid, a hexagonal
neighborhood is used. The direct neighborhood of each pixel
of the image is tested. If none of the 6 neighbors are activated,
the corresponding central pixel is considered as isolated and
deactivated. Second, the rejection step permits to eliminate
particles that cannot be distinguished by the classifier. Very
small images (<4 pixels) are discarded since they contain
poor information that cannot be deciphered.

3.2.2. The Preprocessing Step. The envisaged system is based
on a preprocessing step whose role consists in applying basic
transformations on incoming images in order to isolate the
main characteristics of a given image. The most important
role of the preprocessing is to guarantee invariance in ori-
entation (rotation and translation) of the incoming images.
Since signatures of particles within the image depend on the
impact point of an incident particle, the image may result in
a series of pixels located wherever on the telescope. Without
using a preprocessing stage based on orientation invariance,
the 2048 inputs of the classifier would completely differ from
an image to another although the basic shape of the particle
would remain the same.

The retained preprocessing is based on the use of Zernike
moments. These moments are mainly considered in shape
reconstruction [8] and can be easily made invariant to
changes in objects orientation. They are defined as a set
of orthogonal functions based on complex polynomials
originally introduced in [9]. Zernike polynomials can be
expressed as

Vpq(r, θ) = Rpq(r)eiqθ , (1)

where i = √
(−1), p is a nonnegative integer, q is apositive

integer such as p-q is even and p ≤ q, r: length of a vector
from the origin to a point (x, y) such as r ≤ 1, that is,

r =
√
x2 + y2/rmax where rmax = max

√
x2 + y2, θ: angle

between the x axis and the vector extending from the origin
to a point(x, y).

Rpq(r): Zernike polynomial defined as:

Rpq(r) =
p∑

k=q,|p−k|even

Bpqkr
k (2)
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with Bpqk = (−1)(p−k)/2(((p + k)/2)!/((p − k)/2)!((k +
|q|)/2)!((k − |q|)/2)!).

Zernike moments Zpq are expressed according to

Zpq =
p + 1
π

∑

x

∑

y

I
(
x, y

)
V∗

pq(r, θ), (3)

where I(x, y) refers to the pixels’ value of coordinates(x,y).
The rotation invariance property of Zernike moments is
due to the intrinsic nature of such moments. In order to
guarantee translation invariance as well, it is necessary to
align the center of the object to the center of the unit circle.
This may be performed by changing the coordinates x and y
of each processing point by the coordinates x− x0 and y− y0

where x0 and y0 refer to the center of the signature and may
be obtained by

x0 =
∑

X

∑
Y xI

(
x, y

)

∑
X

∑
Y I
(
x, y

) , y0 =
∑

X

∑
Y yI

(
x, y

)

∑
X

∑
Y I
(
x, y

) . (4)

In this case, r is expressed as follows:

r =
√

(x − x0)2 + (y − y0)2

rmax

, (5)

where rmax = max
√

(x − x0)2 + (y − y0)2.
In the context of our application, it has been found that

considering the first 8-order Zernike moments was sufficient
to obtain the best performances. This implies to compute 25
polynomials for each of the pixels within an image. Then,
it is necessary to accumulate these values in order to obtain
25 real values corresponding to all the Zernike moments of
the image. The module of these moments is then computed
and a normalization step is fulfilled in order to scale the
obtained values within the −1 to 1 range. These values are
then provided to the neural network.

3.2.3. The Neural Classifier. The envisaged classifier is a
feed-forward neural network named Multilayer Perceptron
(MLP) with one hidden layer and three outputs. The general
structure of such a network is depicted in Figure 6:

According to the nature of the network, the value of the
output may be computed according to (6).

y = g

⎛

⎝
M∑

j=0

w(2)
k j g

⎛

⎝
d∑

i=0

w(1)
ji xi

⎞

⎠

⎞

⎠. (6)

In (6), y represents the output; w(2)
k j and w(1)

ji , respectively,
represent the weights connecting the output layer and the
hidden layer and the weights connecting the hidden layer and
the input nodes. M is the number of neurons in the hidden
layer and d is the number of inputs. xi denotes the value of an
input node and g is an activation function. In our case, the
nonlinear function g has been used:

g(x) = tanh(x) = ex − e−x

ex + e−x
. (7)

x0

w11 wMd

x1

y1 y2

x2 x3 xd

Figure 6: Structure of a 2-layer perceptron.

In the considered application, the output layer is com-
posed of a three neurons (which value ranges between −1
and 1) corresponding to the type of particle to identify.
Each output refers to a gamma, proton, and muon particle,
respectively. If the value of an output neuron is positive, it
may be assumed that the corresponding particle has been
identified by the network. In the case that more than one
output neuron is activated, the maximum value is taken into
account.

The learning phase has been performed off-line on a
set of 4500 patterns computed on simulated images as the
HESS2 telescope is not yet installed. The simulated images
are generated thanks to series of Monte Carlo simulations.
These patterns covered all ranges of energies and types of
particles. 1500 patterns were considered for each class of
particles. A previous study had determined the reliability
of the patterns in order to consider the most representative
patterns that may be collected by the telescope.

A classical backpropagation algorithm has been pro-
grammed off-line in order to get the optimal value of
weights. The training have been performed simultaneously
on two sets of patterns (learning and testing set). Once the
error on the testing phase was minimum, the training was
stopped ensuring that the weights had an optimal value.

The size of the input layer was determined according to
the type of preprocessing that was envisaged. In the case of a
Zernike preprocessing, this number has been set to 25 since
it corresponds to the number of outputs furnished by the
preprocessing step.

The number of hidden nodes (in the hidden layer) has
been evaluated regarding the results obtained on a specific
validation set of patterns. This precaution has been handled
in order to ensure that the neural network was able to
generalize on new data (i.e., it has not learnt explicitly).

3.3. Simulated Performances. The best performances that
have been obtained are summarized in Table 1. It corre-
sponds to a trigger with a preprocessing based on the first
25 Zernike moments. Other results concerning different
preprocessings have also been described in [10].
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Table 1: Performances according to both approaches.

Gamma Muon Proton

Hillas approach 60% 56% 37%

Neural approach 95% 58% 41%

According to Table 1, it may be seen that the neural
solution provides significant improvement compared to
classical methods in terms of classification. This improve-
ment resides in the fact that a largest dimensionality of
the problem has been taken into account. Whereas Hillas
processing takes only five parameters into consideration, the
number of inputs in the case of a neural preprocessing is
set to 25. Moreover, as the Hillas approach only consists in
applying strong “cuts” on predefined parameters, the neural
approach is more flexible and guarantees nonlinear decision
boundaries. It may be assumed that the considered neural
network is capable of extracting the relevant information
and discriminate between all images, efficiently. The major
drawback of the neural approach is its relative complexity
in terms of computation and hardware implementation.
Although Hillas algorithms may be implemented in software,
it is impossible to implement both the neural network
and the preprocessing step in the same manner. In this
context, dedicated circuits have to be designed in order to
be compliant with the strong timing constraints imposed by
the entire system. In our case, an L2-decision has to be taken
at a rate of 3.5 KHz which corresponds to a timing constraint
of 285 microseconds.

4. Hardware Implementation

The complete L2 trigger system is currently being built,
making intensive use of the reconfigurable technology. Com-
ponents such as FPGAs constitute an attractive alternative
to classical circuits such as ASICs (Application Specific
Integrated Circuits). This type of reconfigurable circuits
tends to be more and more efficient in terms of speed and
logic resources and is more and more envisaged in deeply
constrained applications.

4.1. Hardware Implementation of Zernike Moments.
Although very efficient, Zernike moments are known
for their computation complexity. Many solutions have
been proposed for the fast implementation of the Zernike
moments. Some algorithms are based on recursivity [11],
reuse of previous parts of the computation [12] or moment
generators [13].

Since using a moment generator allows a reduction
of the number of operations, we have decided to follow
this approach, that is, to compute Zernike moments from
accumulation moments.

4.1.1. Zernike Moments via Accumulation Moments. The
mechanism of a moment generator [14] can be summarized
by the expression of the geometric moments with respect

px

py

Nx

0, 0

x

y

Ny

Figure 7: Image topology in the L2-trigger of the HESS Phase-II
project.

to the point of coordinates (Nx,Ny) from the accumulation
moments:

m
Nx ,Ny
p,q =

Nx∑

x=0

Ny∑

y=0

(Nx − x)p(Ny − y)qI
(
x, y

)

=
p∑

e=0

q∑

f=0

S
(
p, e
)
S
(
q, f

)
ψe, f

(8)

with ψe, f being the accumulation moments of order (e, f ),
and I(x, y) being the pixels’ values in the image and

S =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 · · ·
−1 1 0 0 0 0

1 −3 2 0 0 0

−1 7 −12 6 0 0

1 −15 50 −60 24 0

−1 31 −180 390 −360 120

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (9)

According to (8), it is important to note that geometric
moments may be expressed as a function of accumulation
moments. In the context of our application, (10) to (23)
demonstrate how to calculate the Zernike moments from the
geometric moments and thus from accumulation moments.

Note that, in the particular case of HESS Phase-II,
one of the issues is the image topology which consists
of a hexagonal grid with empty corners (see Figure 7).
Since Zernike moments are continuous, they are particularly
suitable for this type of images. The following equations
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aim to express the Zernike moments from the accumulation
moments in the particular context of HESS Phase-II.

We have seen that Zernike moments may be expressed as
follows:

Zpq =
p + 1
π

∑

x

∑

y

I
(
x, y

)
p∑

k=q,p−k even

Bpqkr
keiqθ. (10)

The expressions of r and eiqθ can be rewritten as

r =
√

(x − x0)2 + (y − y0)2

rmax
, (11)

where (x0, y0) are the coordinates of the image center
computed as explained in (4):

eiqθ = ((x − x0) + i(y − y0))q

((x − x0)2 +
(
y − y0

)2)
q/2 . (12)

In order to simplify the equations, we note X = x − x0

and Y = y − y0. In this case,

Zpq =
p + 1
π

∑

x

∑

y

I
(
x, y

)
p∑

k=q,p−k even

Bpqk

rkmax

× (X2 + Y 2)
(k−q)/2

(X + iY)q.

(13)

According to the binomial theorem, the development of
a given polynom can be expressed as follows:

(a + b)n =
n∑

m=0

Cm
n a

n−mbm. (14)

It is then possible to modify the following expressions:

(X2 + Y 2)
(k−q)/2 =

(k−q)/2∑

ξ=0

Cξ
(k−q)/2X

k−q−2ξY 2ξ ,

(X + iY)q =
q∑

ζ=0

Cζ
qi
ζXq−ζYζ .

(15)

Thus, (13) can be reformulated as follows:

Zpq =
p + 1
π

p∑

k=q,p−k even

Bpqk

rkmax

q∑

ζ=0

(k−q)/2∑

ξ=0

iζCζ
qC

ξ
(k−q)/2

×
∑

x

∑

y

Xk−ζ−2ξY 2ξ+ζ I
(
x, y

)

= p + 1
π

p∑

k=q,p−k even

(−1)k
Bpqk

rkmax

q∑

ζ=0

(k−q)/2∑

ξ=0

iζCζ
qC

ξ
(k−q)/2

×
∑

x

∑

y

(x0 − x)k−ζ−2ξ(y0 − y
)2ξ+ζ

I
(
x, y

)
.

(16)

The next step consists in considering the last point
(Nx,Ny) in the equation of Zernike moments with respect
to the center of the image:

Zpq =
p + 1
π

p∑

k=q,p−k even

(−1)k
Bpqk

rkmax

q∑

ζ=0

(k−q)/2∑

ξ=0

iζCζ
qC

ξ
(k−q)/2

×
∑

x

∑

y

(x0 −Nx + Nx − x)k−ζ−2ξ

× (y0 + Ny −Ny − y)2ξ+ζ I
(
x, y

)

= p + 1
π

p∑

k=q,p−k even

(−1)k
Bpqk

rkmax

q∑

ζ=0

(k−q)/2∑

ξ=0

iζCζ
qC

ξ
(k−q)/2

×
k−ζ−2ξ∑

a=0

Ca
k−ζ−2ξX

k−ζ−2ξ−a
c

2ξ+ζ∑

b=0

Cb
2ξ+ζY

2ξ+ζ−b
c

×
∑

x

∑

y

(Nx − x)a
(
−Ny − y

)b
I
(
x, y

)
,

(17)

where Xc = x0 −Nx and Yc = y0 + Ny.
Since the coordinates of the pixels in the image are

expressed as real numbers, we need to express these coor-
dinates with integers in order to formulate the Zernike
moments in function of the geometric moments. As we can
see in Figure 7, the even rows have to be distinguished from
the odd rows. Therefore, the x coordinate is expressed in two
different ways according to the type of row (even or odd row).

x and y may be expressed as

x =
⎧
⎨

⎩

(xd − 0.5)px + offsetx, if yd%2 = 1,

(xd − 1)px + offsetx, if yd%2 = 0,

y = (1− yd
)
py + offsety ,

(18)

where xd and yd are positive integers such as xd = 1 · · ·Xd

and yd = 1 · · ·Yd with Xd = 48 corresponding to the
number of columns, and Yd = 52 corresponding to the
number of rows. px (resp., py) is the distance between
two adjacent columns (resp., rows) and offsetx and offsety
correspond to the new position of the origin of the image in
the upper left corner.
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In the following equations, since the first part of the
expressions does not change, the second part is just devel-
oped:

∑

x

∑

y

(Nx − x)a(−Ny − y)bI
(
x, y

)

=
Xd∑

xd=1

Yd∑

yd=1,yd%2=1

(
Nx −

(
(xd − 0.5)px + offsetx

))a

×
(
−Ny −

((
1− yd

)
py + offsety

))b
f
(
xd, yd

)

+
Xd∑

xd=1

Yd∑

yd=1,yd%2=0

(
Nx −

(
(xd − 1)px + offsetx

))a

×
(
−Ny −

((
1− yd

)
py + offsety

))b
f
(
xd, yd

)
.

(19)

Notice that Nx = pxXd and Ny = pyYd :

∑

x

∑

y

(Nx − x)a(−Ny − y)bI
(
x, y

)

=
Xd∑

xd=1

Yd∑

yd=1,yd%2=1

(
(Xd − xd)px + 0.5px − offsetx

)a

×
((−Yd + yd

)
py − py − offsety

)b
I
(
xd, yd

)

+
Xd∑

xd=1

Yd∑

yd=1,yd%2=0

(
(Xd − xd)px + px − offsetx

)a

×
((−Yd + yd

)
py − py − offsety

)b
I
(
xd, yd

)
.

(20)

In this case, we propose to figure out the even and odd
parts of the image, let yd = 2yed if yd%2 = 0 and yd = 2yod−
1 if yd%2 = 1. In this case, the sums on yd will be bounded
by Yd/2 and

∑

x

∑

y

(Nx − x)a(−Ny − y)bI
(
x, y

)

=
Xd∑

xd=1

Yd/2∑

yod=1

(
(Xd − xd)px + 0.5px − offsetx

)a

×
(
−2py

(
Yd

2
− yod

)
− 2py − offsety

)b
I
(
xd, yod

)
(21)

+
Xd∑

xd=1

Yd/2∑

yed=1

(
(Xd − xd)px + px − offsetx

)a

×
(
−2py

(
Yd

2
− yed

)
− py − offsety

)b
I
(
xd, yed

)

=
Xd∑

xd=1

Yd/2∑

yod=1

I
(
xd, yod

)

×
a∑

c=0

Cc
a(0.5px − offsetx)a−c pcx(Xd − xd)c

×
b∑

d=0

Cd
b

(
−2py − offsety

)b−d(−2py
)d(Yd

2
− yod

)d

+
Xd∑

xd=1

Yd/2∑

yed=1

I
(
xd, yed

)

×
a∑

c=0

Cc
a

(
px − offsetx

)a−c
pcx(Xd − xd)c

×
b∑

d=0

Cd
b

(
−py − offsety

)b−d(−2py
)d(Yd

2
− yed

)d

(22)

=
a∑

c=0

b∑

d=0

Cc
aM

a−c
oddN

cCd
bO

b−d
odd P

d

×
Xd∑

xd=1

Yd/2∑

yod=1

(Xd − xd)c
(
Yd

2
− yod

)d
I
(
xd, yod

)

+
a∑

c=0

b∑

d=0

Cc
aM

a−c
evenN

cCd
bO

b−d
evenP

d

×
Xd∑

xd=1

Yd/2∑

yed=1

(Xd − xd)c
(
Yd

2
− yed

)d
I
(
xd, yed

)
,

(23)

where Modd = 0.5px − offsetx, Meven = px − offsetx, N = px,
Oodd = −2py−offsety , Oeven = −py−offsety , and P = −2py .

Equation (23) shows that the Zernike moments can be
computed from the geometric moments. If we consider two
accumulation grids, the first computes the accumulation
moments on the odd lines of the image and the second
on the even lines. Since the computation is divided into
two different parts, the image should be arranged in two
components: the odd component of the image and the
even one. Therefore, according to (8), the analogy gives
an expression of the Zernike moments which is function
of ψodd (accumulation moments computed from the odd
component of the image) and ψeven (accumulation moments
computed from the even component of the image) by setting
Nx = Xd and Ny = Yd/2:

Xd∑

xd=1

Yd/2∑

yod=1

(Xd − xd)c
(
Yd

2
− yod

)d
I
(
xd, yod

)

=
c∑

e=0

d∑

f=0

S(c, e)S
(
d, f

)
ψodd,e, f
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Xd∑

xd=1

Yd/2∑

yed=1

(Xd − xd)c
(
Yd

2
− yed

)d
I
(
xd, yed

)

=
c∑

e=0

d∑

f=0

S(c, e)S
(
d, f

)
ψeven,e, f .

(24)

By reinjecting (24) in the (23), Zernike moments are
reformulated as follows:

Zpq =
p + 1
π

p∑

k=q,p−k even

q∑

ζ=0

(k−q)/2∑

ξ=0

iζ(−1)kCζ
qC

ξ
(k−q)/2

Bpqk

rkmax

×
k−ζ−2ξ∑

a=0

Ca
k−ζ−2ξX

k−ζ−2ξ−a
c

2ξ+ζ∑

b=0

Cb
2ξ+ζY

2ξ+ζ−b
c

×
⎡

⎣
a∑

c=0

b∑

d=0

Cc
aM

a−c
oddN

cCd
bO

b−d
odd P

d

×
c∑

e=0

d∑

f=0

S(c, e)S
(
d, f

)
ψodd,e, f

+
a∑

c=0

b∑

d=0

Cc
aM

a−c
evenN

cCd
bO

b−d
evenP

d

×
d∑

f=0

S(c, e)S
(
d, f

)
ψeven,e, f

⎤

⎦.

(25)

In an analogous way, the coordinates of the center of
the image (x0, y0) can be computed from the accumulation
moments:

x0 = m01

m00
,

y0 = m10

m00
,

(26)

where

m00 = ψodd,0,0 + ψeven,0,0

m01 = (−1)×
1∑

b=0

Cb
1N

1−b
y

×
⎡

⎣
b∑

d=0

Cd
bO

b−d
odd P

d
d∑

f=0

S
(
d, f

)
ψodd,0, f

+
b∑

d=0

Cd
bO

b−d
evenP

d
d∑

f=0

S
(
d, f

)
ψeven,0, f

⎤

⎦

= (−1)×
[
Ny
(
ψodd,0,0 + ψeven,0,0

)

+
(
Ooddψodd,0,0 + Oevenψeven,0,0

+ P × S(1, 0)
(
ψodd,0,0 + ψeven,0,0

)

+P × S(1, 1)
(
ψodd,0,1 + ψeven,0,1

))]
,

m10 = (−1)×
1∑

a=0

Ca
1(−Nx)1−a

×
⎡

⎣
a∑

c=0

Cc
aO

a−c
oddP

c
c∑

e=0

S(c, e)ψodd,e,0

+
a∑

c=0

Cc
aO

a−c
evenP

c
c∑

e=0

S(c, e)ψeven,e,0

⎤

⎦

= (−1)× [(−Nx)
(
ψodd,0,0 + ψeven,0,0

)

+
(
Ooddψodd,0,0 + Oevenψeven,0,0

+ P × S(1, 0)
(
ψodd,0,0 + ψeven,0,0

)

+P × S(1, 1)
(
ψodd,1,0 + ψeven,1,0

))]
.

(27)

It comes

x0 = −Ny − P × S(1, 0)− Ooddψodd,0,0 + Oevenψeven,0,0

ψodd,0,0 + ψeven,0,0

− P × S(1, 1)
(
ψodd,0,1 + ψeven,0,1

)

ψodd,0,0 + ψeven,0,0
,

y0 = Nx − P × S(1, 0)− Ooddψodd,0,0 + Oevenψeven,0,0

ψodd,0,0 + ψeven,0,0

− P × S(1, 1)
(
ψodd,1,0 + ψeven,1,0

)

ψodd,0,0 + ψeven,0,0
.

(28)

We have developed here an algorithm enabling the
computation of Zernike moments based on the moment
generator using the accumulation moments. This algorithm
has the advantage to be used on images which have particular
topologies since their mesh grid is regular or semiregular by
the use of a second accumulation grid. The second advantage
of this algorithm is its simplicity to be implemented on
FPGA, for instance. The base of this algorithm relies on the
accumulation moments and is easily computed thanks to a
simple accumulation grid.

4.1.2. Architecture Description. To make the exploitation of
(25) easier, we need to reorder the terms to get an expression
of the Zernike moments such as

Zpq =
∑

e

∑

f

Γ
p,q
odd,e, f ψodd,e, f + Γ

p,q
even,e, f ψeven,e, f , (29)
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where

Γ
p,q
odd,e, f =

(
p + 1

)

π

p∑

k=q
tk,etk, f

q∑

ζ=0

(k−q)/2∑

ξ=0

αke,ζ ,ξβ
k
f ,ζ , j i

ζ

× (−1)k
Bpqk

rkmax
Cζ
qC

ξ

(k−q)/2

×
k−ζ−2 j∑

a=0

2ξ+ζ∑

b=0

ta,etb, f C
a
k−ζ−2ξC

b
2ξ+ζ

× Xk−ζ−2ξ−a
c Y 2ξ+ζ−b

c

×
a∑

c=0

b∑

d=0

Cc
aC

d
bM

a−c
oddN

cOb−d
odd P

dS(c, e)S
(
d, f

)
,

Γ
p,q
even,e, f =

(
p + 1

)

π

p∑

k=q
tk,etk, f

q∑

ζ=0

(k−q)/2∑

ξ=0

αke,ζ ,ξβ
k
f ,ζ ,ξ

× iζ(−1)k
Bpqk

rkmax
Cζ
qC

ξ

(k−q)/2

×
k−ζ−2ξ∑

a=0

2ξ+ζ∑

b=0

ta,etb, f C
a
k−ζ−2ξC

b
2ξ+ζ

× Xk−ζ−2ξ−a
c Y 2ξ+ζ−b

c

×
a∑

c=0

b∑

d=0

Cc
aC

d
bM

a−c
evenN

cOb−d
evenP

dS(c, e)S
(
d, f

)

(30)

with

tg,h =
⎧
⎨

⎩

1, if h ≤ g,

0, else,

αke,ζ ,ξ =
⎧
⎨

⎩

1, if e ≤ k − ζ − 2ξ,

0, else,

βkf ,ζ ,ξ =
⎧
⎨

⎩

1, if f ≤ 2ξ + ζ ,

0, else.

(31)

The general scheme of the architecture of Zernike
moments (see Figure 8) can be described as follows. (i) The
image is first divided into two parts: the odd component
which only contains the odd rows of the images (resp., even).
(ii) The accumulation moments are computed in parallel
according to two accumulation grids. (iii) On the one hand
the accumulation moments of order (0, 0), (0, 1) and, (1, 0)
reach the block which computes Xk−ζ−2ξ−a

c , Y 2ξ+ζ−b
c , and

r−kmax. On the other hand the accumulation moments are
delivered to the Zernike computation block, waiting for the

completion of the computations. (iv) As soon as Xk−ζ−2ξ−a
c ,

Y 2ξ+ζ−b
c , and r−kmax are computed, the coefficients Γ

p,q
odd,e, f and

Γ
p,q
even,e, f can be computed. (v) The coefficients are transmitted

to the final computation block in order to evaluate the

Accumulation
grids

Zernike
computation

Coefficients
computation

Image

(Xc ,Yc) and rmax

computation

Zpq

Figure 8: Zernike architecture general scheme.

Zernike moments according to (29). Their module is then
computed.

The scheme of the accumulation grid of width 4 is
given in Figure 9, and we can notice that it consists of a
simple series of accumulators. They are arranged in a way
that the accumulation is first computed on each row via an
accumulation row (row of ym) and then the accumulation
is performed on the columns (set of ymn). As soon as a
row ends in a given accumulator ym, the result of this
accumulator is furnished to its corresponding first column
accumulator, and ym0 and ym are cleared. At the same time
all the corresponding column accumulators transmit their
accumulation to the next one.

The registers used between the column accumulators are
synchronized at the end of each row; so their clock enable
depends on the image topology. In our case, corners have
been filled with zeros before dividing the image. Therefore,
the size of each image’s component is Xd ×Yd/2. In this case,
the accumulation moment ψe, f is computed on Xd × (Yd/2 +
f ) + e clock cycles from the moment when the first pixel
arrives into the accumulation grid.

One major point of the Zernike moments implemen-
tation is the computation of the coefficients. The main
issue of this computation relies in the trade-off between the
number of coefficients stored in the chip and the number
of operations that are useful to compute these coefficients.
Table 2 shows the number of operations that are necessary
for the computation of the coefficients for Zernike moments
until order 8. Configuration 1 corresponds to the case where
Bpqk (55 values), Ck

p (45 values), the matrix S (45 values)

and the M
p
odd, the M

p
even, the Np, the O

p
odd, the O

p
even, and

the Pp (9 × 6 = 54 values), that is, 199 values stored. The
second configuration corresponds to a storage of the results

dealing with the operations: (−1)k(Bpqk/rkmax)Cζ
qC(k−q)/2,

Ca
k−ζ−2ξC

b
2ξ+ζ , C

c
aM

a−c
oddN

c, Cc
aM

a−c
evenN

c, Cd
bO

b−d
odd P

d, Cd
bO

b−d
evenP

d,
and S(c, e)S(d, f ). If there is no optimisation of the storage
of these values, the occupied memory will be huge (4564
values), but by using the redundancy in each group and
the centralized storage of the 1 value, the number of stored
values may be reduced to 1203. Note that even if the
number of values to store has hardly increased, the number
of multiplications is divided by two compare to the first
configuration.

Figure 10 shows the envisaged computation of the
zernike coefficients taking into account the second con-
figuration. The control block deals with the bounds of
the sum. T1, T2, T3, T4, T5, T6, and T7 look-up
tables correspond, respectively, to Cc

aM
a−c
oddN

c, Cd
bO

b−d
odd P

d,
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Figure 9: Example of accumulation grid of width 4.
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Figure 10: Computation of Zernike coefficients.
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Table 2: Number of operations executed to compute the Γ
p,q
e,f

coefficients.

p
Nb. accumulations Nb. Multiplications

Configure 1 configure 2

0 2 25 14

1 16 183 102

2 101 1225 672

3 349 5543 3000

4 1311 22987 12266

5 4267 77637 41010

6 13642 241767 126592

7 38860 660481 343560

8 104663 1692910 875720

Cc
aM

a−c
evenN

c, Cd
bO

b−d
evenP

d, S(c, e)S(d, f ), Ca
k−ζ−2ξC

b
2ξ+ζ , and

(−1)k(Bpqk/rkmax)Cζ
qC(k−q)/2. T1-2 (resp., T3-4) means that T1

and T2 (resp., T3 and T4) are first read and then the products
between the read values are computed.

A Zernike computation block aims to compute the mod-
ule of Zernike moments from the accumulation moments
that are provided by the grids and from the module that
furnishes the coefficients (see Figure 8). This block consists
in summing the different coefficients and in computing the
module of each moment. In order to reduce the amount of
logical resources to provide, the computation of the square
root is simplified according to the following approximation:

√
x2 + y2 ≈ max

(
|x|,∣∣y∣∣,

3
4

(|x| +
∣
∣y
∣
∣)
)
. (32)

This approximation is often utilized in image processing
and does not impact significantly the final results.

4.1.3. FPGA Implementation of Zernike Moment’s Computa-
tion. In order to compute the Zernike moment from the
accumulation, we proposed an original architecture which
is presented in Figure 10. This architecture is very regular
and simplifies the implementation on an FPGA target.
Furthermore, we can notice that the hardware required is
simple to design for both the moments’ accumulation and
moments’ computation. In fact, the computations are based
on a multiplier and an adder. These constitute the MAC (for
Multiply-ACcumulate) operator and are widely available in
current FPGA devices. In order to improve performances,
MAC operators are integrated in some FPGA devices as a
hardwired component like DSP48 in Xilinx Virtex4.

Two implementation approaches are possible in which
either hardware or time optimization is considered.

Hardware Optimization. This approach allows to reproduce
partially the temporal model of processors. The computa-
tions are performed iteratively and coefficients are read from
the tables sequentially. The results can be temporarily stored
in paged memory rather than registers. In this approach,
the total number of iterations is directly proportional to
the order of the desired moment and it remains relatively

Multiplier Adder

D Q D Q× +

Figure 11: Using MAC operator in data flow architecture.

Multiplier Adder

Out

SEL

+×

ENA

Level i

Level i+1

ENA

Clock

Control

D Q

D Q

i1

i2

Figure 12: Reduction of the calculation resources by reusing hard-
wired operators.

small (some thousands only). Figure 11 depicts one of
the two variants of realization: with or without pipelined
computation. The pipelined organization allows to increase
the calculation frequency of the iterations.

Time Optimization. In that case, we consider that the
amount of the computation hardware is sufficient. Therefore,
the architecture includes all necessary pipelined operators
as it is suggested in Figure 10. The intermediate results
are stored in registers. This solution offers the possibility
of reducing the number of operators by reusing the same
hardware resources as shown in Figure 12.

Figure 13 describes the hardware implementation of the
Zernike computation block. Its main objective is to generate
the different Zernike moments from the accumulation
moments calculated with the accumulation grids and from
the coefficients computation module. It mainly consists of
MAC blocks and of a module destined to compute the square
root of the module according to (32). Only 75 slices are
required to implement the entire block.

4.2. Hardware Implementation of the Neural Network. The
parallel nature of neural networks makes them very suitable
for hardware implementation. Several studies have been
performed so far allowing complex configurations to be
implemented in reconfigurable circuits [15, 16].

The proposed architecture strives to reduce the amount
of logic to be utilized. This is mainly due to the fact that the
neural network has to be implemented with its associated
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Figure 13: Computation of Zernike moments from the accumulation moments.

complex preprocessing that may require a lot of resources.
An example of such architecture is presented in Figure 14.

In this example, the neural architecture is implementing
a 5-input MLP with 7 hidden nodes and 3 outputs. These
parameters are easily modifiable since the proposed circuit is
scalable.

Input data are accepted sequentially and applied to the
series of multipliers. Aj corresponds to the jth input of the
present state whereas Bj corresponds to the jth of the next
set. Data arrive at each clock cycle.

At each clock cycle, at any particular level of adder, apart
from the addition operation between the multiplier output
and the sum from the previous level, the multiplication
operation of the next set of inputs at the adjacent multiplier
is also simultaneously performed. The sum, thus, ripples and
accumulates through the central adders (48 bits) until it is
fed to a barrel shifter that aims to translate the data into a
16-bit address. The obtained sum addresses a sigmoid block
memory (SIGMOID0) containing 65536 values of 18 bits.

This block feeds the outputs of the hidden layer sequen-
tially to three MAC units for the output layer calculation.

Finally a multiplexer distributes serially the results of the out-
put layer to another sigmoid block memory (SIGMOID1).
After a study on data representation, it has been decided to
code the incoming data in 18 bits. Weights are stored in ROM
(Read-only Memories) containing 256 words of 18 bits. The
control of the entire circuit is performed by a simple state
machine that aims to organize the sequence of computations
and memory management.

The number of multipliers required for the network is
I+O, where I is the number of inputs and O is the number of
outputs. Considering that the number of hidden nodes may
be large compared to the number of inputs and the number
of outputs, the adopted solution does not affect the number
of multipliers which is a great relief. In this context, it is
also important to note that the design is very easily scalable
to accommodate more hidden, input or output nodes. For
example, adding a hidden node does not impact the number
of resources but requires an additional cycle of computation.
Adding an input may be accommodated by the addition
of another ROM, multiplier, and adder set to the series of
adders at the centre (part HL of the figure). Moreover, the
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Figure 14: Example of the hardware implementation of a basic neural network.

Table 3: Summary of occupied resources.

Module Number of used logic slices/ Used DSP blocks/ Number of used memory bits/

available available available (Kb)

Accumulation moments 1786/49152 0/96 0 /4320

Zernike moments 75/49152 60/96 21/4320

Neural Network 477/49152 28/96 2808/4320

Total 2338/49152 (4%) 88/96 (92%) 2829 /4320 (65.5%)

addition of an output node can be fulfilled by adding another
ROM, MAC unit, and sigmoid block to the part OL of the
figure.

Another advantage of the architecture is that a single
activation function (sigmoid block) is required to compute
the complete hidden layer. This block consists of a Look-up
Table (LUT) that stores 65536 values of the function.

In general, the time required to obtain the outputs after
the arrival of the first input is fixed to I + H + 6, where I is
the number of inputs, and H is the number of hidden units.
In every cycle, I + O number of multiplications is performed
(O is the number of output units).

5. Performances

The complete architecture (preprocessing + neural network)
has been implemented in a Xilinx Virtex4 (xc4lx100) FPGA
which is the part that has been retained for the trigger
implementation. This type of reconfigurable circuit exhibits
a lot of dedicated resources such as memory blocks or DSP
blocks that allow to compute a MAC very efficiently.

5.1. Resources Requirements. The resources that are required
to implement the global L2 trigger are given in Table 3.
The accumulation grid is essentially realized with logical
resources. No DSP block is utilized at this level. The compu-
tation of Zernike moments from the accumulation moments
makes intensive use of parallelism. Five computation stages
enable to compute 25 Zernike moments very rapidly and
make use of 60 DSP blocks.

Concerning the hardware implementation of the neural
network, it is important to notice that, independently of
the configuration, the amount of used resources is very
low. Nevertheless, one may deplore an important usage of
memory blocks destined to store the values of the sigmoid
functions. This issue may be circumvented in case where
hardware resources constitute an issue. A modified activation
function sgn(x)× (1− 2−absx) could be used [17]. This has a
shape quite similar to the sigmoid function and is very easy
to implement on hardware with just a number of shifts and
adds. This function can be executed with an error less than
4.3%

According to Table 3, it is clear that the entire system
fits in an FPGA without consuming to much logic (4%).
Moreover, the complete architecture has been devised in
order to take full benefit of the intrinsic dedicated resources
of the FPGA, that is, DSP and memory blocks.

5.2. Timing. The computation time of the complete trigger
is summarized in Table 4. According to this table, it is
important to notice that the timing constraints imposed by
the HESS system have been met since the mean frequency to
take a decision is fixed to 3.5 KHz, that is, 285 microseconds.
The global latency time of the proposed L2-trigger is
115.3 microseconds which makes it possible to envisage other
improvements.

It is important to note that most of the computation time
is monopolized by the computation of Zernike moments
from the accumulation moments. This is mainly due to
the fact that the number of accumulations to perform is
huge (104663 accumulations for an order-8) and that these
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Table 4: Timing performances.

Module Processing time in μs

Accumulation moments 13.5

Zernike moments 101.4

Neural Network 0.4

Total 115.3

computations are performed iteratively. Even if we have
decided to parallelize the architecture in five stages, the
number of iterations remains high (≈30 000). A current
work is performed to optimize the computations in this
block for further improvements.

The maximum clock frequency has been estimated at
120 MHz and 366 MHz for the DSP blocks.

6. Conclusion

In this article, we have presented an original solution that
may be seen as an intelligent way of triggering data in the
HESS Phase-II experiment. The system relies on the utiliza-
tion of image processing algorithms in order to increase the
trigger efficiency. The hardware implementation has repre-
sented a challenge because of the relatively strong timing
constraints 285 microseconds to process all algorithms. This
problem has been circumvented by taking advantage of the
nature of the algorithms. All these concepts are implemented
making intensive use of FPGA circuits which are interesting
for several reasons. First, the current advances in recon-
figurable technology make FPGAs an attractive alternative
compare to very powerful circuits such as ASICs. Moreover,
their relatively small cost permits to rapidly implement a
prototype design without major developmental constraints.
The reconfigurability also constitutes a major point. It allows
to configure the whole system according to the application
needs, enabling flexibility and adaptivity. For example, in
the context of the HESS project, it may be conceivable to
reconfigure the chip according to the surrounding noise or
to deal with specific experimental conditions.
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