
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2009, Article ID 723465, 15 pages
doi:10.1155/2009/723465

Research Article

Techniques and Architectures for Hazard-Free Semi-Parallel
Decoding of LDPC Codes

Massimo Rovini, Giuseppe Gentile, Francesco Rossi, and Luca Fanucci

Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy

Correspondence should be addressed to Massimo Rovini, massimo.rovini@gmail.com

Received 4 March 2009; Revised 18 May 2009; Accepted 27 July 2009

Recommended by Markus Rupp

The layered decoding algorithm has recently been proposed as an efficient means for the decoding of low-density parity-check
(LDPC) codes, thanks to the remarkable improvement in the convergence speed (2x) of the decoding process. However, pipelined
semi-parallel decoders suffer from violations or “hazards” between consecutive updates, which not only violate the layered
principle but also enforce the loops in the code, thus spoiling the error correction performance. This paper describes three different
techniques to properly reschedule the decoding updates, based on the careful insertion of “idle” cycles, to prevent the hazards of
the pipeline mechanism. Also, different semi-parallel architectures of a layered LDPC decoder suitable for use with such techniques
are analyzed. Then, taking the LDPC codes for the wireless local area network (IEEE 802.11n) as a case study, a detailed analysis of
the performance attained with the proposed techniques and architectures is reported, and results of the logic synthesis on a 65 nm
low-power CMOS technology are shown.

Copyright © 2009 Massimo Rovini et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Improving the reliability of data transmission over noisy
channels is the key issue of modern communication systems
and particularly of wireless systems, whose spatial coverage
and data rate are increasing steadily.

In this context, low-density parity-check (LDPC) codes
have gained the momentum of the scientific community and
they have recently been adopted as forward error correction
(FEC) codes by several communication standards, such as
the second generation digital video broadcasting (DVB-S2,
[1]), the wireless metropolitan area networks (WMANs,
IEEE 802.16e, [2]), the wireless local area networks (WLANs,
IEEE 802.11n, [3]), and the 10 Gbit Ethernet (10Gbase-T,
IEEE 802.2ae).

LDPC codes were first discovered by Gallager in the
far 1960s [4] but have long been put aside until MacKay
and Neal, sustained by the advances in the very high
large-scale of integration (VLSI) technology, rediscovered
them in the early 1990s [5]. The renewed interest and
the success of LDPC codes is due to (i) the remarkable
error-correction performance, even at low signal-to-noise
ratios (SNRs) and for small block-lengths, (ii) the flexibility

in the design of the code parameters, (iii) the decoding
algorithm, very suitable for hardware parallelization, and last
but not least (iv) the advent of structured or architecture-
aware (AA) codes [6]. AA-LDPC codes reduce the decoder
area and power consumption and improve the scalability
of its architecture and so allow the full exploitation of the
complexity/throughput design trade-offs. Furthermore, AA-
codes perform so close to random codes [6], that they are the
common choice of all latest LDPC-based standards.

Nowadays, data services and user applications impose
severe low-complexity and low-power constraints and
demand very high throughput to the design of practical
decoders. The adoption of a fully parallel decoder architec-
ture leads to impressive throughput but unfortunately is also
so complex in terms of both area and routing [7] that a semi-
parallel implementation is usually preferred (see [6, 8]).

So, to counteract the reduced throughput, designers can
act at two levels: at the algorithmic level, by efficiently
rescheduling the message-passing algorithm to improve its
convergence rate, and at the architectural level, with the
pipeline of the decoding process, to shorten the iteration
time. The first matter can be solved with the turbo-decoding
message-passing (TDMP) [6] or the layered decoding

2 EURASIP Journal on Embedded Systems

Vectorization

Array
of CN

Array
of VN

CN0

CN1

CN2

VN0

VN1

VN2

VN3

λ0

y0

λ1
y1

λ2
y2

λ3
y3

HB =

⎡⎢⎣1 0 1 0
1 0 1 1
0 1 0 1

⎤⎥⎦

⎡⎢⎢⎣
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

⎤⎥⎥⎦
μ0,0

ε0,0

Figure 1: Tanner graph of a simple 3× 4 base-matrix and principle
of vectorization.

algorithm [9], while pipelined architectures are mandatory
especially when the decoder employs serial processing units.

However, the pipeline mechanism may dramatically cor-
rupt the error-correction performance of a layered decoder
by letting the processing units not always work on the most
updated messages. This issue, known as pipeline “hazard”,
arises when the dependence between the elaborations is
violated. The idea is then to reschedule the sequence of
updates and to delay with “idle” cycles the decoding process
until newer data are available.

As an improvement to similar state-of-the-art works
[10–13], this paper proposes three systematic techniques
to optimally reschedule the decoding process in a way
to minimize the number of idle cycles and achieve the
maximum throughput. Also, this paper discusses different
semi-parallel architectures, based on serial processing units
and all supporting the reordering strategies, so as to attain
the best trade-off between complexity and throughput for
every LDPC code.

Semi-parallel architectures of LDPC decoder have
recently been addressed in several papers, although none
of them formally solves the issue of pipeline hazards and
decoding idling. Gunnam et al. describe in [10] a pipelined
semi-parallel decoder for WLAN LDPC codes, but the
authors do not mention the issue of the pipeline hazards;
only, the need of properly scrambling the sequence of data
in order to clear some memory conflicts is described.

Boutillon et al. consider in [13] methods and architec-
tures for layered decoding; the authors mention the problem
of pipeline hazards (cut-edge conflict) and of using an
output order different from the natural one in the processing
units; nonetheless, the issue is not investigated further, and
they simply modify the decoding algorithm to compute
partial updates as in [14]. Although this approach allows
the decoder to operate in full pipeline with no idle cycles,
it is actually suboptimal in terms of both performance and
complexity.

Similarly, Bhatt et al. propose in [11] a pipelined block-
serial decoder architecture based on partial updates, but
again, they do not investigate the dependence between
elaborations.

In [12], Fewer et al. implement a semi-parallel TDMP
decoder, but the authors boost the throughput by decoding
two codewords in parallel and not by means of pipeline.

This paper is organised as follows. Section 2 recalls the
basics of LDPC and of AA-LDPC codes and Section 3 sum-
marizes the layered decoding algorithm. Section 4 introduces
three different techniques to reduce the dependence between
consecutive updates and analytically derives the related
number of idle cycles. After this, Section 5 describes the
VLSI architectures of a pipelined block-serial LDPC-layered
decoder. Section 6 briefly reviews the WLAN codes used as a
case study, while the performances of the related decoder are
analysed in Section 7. Then, the results of the logic synthesis
on a 65 nm low-power CMOS technology are discussed in
Section 8, along with the comparison with similar state-of-
the-art implementations. Finally, conclusions are drawn in
Section 9.

2. Architecture-Aware Block-LDPC Codes

LDPC codes are linear block-codes described by a parity-
check matrix H establishing a certain number of (even)
parity constraints on the bits of a codeword. Figure 1 shows
the parity-check matrix of a very simple LDPC code with
length N = 4 bits and with M = 3 parity constraints.
LDPC codes are also effectively described in a graphical way
through a Tanner graph [15], where each bit in the codeword
is represented with a circle, known as variable-node (VN),
and each parity-check constraint with a square, known as
check-node (CN).

Recently, the joint design of code and decoder has
blossomed in many works (see [8, 16]), and several principles
have been established for the design of implementation-
oriented AA-codes [6]. These can be summarized into (i)
the arrangement of the parity-check matrix in squared
subblocks, and (ii) the use of deterministic patterns within
the subblocks. Accordingly, AA-LDPC codes are also referred
to as block-LDPC codes [8].

The pattern used within blocks is the vital facet for a low-
cost implementation of the interconnection network of the
decoder and can be based either on permutations, as in [6]
and for the class of π-rotation codes [17], or on circulants
or cyclic shifts of the identity matrix, as in [8] and in every
recent standards [1–3].

AA-LDPC codes are defined by the number of block-
columns nc, the number of block-rows nr , and the block-
size B, which is the size of the component submatrices.
Their parity-check matrix H can be conveniently viewed as
H = PHB , that is, as the expansion of a base-matrix HB with
size nr × nc. The expansion is accomplished by replacing
the 1’s in HB with permutations or circulants, and the 0’s
with null subblocks. Thus, the block-size B is also referred
to as expansion-factor, for a codeword length of the resulting
LDPC code equal to N = B · nc and code rate r = 1− nr/nc.

A simple example of expansion or vectorization of a base-
matrix is shown in Figure 1. The size, number, and location
of the nonnull blocks in the code are the key parameters to
get good error-correction performance and low-complexity
of the related decoder.

EURASIP Journal on Embedded Systems 3

3. Decoding of LDPC Codes

LDPC codes are decoded with the belief propagation (BP) or
message-passing (MP) algorithm, that belong to the broader
class of maximum a posteriori (MAP) algorithms. The BP
algorithm has been proved to be optimal if the graph of
the code does not contain cycles, but it can still be used
and considered as a reference for practical codes with cycles.
In the latter case, the sequence of the elaborations, also
referred to as schedule, considerably affects the achievable
performance.

The most common schedule for BP is the so-called two-
phase or flooding schedule (FS) [18], where all parity-check
nodes first, followed by all variable nodes then, are updated
in sequence.

A different approach, taking the distribution of closed
paths and girths in the code into account, has been described
by Xiao and Banihashemi in [19]. Although probabilistic
schedules are shown to outperform deterministic schedules,
the random activation strategy of the processing nodes is not
very suitable to HW implementation and adds significant
complexity overheads.

The most attractive schedule is the shuffled or layered
decoding [6, 9, 18, 20]. Compared to the FS, the layered
schedule almost doubles the decoding convergence speed,
both for codes with cycles and cycle-free [20]. This is
achieved by looking at the code as a connection of smaller
supercodes [6] or layers [9], exchanging intermediate relia-
bility messages. Specifically, a posteriori messages are made
available to the next layers immediately after computation
and not at next iteration as in a conventional flooding
schedule.

Layers can be any set of either CNs or VNs, and,
accordingly, CN-centric (or horizontal) or VN-centric (or
vertical) algorithms have been analyzed in [18, 20]. However,
CN-centric solutions are preferable since they can exploit
serial, flexible, and low-complexity CN processors.

The horizontal layered decoding (HLD) is summarized
in Algorithm 1 and consists in the exchange of probabilistic
reliability messages around the edges of the Tanner graph
(see Figure 1) in the form of logarithms of likelihood ratios
(LLRs); given the random variable x, its LLR is defined as

LLR(x) = log
Pr(x = 1)
Pr(x = 0)

. (1)

In Algorithm 1, λn is the nth a priori LLR of the
received bits, with n = 0, 1, . . . ,N − 1 and N the length
of the codeword, M is the overall number of parity-check
constraints, and Nit the number of decoding iterations.
Also, N (m) is the set of VNs connected to the mth CN,
ε(q)
m,n represents the check-to-variable (c2v) reliability message

sent from CN m to VN n at iteration q, and yn is the
total information or soft-output (SO) of the nth bit in the
codeword (see Figure 1).

For the sake of an easier notation, it is assumed here that a
layer corresponds to a single row of the parity-check matrix.
Before being used by the next CN or layer, SOs are refined
with the involved c2v message, as shown in line 13, and
thanks to this mechanism, faster convergence is achieved.

input: a-priori LLR λn, n = 0, 1, . . . ,N − 1
output: a-Posteriori hard-decisions ŷn = sign(yn)
(1) // Messages initialization
(2) q = 0, yn = λn, ε(0)

m,n = 0,∀n = 0, . . . ,N − 1,
∀m = 0, . . . ,M − 1;

(3) while (q < Nit & !Convergence) do
(4) // Loop on all layers
(5) for m← 0 to M − 1 do
(6) // Check-node update
(7) forall n ∈ N (m) do
(8) // Sign update

(9) − sign(ε(q+1)
m,n) =∏ j∈N (m)\n − sign(yj − ε(q)

m, j);
(10) // Magnitude update

(11) |ε(q+1)
m,n | = M−min∗j∈N (m)\n(|yj − ε(q)

m, j|);
(12) // Soft-output update

(13) yn = yn − ε(q)
m,n + ε(q+1)

m,n

(14) end
(15) end
(16) q + +;
(17) end

Algorithm 1: Horizontal layered decoding.

Magnitudes are updated with the M-min∗ binary opera-
tor [21] defined as M-min∗(a, b)=̇min(a, b)+log(e|a−b|/(1+
e|a−b|)) for a, b ≥ 0. Following an approach similar to
Jones et al. [22], the updating rule of magnitudes is further
simplified with the method described in [23], which proved
to yield very good performance. Here, only two values
are computed and propagated for the magnitude of c2v
messages; specifically, if we define

jmin = arg

{
min

j∈N (m)

(∣∣∣yj − ε(q)
m, j

∣∣∣)} (2)

the index of the smallest variable-to-check (v2c) message
entering CN m, then a dedicated c2v message is computed
in response to VN jmin:∣∣∣ε(q+1)

m, jmin

∣∣∣ = M- min∗
j∈N (m), j /= jmin

(∣∣∣yj − ε(q)
m, j

∣∣∣) =̇αm (3)

while all the remaining VNs receive one common, non-
marginalized value for magnitude given by∣∣∣∣ε(q+1)

m,n

∣∣∣∣
n /= jmin

= M-min∗
(
αm,

∣∣∣yjmin − ε
(q)
m, jmin

∣∣∣) =̇βm. (4)

4. Decoding Pipelining and Idling

The data-flow of a pipelined decoder with serial processing
units is sketched in Figure 2. A centralized memory unit
keeps the updated soft-outputs, computed by the node
processors (NPs) according to Algorithm 1. If we denote with
dk the number of nonnull blocks in layer k, that is, the
degree of layer k, then the processor takes dk clock cycles
to serially load its inputs. Then, refined values are written
back in memory (after scrambling or permutation) with the

4 EURASIP Journal on Embedded Systems

Output
SO

Input
SO

· · ·

SO memory
(synchronous)

Serial NP

SO buffer
Permutation

network

Figure 2: Outline of the flow of soft-outputs in an LDPC-layered
decoder with serial processing units.

latency of LSO clock cycles, and this operation takes again dk
clock cycles. Overall, the processing time of layer k is then
2dk + LSO clock cycles, as shown in Figure 3(a).

If the decoder works in pipeline, time is saved by
overlapping the phases of elaboration, writing-out and
reading, so that data are continuously read from and written
into memory, and a new layer is processed every dk clock
cycles (see Figure 3(b)).

Although highly desirable, the pipeline mechanism is
particularly challenging in a layered LDPC decoder, since
the soft-outputs retrieved from memory and used for the
current elaboration could not be always up-to-date, but
newer values could be still in the pipeline. This issue, known
as pipeline hazard, prevents the use and so the propagation
of always up-to-date messages and spoils the error-correction
performance of the decoding algorithm.

The solution investigated in this paper is to insert null
or idle cycles between consecutive updates, so that a node
processor is suspended to wait for newer data. The number
of idle cycles must be kept as small as possible since it affects
the iteration time and so the decoding throughput. Its value
depends on the actual sequence of layers updated by the
decoder as well as on the order followed to update messages
within a layer.

Three different strategies are described in this section,
to reduce the dependence between consecutive updates in
the HLD algorithm and, accordingly, the number of idle
cycles. These differ in the order followed for acquisition
and writing-out of the decoding messages and constitute a
powerful tool for the design of “layered”, hazard-free, LDPC
codes.

4.1. System Notation. Without any lack of generality, let
us identify a layer with one single parity-check node and
focusing on the set Sk of soft-outputs participating to layer
k, let us define the following subsets:

(i) Ak = Sk ∩Sk−1, the set of SOs in common with layer
k − 1;

(ii) Bk = {Sk ∩ Sk+1} \ Sk−1, the set of SOs in common
with layer k + 1 and not in Ak;

(iii) Ck = Sk−1∩Sk∩Sk+1, the set of SOs in common with
both layers k − 1 and k + 1;

(iv) Ek = {Sk ∩ Sk−2} \ {Sk−1 ∪ Sk+1}, the set of SOs in
common with layer k − 2 and not in Ak or Bk;

(v) Fk = {Sk ∩ Sk+2} \ {Sk−2 ∪ Sk−1 ∪ Sk+1}, the set of
SOs in common with layer k + 2 but not in Ek, Ak,
Bk;

(vi) Gk = {Sk−2 ∩ Sk ∩ Sk+2} \ {Sk−1 ∪ Sk+1}, the set of
SOs in common with both layers k − 2 and k + 2, but
not in Ak or Bk;

(vii) Rk, the set of remaining SOs.

In the definitions above the notation A \ B means the
relative complement of B in A or the set-theoretic difference
of A and B. Let us also define the following cardinalities:
dk = |Sk| (degree of layer k), αk = |Ak|, βk = |Bk|,
χk = |Ck|, εk = |Ek|, φk = |Fk|, γk = |Gk|, ρk = |Rk|.

4.2. Equal Output Processing. First, let us consider a very
straightforward and implementation friendly architecture of
the node processor that updates (and so delivers) the soft-
output messages with the same order used to take them in.

In such a case it would be desirable to (i) postpone the
acquisition of messages updated by the previous layer, that is,
messages in Ak, and (ii) output the messages in Bk as soon
as possible to let the next layer start earlier. Actually, the last
constraint only holds when Ak does not include any message
common to layer k + 1, that is, when Ck = ∅; otherwise, the
set Bk could be acquired at any time before Ak.

Figure 4 shows the I/O data streams of an equal output
processing (EOP) unit. Here, LSO is the latency of the
SO data-path, including the elaboration in the NP, the
scrambling, and the two memory accesses (reading and
writing). Focusing on layer k + 1, the set Ck+1 cannot be
assigned to any specific position within Ak+1, since the whole
Ak+1 is acquired according to the same order used by layer k
to output (and so also acquire) the sets Bk and Ck. For this
reason, the situation plotted in Figure 4 is only for the sake
of a clearer drawing.

With reference to Figure 4, pipeline hazards are cleared if
Ik idle cycles are spent between layer k and k + 1 so that

Ik + |Sk+1 \Ak+1| ≥ LSO + |Sk \ (Ak ∪Bk)| · u(|Ck|) (5)

with u(x) = 1 for x > 0 and u(x) = 0 otherwise. This means
that if Ck is empty, then the messages in Sk \ (Ak ∪Bk) do
not need to be waited for. The solution to (5) with minimum
latency is

Ik = LSO − (dk+1 − αk+1) +
(
dk − αk − βk

) · u(χk). (6)

Note that (5) and (6) only hold under the hypothesis of
Ck leading within Ak. If this is not the case, up to |Ak \ Ck|
extra idle cycles could be added if Ck is output last within Ak.

So far, we have only focused on the interaction between
two consecutive layers; however, violations could also arise
between layer k and k+ 2. Despite this possibility, this issue is
not treated here, as it is typically mitigated by the same idle
cycles already inserted between layers k and k+1 and between
layers k + 1 and k + 2.

4.3. Reversed Output Processing. Depending on the particular
structure of the parity-check matrix H, it may occur that the

EURASIP Journal on Embedded Systems 5

Read WriteElab. Read WriteElab.

Layer k Layer k + 1

dk LSO dk

(a) Not pipelined

Elab. Elab. Elab.

Layer k Layer k + 1 Layer k + 2

Read, k Read, k + 1 Read, k + 2

Write, k Write, k + 1 Write, k + 2

(b) Pipelined

Figure 3: Pipelined and not pipelined data-flow.

Layer k

βk
χk αk βk+1

χk+1 αk+1

Idle
Bk · · · Ck Ak Bk+1 · · · Ck+1 Ak+1

Layer k + 1dk dk+1 Ik+1Ik

Idle

Time
SO output stream

SO input stream

Layer k dk

LSO

Bk · · · Ck Ak

βk χk
αk

Figure 4: Input and output data streams in an NP with EOP.

most of the messages of layer k in common with layer k−1 are
also shared with layer k + 1, that is, Ak
 Ck and Bk
 ∅.
If this condition holds, as for the WLAN LDPC codes (see
Figure 11), it can be worth reversing the output order of SOs
so that the messages in Ak can be both acquired last and
output first.

Figure 5(a) shows the I/O streams of a reversed output
processing (ROP) unit. Exploiting the reversal mechanism,
the set Bk is acquired second-last, just before Ak, so that it is
available earlier for layer k + 1.

Following a reasoning similar to EOP, the situation
sketched in Figure 5(a) where Ck is delivered first within Ak

is just for an easier representation, and the condition for
hazard-free layered decoding is now

I2l
k + |Sk+1 \Ak+1| ≥ LSO + |Ak \Ck| · u(|Bk|). (7)

Indeed, when Bk = ∅, one could output Ck first in Ak,
and so get rid of the term |Ak \ Ck|. However, since Ck is
actually left floating within Ak, (7) represents again a best-
case scenario, and up to |Ak \ Ck| extra idle cycles could be
required. From (7), the minimum latency solution is

I2l
k = LSO − (dk+1 − αk+1) +

(
αk − χk

)
· u(βk). (8)

Similarly to EOP, the ROP strategy also suffers from
pipeline hazards between three consecutive layers, and
because of the reversed output order, the issue is more

relevant now. This situation is sketched in Figure 5(b), where
the sets Ek, Fk, and Gk are managed similarly to Ak, Bk,
and Ck. The ROP strategy is then instructed to acquire the
set Ek later and to output Fk earlier. However, the situation
is complicated by the fact that the set Fk−1 ∪ Gk−1 may not
entirely coincide with Ek+1; rather it is Ek+1 ⊆ (Fk−1 ∪Gk−1),
since some of the messages in Fk−1 ∪ Gk−1 can be found
in Bk+1. This is highlighted in Figure 5(b), where those
messages of Fk−1 and Gk−1 not delivered to Ek+1 are shown
in dark grey.

To clear the hazards between three layers, additional idle
cycles are added in the number of

I3l
k = max

{
ACQk+1 −WRk−1, 0

}
, (9)

where ACQk+1 is the acquisition margin on layer k + 1, and
WRk−1 is the writing-out margin on layer k−1. These can be
computed under the assumption of no hazard between layer
k− 1 and k (i.e., Ck ∪Ak is aligned with Ck−1∪Bk−1 thanks
to I2l

k as shown in Figure 5(b)) and are given by

ACQk+1 = I2l
k + dk+1 −

(
αk+1 + βk+1 + εk+1

)
,

WRk−1 =
(
εk−1 − γk−1 +

∣∣Gk−1 \ Ek+1
∣∣) · u(φk−1

)
.

(10)

The margin WRk−1 is actually nonnull only if Fk−1 /=∅;
otherwise, WRk−1 = 0 under the hypothesis that (i) the set
Gk−1 is output first within Ek−1, and (ii) within Gk−1, the
messages not in Ek+1 are output last.

6 EURASIP Journal on Embedded Systems

Layer k

βk αk
χk βk+1 αk+1

χk+1

Idle

Bk· · · Ak Ck Bk+1· · · Ak+1 Ck+1

Layer k + 1dk dk+1 Ik+1Ik

Idle

Time
SO output stream

SO input stream

Layer k dk

LSO

Ck · · ·Ak Bk

βkχk
αk

(a) Pipeline hazards in the update of two consecutive layers

Layer k

βk αk
χk φk+1

γk+1
εk+1 βk+1 αk+1

χk+1

Idle

Bk· · · Ak Ck Fk+1 Gk+1 Ek+1 Bk+1Rk+1 Ak+1 Ck+1

Layer k + 1dk dk+1 Ik+1Ik

Idle

Time

SO output stream

SO input stream

Layer k − 1

LSO

Ck · · ·Ak Bk

βkχk
αk

Rk−1Fk−1Gk−1Ek−1Bk−1Ak−1Ck−1

Layer k dkdk−1

χk−1

αk−1
βk−1

εk−1
γk−1 φk−1

(b) Pipeline hazards in the update of three consecutive layers. Messages of Gk−1 and Fk−1 not in Ek+1 are shown in dark grey

Figure 5: Organization of the input and output data stream in an NP with ROP.

Layer k

εk αk εk+1 αk+1
Idle

Ek· · · Ak Ek+1· · · Ak+1

Layer k + 1dk dk+1 Ik+1Ik

Idle

Time
SO output stream

SO input stream

Layer k dk

LSO

Bk ∪ Ck Fk ∪ Gk · · ·

βk + χk φk + γk

Figure 6: Input and output data streams in an NP with UOP.

Overall, the number of idle cycles of ROP is given by

Ik = I2l
k + I3l

k . (11)

4.4. Unconstrained Output Processing. Fewer idle cycles are
expected if the orders used for input and output are not
constrained to each other. This implies that layer k can still
delay the acquisition of the messages updated by layer k − 1
(i.e., messages in Ak) as usual, but at the same time the

messages common to layer k+ 1 (i.e., in Bk∪Ck) can also be
delivered earlier.

The input and output data streams of an unconstrained
output processing (UOP) unit are shown in Figure 6. Now,
hazard-free layered decoding is achieved when

Ik + |Sk+1 \Ak+1| ≥ LSO, (12)

which yields

Ik = LSO − (dk+1 − αk+1). (13)

EURASIP Journal on Embedded Systems 7

SO
MEM

c2v
message

MEM

v2c buffer

CNU array

Circular
shifting network

Input
 buffer
FSM

yn’[k]

ε(q)
m+1,n’

+

−

CNU #0

CNU #1

CNU #2
...

CNU #B − 1

yn[k]− ε(q)
m,n

+

+
ε(q+1)
m,n

yn[k + 1]

B

B

B

BIO

Figure 7: Layered decoder architecture with variable-to-check buffer.

Regarding the interaction between three consecutive
layers, if the messages common to layer k+2 (i.e., in Fk∪Gk)
are output just after Bk ∪ Ck, and if on layer k + 2, the set
Ek+2 is taken just before Ak+2, then there is no risk of pipeline
hazard between layer k and k + 2.

4.5. Decoding of Irregular Codes. A serial processor cannot
process consecutive layers with decreasing degrees, dk+1 <
dk, as the pipeline of the internal elaborations would be
corrupted and the output messages of the two layers would
overlap in time. This is not but another kind of pipeline
hazard, and again, it can be solved by delaying the update
of the second layer with Δdk = dk − dk+1 idle cycles.

Since this type of hazard is independent of that seen
above, the same idle cycles may help to solve both issues. For
this reason, the overall number of idle cycles becomes

I′k = max{Ik,Δdk, 0} (14)

with Ik being computed according to (6), (11), or (13).

4.6. Optimal Sequence of Layers. For a given reordering
strategy, the overall number of idle cycles per decoding
iteration is a function of the actual sequence of layers used for
the decoding. For a code with Λ layers, the optimal sequence
of layer p̂ minimizing the time spent in idle is given by

p̂ = arg min
p∈P

⎧⎨⎩
Λ−1∑
k=0

I′k
(
p
)⎫⎬⎭, (15)

where I′k(p) is the number of idle cycles between layer k and
k + 1 for the generic permutation p and is given by (14), and
P is the set of the possible permutations of layers.

The minimization problem in (15) can be solved by
means of a brute-force computer search and results in the
definition of a permuted parity-check matrix Ĥ, whose layers
are scrambled according to the optimal permutation p̂. Then,
within each layer of Ĥ, the order to update the nonnull
subblocks is given by the strategy in use among EOP, ROP,
and UOP.

4.7. Summary and Results. The three methods proposed in
this section are differently effective to minimize the overall
time spent in idle. Although UOP is expected to yield

the smallest latency, the results strongly depend on the
considered LDPC code, and ROP and EOP can be very close
to UOP. As a case-example, results will be shown in Section 7
for the WLAN LDPC codes.

However, the effectiveness of the individual methods
must be weighed up in view of the requirements of the
underlying decoder architecture and the costs of its hardware
implementation, which is the objective of Section 5. Thus,
UOP generally requires bigger complexity in hardware, and
EOP or ROP can be preferred for particular codes.

5. Decoder Architectures

Low complexity and high throughput are key features
demanded to every competitive LDPC decoder, and to this
extent, semi-parallel architectures are widely recognised as
the best design choice.

As shown in [6, 8, 12] to mention just a few, a semi-
parallel architecture includes an array of processing elements
with size usually equal to the expansion factor B of the
base-matrix HB. Therefore, the HLD algorithm described
in Section 3 must be intended in a vectorized form as well,
and in order to exploit the code structure, a layer counts
B consecutive parity-check nodes. Layers (in the number
of nr = M/B) are updated in sequence by the B check-
node units (CNUs), and an array of B SOs (yn) and of
Bc2v messages (ε(q)

m,n) are concurrently updated at every
clock cycle. Since the parity-check equations in a layer are
independent by construction, that is, they do not share SOs,
the analysis of Section 4 still holds in a vectorized form.

The CNUs are designed to serially update the c2v
magnitudes according to (3) and (4), and any arbitrary
order of the c2v messages (and so of SOs, see line 13 of
Algorithm 1) can be easily achieved by properly multiplexing
between the two values as also shown in [23]. It must
be pointed out that the 2-output approximation described
in Section 3 is pivotal to a low-complexity implementation
of EOP, ROP, or UOP in the CNU. However, the same
strategies could also be used with a different (or even no)
approximation in the CNU, although the cost of the related
implementation would probably be higher.

Three VLSI architectures of a layered decoder will be
described, that differ in the management of the memory

8 EURASIP Journal on Embedded Systems

SO MEM

r1
w1

w1

r2

r1

r2

c2v MEM

CNU array

Circular
shifting network

Input
 buffer
FSM

yn’[k]

ε(q)
m+1,n’

+

−

yn[k]

ε(q)
m,n

+

− B

CNU #0

CNU #1

CNU #2

...

CNU #B − 1

+

+

ε(q+1)
m,n

yn[k + 1]

BB

B

BIO

B
B

Figure 8: Layered decoder with three-port SO and c2v memories.

units of both SO and c2v, and so result in different
implementation costs in terms of memory (RAM and ROM)
and logic.

5.1. Local Variable-to-Check Buffer. The most straightfor-
ward architecture of a vectorized layered decoder is shown
in Figure 7. Here, the arrays of v2c messages μ(q)

m,n entering
the CNUs during the update of layer m = 0, 1, . . . ,nr − 1, are
computed on-the-fly as μ(q)

m,n = yn−ε(q)
m,n with n ∈ N (m), and

both the arrays of c2v and SO messages are retrieved from
memory.

Then, the updated c2v messages are used to refine every
array of SOs belonging to layer m: according to line 13 of
Algorithm 1, this is done by adding the new c2v array ε(q+1)

m,n

to the input v2c array μ(q)
m,n. Since the CNUs work in pipeline,

while the update of layer m is still progress, the array of
the v2c messages belonging to layer m + 1 is already being

computed as μ
(q)
m+1,n′ = yn′ − ε

(q)
m+1,n′ , with n′ ∈ N (m + 1).

For this reason, μ(q)
m,n needs to be temporarily stored in a local

buffer as shown in Figure 7. The buffer is vectorized as well
and stores B×dc,max messages, with dc,max the maximum CN
degree in the code.

Before being stored back in memory, the array yn is
circularly shifted and made ready for its next use, by applying
compound or incremental rotations [12]; this operation is
carried out by the circular shifting network of Figure 7, and
more details about its architecture are available in [24].

The v2c buffer is the key element that allows the archi-
tecture to work in pipeline. This has to sustain one reading
and one writing access concurrently and can be efficiently
implemented with shift-register based architectures for EOP
(first-in, first-out, FIFO buffer) and ROP (last-in, first-out,
LIFO buffer). On the contrary, UOP needs to map the buffer
onto a dual-port memory bank, whose (reading) address is
provided by and extra configuration memory (ROM).

5.2. Double Memory Access. The buffer of Arch. V-A can be
removed if the v2c messages are computed twice on-the-fly,
as shown in Figure 8: the first time to feed the array of CNUs,
and then to update the SOs. To this aim, a further reading is

required to get the arrays yn and ε(q)
m,n from memory, and so

recompute the array μ(q)
m,n on the CNUs output.

It follows that three-port memories are needed for both
SO and c2v messages since three concurrent accesses have
to be supported: two readings (see ports r1 and r2 in
Figure 8) and one writing. This memory can be implemented
by distributing data on several banks of customary dual-
port memory, in such a way that two readings always
involve different banks. Actually, in a layered decoder a
same memory location needs to be accessed several times
per iteration and concurrently to several other data, so that
resorting to only two memory banks would be unfeasible.
On the other hand, the management of a higher number of
banks would add a significant overhead to the complexity of
the whole design.

The proposed solution is sketched in Figure 9 and is
based on only two banks (A and B) but, to clear access
conflicts, some data are redundantly stored in both the banks
(see elements C1 and C2 in the example of Figure 9).

The most trivial and expensive solution is achieved when
both banks are a full copy or a mirror of the original
memory as in [11], which corresponds to 100% redundancy.
Conversely to this route, data can be selectively assigned
to the two banks through computer search aiming at a
minimum redundancy.

Roughly speaking, if we denote by σi the cardinality of
the set of data (SO or c2v messages) read concurrently to
the ith data for i = 0, 1, . . . ,N − 1, then the higher

∑
∀i σi

is (for a given N), the higher is the expected redundancy. So,
a small redundancy ρc2v is experienced by the c2v memory,
since each c2v message can collide with at most two other
data (i.e., maxi{σi} = 2), while a higher redundancy ρSO is
associated to the SO memory, since every SO can face up
to 2dVN,n conflicts, with dVN,n being the degree of the nth
variable node, typically greater than 1 (especially for low-rate
codes).

Indeed, the issue of memory partitioning and the
reordering techniques described in Section 4 are linked to
each other: whenever the CNUs are in idle, only one reading
is performed. Therefore, an overall system optimization
aiming at minimizing the iteration latency and the amount

EURASIP Journal on Embedded Systems 9

w_en

w_en w_addr

r_addr

r_data r_data1

r_data2r_addr

r_data

w_data
w_addr

w_en
w_addr
w_data

Read controller

Memory architecture

A1
A2
B1
B2
A3
B3
A4
C1
A5
A6
A7
A8
B4
B5
B6

C1
C2
A1
A2
A3
A4
A5
A6
A7
A8

C1
C2
B1
B2
B3
B4
B5
B6

r_addr1 r_addr2

w_data

Bank A

Bank A

Data partitoning

Write controller

Original
memory Bank B

Bank B

C2

C1

Figure 9: Three-port memory: data partitioning and architecture.

v2c MEM

r1
w1

r2

CNU array

Circular
shifting network

Input
 buffer
FSM

c2v
message

MEM

yn’[k]− ε(q)
m+1,n’

B

yn[k]− ε(q)
m,n

ε(q)
m’,n

CNU #0

CNU #1

CNU #2

...

CNU #B − 1

+

+

ε(q+1)
m,n

yn[k + 1]

B

+

−
B

B

BIO

B

B

B

Figure 10: Layered decoder with v2c three-port memory.

of memory redundancy at the same time could be pursued;
however, due to the huge optimization space, this task is
almost unfeasible and is not considered in this work.

5.3. Storage of Variable-to-Check Messages. During the elab-
oration of a generic layer, a certain v2c message is needed
twice, and a local buffer or multiple memory reading
operations were implemented in Arch. V-A and Arch. V-B,
respectively.

A third way of solving the problem is computing the
array of v2c messages only once per iteration, like in Arch.
V-A, but instead of using a local buffer, the v2c messages are
precomputed and stored in the SO memory ready for the
next use, as sketched in Figure 10. A similar architecture is
used in [10, 16] but the issue of decoding pipeline is not
clearly stated there.

In this way, the SO memory turns into a v2c memory
with the following meaning: the array yn updated by layer
m is stored in memory after marginalization with the c2v
message εm′,n, with m′ being the index of the next layer
reusing the same array of SOs, yn. In other words, the array of

v2c messages involved in the next update of the same block-
column n is precomputed. Therefore, the data stored in the
v2c memory are used twice, first to feed the array of CNUs,
and then for the SOs update.

Similarly to Arch. V-B, a three-port memory would
be required because of the decoding pipeline; the same
considerations of Section 5.2 still hold, and an optimum
partitioning of the v2c memory onto two banks with some
redundancy can be found. Note that, as opposed to Arch.
V-B, a customary dual-port memory is enough for c2v
messages.

As far as the complexity is concerned, at first glance this
solution seems to be preferable to Arch. V-B since it needs
only two stages of parallel adders while the c2v memory is
not split. However, the management of the reading ports of
the v2c memory introduces significant overheads, since after
the update of the soft outputs yn by layer m, the memory
controller must be aware of what is the next layerm′ using the
same soft outputs yn. This information needs to be stored in
a dedicated configuration memory, whose size and area can
be significant, especially in a multilength, multirate decoder.

10 EURASIP Journal on Embedded Systems

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

1

2

3

4

5

6

70

00

00

00

00

00

00

01

0

1

252

7

15

68

17

23

11

406155

76 367

52

7

56

14

64 67

61 75 4

56 74 77

28 21 68

48 38 43

40 2 53

69 23 64

14 0 68

58 11 34

12

8

63

20

10

78

25

10

20

64 78

22 21

62

65

24

20

78

4

20

24

8

44

52

72

23

75

29

58

44

5
HB =

81× 81 identity matrix rotated by r 81× 81 zero matrixr

Figure 11: Parity-check base-matrix of the block-LDPC code for IEEE 802.11n with codeword size N2 = 1944 and rate r = 2/3. Black squares
correspond to cyclic shifts s of the identity matrix (0 ≤ s ≤ B − 1), also indicated in the square, while empty squares correspond to all-zero
submatrices.

6. A Case Study: The IEEE 802.11n LDPC Codes

6.1. LDPC Code Construction. The WLAN standard [3]
defines AA-LDPC codes based on circulants of the identity
matrix. Three different codeword lengths are supported,
N0 = 648, N1 = 1296, and N2 = 1944, each coming with four
code rates, 1/2, 2/3, 3/4, and 5/6, for a total of 12 different
codes. As a distinguishing feature, a different block-size is
used for each codeword length, that is, B0 = 27, B1 = 54,
and B2 = 81, respectively; accordingly, every code counts
nc = Ni/Bi = 24 block-columns, while the block-rows (layers)
are in the number of nr = (1−r)nc = 12, 8, 6, 4 for code rates
1/2, 2/3, 3/4, and 5/6, respectively.

An example of the base-matrix HB for the code with
length N2 = 1944 and rate r = 2/3 is shown in Figure 11.

6.2. Multiframe Decoder Architecture. In order to attain an
adequate throughput for every WLAN codes, the decoder
must include a number of CNUs at least equal to max{Bi} =
81. This means that two thirds of the processors would
remain unused with the shortest codes.

In the latter case, the throughput can be increased thanks
to a multiframe approach, where Fi = �max{Bi}/Bi� frames
of the code with block-size Bi are decoded in parallel. A
similar solution is described in [12], but in that case two
different frames are decoded in time-division multiplexing
by exploiting the 2 nonoverlapped phases of the flooding
algorithm. Here, Fi frames are decoded concurrently, and
more specifically, three different frames of the shortest code
can be assigned to a cluster of 27 CNUs each.

Note that to work properly, the circular shifting network
must support concurrent subrotations as described in [24].

7. Decoder Performance

As to give a practical example of the reordering strategies
described in Section 4, Figure 12 shows the data flow related
to the update of layer 0 for the WLAN code of Figure 11.
While 6 idle cycles are required following the original,
natural order of updates (see Figure 12(a)), EOP needs
5 cycles (see Figure 12(b)), ROP reduces them to 1 (see

Figure 12(c)), while no idle cycle is used by UOP (see
Figure 12(d)). The subsets defined in Section 4.1 are also
shown in Figure 5, along with the optimal sequence of layers
followed for decoding.

7.1. Latency and Throughput. The latency of a pipelined
LDPC decoder can be expressed as

Tdec = tclk ·
{
Nit · (NB + Iit) + Lpipe + 2IO

}
(16)

with tclk = 1/ fclk being the clock period, Nit being the
number of iterations, NB being the number of nonnull
blocks in the code, Iit =

∑nr−1
k=0 I′k being the number of

idle cycles per iteration, Lpipe being the cycles to empty
the decoder pipelin and finally, LIO being the cycles for
the input/output interface. Among the parameters above,
Nit is set for good error-correction performance, NB is a
code-dependent parameter, and LIO is fixed by the I/O
management; thus, for a minimum latency, the designer
can only act on Iit, whose value can be optimised with the
techniques of Section 4.

Focusing on the IEEE 802.11n codes, Table 1 shows the
overall number of cycles for 12 iterations (Ldec = Tdec/tclk),
the number of idle cycles per iteration (Iit), the percentage
of idle cycles with respect to the total (idling %), and the
throughput at the clock frequency of 240 MHz.

The latter is expressed in information bits decoded per
time unit and is also referred to as net throughput:

Γn = Fi · r ·Ni

Tdec
, (17)

where Fi is the number of frames decoded in parallel. For
this reason, the figures of Table 1 for the short codes are very
similar to those for the long codes (N0F0 = N2F2); on the
contrary, the middle codes do not benefit from the same
mechanism (i.e., F1 = 1) and their throughput is scaled down
by a factor 2/3.

The results of Table 1 are for every technique of Section 4
as well as for the original codes before optimization.
Although EOP clearly outperforms the original codes, better
results are achieved with ROP and UOP for the WLAN case

EURASIP Journal on Embedded Systems 11

56
4

2
13

25
15

1
16

17
14

8
11

75
1

63
3

0
17

61
0

4
2

64
7

4
9

7
12

0
17

67
10

24
8

74
1

20
3

0
18

56
0

77
2

56

4
2

13
25

15
1

16
17

14
8

11
75

1
63

3
0

17
61

0
4

2SO rotation

Layer #0 Layer #1

Layer #0

Idle

SO index

SO
input

SO
output

t

(a) Original base-matrix (sequence of layers: 0,1,2,3,4,5,6,7)

56

4
2

13
25

15
1

16
17

14
8

11
75

1
63

3
0

17
61

0
4

2
0

22
21

6
22

4
23

13
68

12
0

21
23

1
10

3
29

14
69

0
64

2

56

4
2

13
25

15
1

16
17

14
8

11
75

1
63

3
0

17
61

0
4

2SO rotation

Layer #0 Layer #5

Layer #0

Idle

SO index

SO
input

SO
output

B0 A0 B5 A5

t

B0 A0

(b) EOP (optimised sequence of layers: 0,5,6,7,4,2,3,1)

56
4

2
13

25
15

1
16

17
14

8
11

75
1

63
3

0
17

61
0

4
2

14
5

0
19

0
18

10
3

65
6

23
10

28
0

7
4

68
2

21
1

75
14

56

4
2

13
25

15
1

16
17

14
8

11
75

1
63

3
0

17
61

0
4

2
SO rotation

Layer #0 Layer #2

Layer #0

Idle

SO index

SO
input

SO
output

B0 A0 A2

t

A0 B0

(c) ROP (optimised sequence of layers: 0,2,7,5,6,3,4,1)

56

4
2

13
25

15
1

16
17

14
8

11
75

1
63

3
0

17
61

0
4

2
52

5
62

6
0

20
40

0
20

8
0

21
25 02 5 3 4 4

56

4
2

13
25

15
1

16
17

14
8

11

2 11

0

17

1 3

75

1
63

3
61

0
4

2

16

SO rotation

Layer #0 Layer #4

Layer #0

No idle

SO index

SO
input

SO
output

E0 A0 A4E4

t

B0 F0

(d) UOP (optimised sequence of layers: 0,4,7,6,1,2,6,3)

Figure 12: An example of optimization of the base-matrix of the LDPC code IEEE 802.11n with N2 = 1944 and r = 2/3 with EOP, ROP and
UOP. Critical propagations are highlighted in dark gray.

example, where at most 14% and 11% of the decoding time
are spent in idle, respectively. On average, the decoding time
decreases from 7.6 to 6.7 ns with EOP and even to 5.3 ns with
ROP and 5.1 ns with UOP. This behaviour can be explained
by considering that for the WLAN codes the term (dk − αk −
βk)·u(χk) found in (6) for EOP is significantly nonnull, while
comparing (8) to (13), ROP and UOP basically differ for the
term (αk−χk)·u(βk), which is negligible for the WLAN codes.

7.2. Error-Correction Performance. Figure 13 compares the
floating point frame error rate (FER) after 12 decoding
iterations of a pipelined decoder using EOP, ROP, and UOP
with a reference curve obtained by simulating the original
parity-check matrix before optimization, in a nonpipelined

decoder. Two simulations were run for each strategy, one
with the proper number of idle cycles (curves with full
markers), and the other without idle cycles and referred to
as full pipeline mode (curves with empty markers).

As expected, the three strategies reach the reference curve
of the HLD algorithm when properly idled. Then, in case
of full pipeline (Ik = 0, ∀k), the performance of EOP are
spoiled, while ROP and UOP only pay about 0.6 and 0.3 dB,
respectively. This means that the reordering has significantly
reduced the dependence between layers and only few hazards
arise without idle cycles.

Similarly to EOP, no received codeword is successfully
decoded even at high SNRs (i.e., FER = 1) if the original
code descriptors are simulated in full pipeline. This confirms

12 EURASIP Journal on Embedded Systems

Table 1: Performance of an LDPC decoder for IEEE 802.11n with 12 iterations: LSO = 5 and fclk = 240 MHz.

Code lenght N0 = 648 N1 = 1296 N2 = 1944

Code rate 1/2 2/3 3/4 5/6 1/2 2/3 3/4 5/6 1/2 2/3 3/4 5/6

NB 88 88 88 88 86 88 88 85 86 88 85 79

LIO 72 72 72 72 48 48 48 48 72 72 72 72

Original

Ldec 2299 1763 1779 1486 2106 1715 1886 1653 2107 1775 1752 1603

Iit 91 46 47 22 81 46 60 43 77 47 48 41

idling % 47% 31% 31% 17% 46% 32% 38% 31% 44% 31% 32% 30%

Γn (Mbps) 101 176 197 262 74 121 124 157 111 175 200 243

EOP

Ldec 1927 1691 1575 1462 1819 1643 1527 1377 1855 1691 1538 1352

Iit 60 40 30 20 57 40 30 20 56 40 30 20

idling % 37% 28% 23% 16% 37% 29% 23% 17% 36% 28% 23% 17%

Γn (Mbps) 121 184 222 266 85 126 153 188 126 184 228 288

ROP

Ldec 1308 1216 1290 1403 1223 1168 1239 1330 1283 1228 1243 1305

Iit 8 0 6 15 7 0 6 16 8 1 5 16

idling % 7.3% 0% 5.5% 13% 6.8% 0% 5.5% 14% 7.4% 1% 4.8% 14%

Γn (Mbps) 178 256 271 277 127 178 188 195 182 253 282 298

UOP

Ldec 1308 1216 1243 1380 1187 1168 1195 1260 1259 1216 1195 1164

Iit 8 0 2 13 4 0 2 10 6 0 1 4

idling % 7.3% 0% 1.9% 11% 4% 0% 2% 9.3% 5.6% 0% 0.9% 4%

Γn (Mbps) 178 256 282 282 131 178 195 206 185 256 293 334

once more the importance of idle cycles in a pipelined HLD
decoding decoder and motivates the need of an optimization
technique.

Considering the same scenario of Figure 13, Figure 14
shows the convergence speed, measured in average number
of iterations, of the layered decoding algorithm. The curves
confirm that HLD needs one half of the number of iterations
of the flooding schedule, on average, and show that the full
pipeline mode is also penalized in terms of speed.

8. Implementation Results

The complexity of an LDPC decoder for IEEE 802.11n codes
was derived through logical synthesis on a low-power 65 nm
CMOS technology targeting fclk = 240 MHz. Every architec-
ture of Section 5 was considered for implementation, each
one supporting the three reordering strategies, for a total of 9
combinations. For good error correction performance, input
LLRs and c2v messages were represented on 5 bits, while
internal SO and v2c messages on 7 bits.

Table 2 summarizes the complexity of the different
designs in terms of logic, measured in equivalent Kgates
and number of RAM and ROM bits. Equivalent gates are
counted by referring to the low-drive, 2-input NAND cell,
whose area is 2.08 μm2 for the target technology library. Arch.
V-A needs the highest number of memory bits due to the
local variable-to-check buffer, but its logic is smaller since it
requires no additional hardware resources (adders) and less
configuration bits.

Because of the partitioning of both the SO and the
c2v memories, Arch. V-B needs more logic resources and

more memory bits than Arch. V-C (both for data and
configuration). The redundancy ratios ρSO and ρc2v of the SO
and c2v memory in Arch. V-B, respectively, and ρv2c of the v2c
memory in Arch. V-C, are also reported in Table 2.

As a matter of fact, the three architectures are very similar
in complexity and performance, and, for a given set of LDPC
codes, the designer can select the most suitable solution by
trading-off decoding latency and throughput at the system
level, with the requirements of logic and memory in terms of
area, speed, and power consumption at the technology level.

Table 3 compares the design of a decoder for IEEE
802.11n based on Arch. V-C with UOP with similar state-of-
the-art implementations: a parallel decoder by Blanskby and
Howland [7], a 2048-bit rate 1/2 TDMP decoder by Mansour
and Shanbhag [25], a similar design for WLAN by Gunnam
et al. [10], and a decoder for WiMAX by Brack et al. [26].
Here, for a fair comparison, the throughput is expressed in
channel bits decoded per time unit; that is, it is the channel
throughput Γc = Ni/Tdec = Γn/r.

For the comparison, we focused on the architectural
efficiency ηA defined as

ηA =
Tdec · fclk

Nit ·NB
= N · fclk

Γc ·Nit ·NB
, (18)

which represents the average number of clock cycles to
update one block of H. In decoders based on serial functional
units it is ηA ≥ 1, and the higher ηA is, the less efficient
is the architecture. Actually, ηA can reach 1 only when
the dependence between consecutive layers is solved at the
code design level. This is the case of two WiMAX codes

EURASIP Journal on Embedded Systems 13

−2.5 −2 −1.5 −1 −0.5

SNR (dB)

10−6

10−5

10−4

10−3

10−2

10−1

100
FE

R

IEEE 802.11n, N2 = 1944, r = 1/2

HLD reference
Pipelined HLD & idle cycles

EOP
ROP
UOP

Full-pipelined HLD
(no idle cycles)

Original
EOP
ROP
UOP

Figure 13: Error-correction performance of the IEEE 802.11n,
N2 = 1944, rate-1/2 LDPC code after 12 decoding iterations.

Table 2: IEEE 802.11n LDPC decoder complexity analysis.

EOP ROP UOP

Arch. V-A

logic (Kgates) 71.29 71.62 74.65

RAM bits 61,722 61,722 61,722

ROM bits 23,159 23,159 40,788

Arch. V-B

logic (Kgates) 75.45 75.75 77.99

RAM bits 53,622 54,837 57,024

ρSO 29.2% 29.2% 33.3%

ρc2v 1.1% 4.6% 9.1%

ROM bits 36,582 36,582 51,849

Arch. V-C

logic (Kgates) 71.83 72.14 74.60

RAM bits 53,217 53,217 53,784

ρv2c 29.2% 29.2% 33.3%

ROM bits 34,508 34,508 43,553

(specifically, class 1/2 and class 2/3B codes) which are hazard-
free (or layered) “by construction”, thus explaining the very
low value of ηA achieved by [26]. However, [26] is as efficient
as our design (ηA ≈ 1.3) on the remaining nonlayered
WiMAX codes, but the authors do not perform layered
decoding on such codes.

For decoders with parallel processing units (see [7,
25]) the architectural efficiency becomes a measure of the
parallelization used in the processing units and it can be
expressed as ηA
 1/d with d being the average check

−2.5 −2.25 −2 −1.75 −1.5 −1.25 −1 −0.75 −0.5 −0.25

SNR (dB)

3

4

5
6
7
8
9

2

3

4

5
6
7
8
9

10

100

A
ve

ra
ge

n
u

m
be

r
of

it
er

at
io

n
s

IEEE 802.11n, N2 = 1944, r = 1/2

HLD reference
FS

Pipelined HLD & idle cycles:
EOP
ROP
UOP

Full-pipelined HLD
(no idle cycles)

Original
EOP
ROP

UOP

Figure 14: IEEE 802.11n, N2 = 1944, rate-1/2 LDPC code: average
decoding speed for a maximum of 100 iterations.

node degree. Indeed, in a two-phase decoder, the number
of blocks can be equivalently defined as the overall number
of exchanged messages, divided by the number of functional
units. If E is the number of edges in the code, then NB =
2E/(N + rN), which is an index of the parallelization used in
the processors.

The different designs were also compared in terms of
energy efficiency, defined as the energy spent per coded bit
and per decoding iteration. This is computed as

ηE = Edec

N ·Nit
= P

Γc ·Nit
(19)

with Edec = P · Tdec being the decoding energy and P
being the power consumption. The latter was estimated
with Synopsys Power Compiler and was averaged out over
three different SNRs (corresponding to different convergence
speeds) and includes the power dissipated in the memory
units (about 70% of the total). In terms of energy, our design
is more efficient than [25] and gets close to the parallel
decoder in [7].

Since the design in [10] is for the same WLAN LDPC
codes and implements a similar layered decoding algorithm
with the same number of processing units, a closer inspection
is compulsory. Thanks to the idle optimization, our solution
is more efficient in terms of throughput, the saving in
efficiency ranging from 16% to 23%. Then, although our
design saves about 70 mW in power consumption with
respect to [10], the related energy efficiency has not been
included in Table 2 since the reference scenario used to
estimate the power consumption (238 mW) was not clearly
defined. Finally, although curves for error correction perfor-
mance are not available in [10], penalties are expected in view
of the smaller accuracy used to represent v2c (5 bits) and SOs
(6 bits) messages.

14 EURASIP Journal on Embedded Systems

Table 3: State-of-the-art LDPC decoder implementations.

[this] [7] [10] [25] [26]

Technology 65 nm CMOS 0.16 μm CMOS
5-LM

0.13 μm TSMC
CMOS

0.18 μm 1.8 V
TSMC CMOS

0.13 μm CMOS

Algorithm layered flooding layered TDMP flooding/layered

CPU arch. serial parallel serial parallel serial

Nb. of CPUs 81 1536 81 64 96

Msg. width (c2v + SO) 5 + 7 4 + 4 5 + 6 4 + 5 6

Clock fr (MHz) 240 64 500 125 333

Rates 1/2, 2/3, 3/4, 5/6 1/2 1/2, 2/3, 3/4, 5/6 1/2 : 1/16 : 7/8 1/2, 2/3, 3/4, 5/6

Codeword length, N 648, 1296, 1944 1024 648, 1296, 1944 2048 576 : 96 : 2304

Codeword size, B 27, 54, 81 1 27, 54, 81 64 24 : 4 : 96

Nb. of blocks, NB 79–88 4,33 79–88 96 76–88

Speed
Iterations Nit 12 64 5 10 16

Γc (Mbps) 262–401 1,024 541–1,618 640 177–999

Area
Kgates (mm2) 100.7 (0.207) 1750 (52.5) 99.9 (1.85) 220 (14.3) 489.9 (2.964)

RAM bits 56,376 — 55,344 51,680 NA

Power consumption (W) 0.162 0.69 0.238 0.787 NA

ηA (cycle/bit/iter) 1.103–1.306 0.231 1.361–1.521 0.417 1.01–1.31

ηE (pjoule/bit/iter) 33.7–51.5 10.5 — 123 —

9. Conclusions

An effective method to counteract the pipeline hazards
typical of block-serial layered decoders of LDPC codes has
been presented in this paper. This method is based on
the rearrangement of the decoding elaborations in order
to minimize the number of idle cycles inserted between
updates and resulted in three different strategies named
equal, reversed, and unconstrained output (EOP, ROP, and
UOP) processing.

Then, different semi-parallel VLSI architectures of a lay-
ered decoder for architecture-aware LDPC codes supporting
the methods above have been described and applied to the
design of a decoder for IEEE 802.11n LDPC codes.

The synthesis of the proposed decoder on a 65 nm low-
power CMOS technology reached the clock frequency of
240 MHz, which corresponds to a net throughput ranging
from 131 to 334 Mbps with UOP and 12 decoding iterations,
outperforming similar designs.

This work has proved that the layered decoding algo-
rithm can be extended with no modifications nor approx-
imations to every LDPC code, despite the interconnections
on its parity-check matrix, provided that idle cycles are used
to maintain the dependencies between the updates in the
algorithm.

Also, the paradigm of code-decoder codesign has been
reinforced in this work, since not only the described
techniques have shown to be very effective to counteract
the pipeline hazards but also they provide at the same time
useful guidelines for the design of good, hazard-free, LDPC

codes. To this extent, it is then overcome the assumption that
consecutive layers do not have to share soft-outputs, like the
WiMAX class 1/2 and 2/3B codes do, thus leaving more room
to the optimization of the code performance at the level of
the code design.

References

[1] “Satellite digital video broadcasting of second generation
(DVB-S2),” ETSI Standard EN302307, February 2005.

[2] IEEE Computer Society, “Air Interface for Fixed and Mobile
Broadband Wirelss Access Systems,” IEEE Std 802.16eTM-
2005, February 2006.

[3] “IEEE P802.11nTM/D1.06,” Draft amendment to Standard for
high throughput, 802.11 Working Group, November 2006.

[4] R. Gallager, Low-density parity-check codes, Ph.D. dissertation,
Massachusetts Institutes of Technology, 1960.

[5] D. MacKay and R. Neal, “Good codes based on very sparse
matrices,” in Proceedings of the 5th IMA Conference on
Cryptography and Coding, 1995.

[6] M. M. Mansour and N. R. Shanbhag, “High-throughput
LDPC decoders,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 11, no. 6, pp. 976–996, 2003.

[7] A. Blanksby and C. Howland, “A 690-mW 1-Gb/s 1024-b, rate-
1/2 lowdensity parity-check code decoder,” IEEE Journal of
Solid-State Circuits, vol. 37, no. 3, pp. 404–412, 2002.

[8] H. Zhong and T. Zhang, “Block-LDPC: a practical LDPC
coding system design approach,” IEEE Transactions on Circuits
and Systems I, vol. 52, no. 4, pp. 766–775, 2005.

[9] D. E. Hocevar, “A reduced complexity decoder architecture via
layered decoding of LDPC codes,” in Proceedings of the IEEE

EURASIP Journal on Embedded Systems 15

Workshop on Signal Processing Systems (SISP ’04), pp. 107–112,
2004.

[10] K. Gunnam, G. Choi, W. Wang, and M. Yeary, “Multi-rate
layered decoder architecture for block LDPC codes of the
IEEE 802.11n wireless standard,” in Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS ’07),
pp. 1645–1648, May 2007.

[11] T. Bhatt, V. Sundaramurthy, V. Stolpman, and D. McCain,
“Pipelined block-serial decoder architecture for structured
LDPC codes,” in Proceedings of the IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP ’06),
vol. 4, pp. 225–228, April 2006.

[12] C. P. Fewer, M. F. Flanagan, and A. D. Fagan, “A versatile
variable rate LDPC codec architecture,” IEEE Transactions on
Circuits and Systems I, vol. 54, no. 10, pp. 2240–2251, 2007.

[13] E. Boutillon, J. Tousch, and F. Guilloud, “LDPC decoder,
corresponding method, system and computer program,” US
patent no. 7,174,495 B2, February 2007.

[14] M. Rovini, F. Rossi, P. Ciao, N. L’Insalata, and L. Fanucci,
“Layered decoding of non-layered LDPC codes,” in Proceedings
of the 9th Euromicro Conference on Digital System Design (DSD
’06), August-September 2006.

[15] R. Tanner, “A recursive approach to low complexity codes,”
IEEE Transactions on Information Theory, vol. 27, no. 5, pp.
533–547, 1981.

[16] H. Zhang, J. Zhu, H. Shi, and D. Wang, “Layered approx-
regular LDPC: code construction and encoder/decoder
design,” IEEE Transactions on Circuits and Systems I, vol. 55,
no. 2, pp. 572–585, 2008.

[17] R. Echard and S.-C. Chang, “The π-rotation low-density
parity check codes,” in Proceedings of the IEEE Global
Telecommunications Conference (GLOBECOM ’01), pp. 980–
984, November 2001.

[18] F. Guilloud, E. Boutillon, J. Tousch, and J.-L. Danger, “Generic
description and synthesis of LDPC decoders,” IEEE Transac-
tions on Communications, vol. 55, no. 11, pp. 2084–2091, 2006.

[19] H. Xiao and A. H. Banihashemi, “Graph-based message-
passing schedules for decoding LDPC codes,” IEEE Transac-
tions on Communications, vol. 52, no. 12, pp. 2098–2105, 2004.

[20] E. Sharon, S. Litsyn, and J. Goldberger, “Efficient serial
message-passing schedules for LDPC decoding,” IEEE Trans-
actions on Information Theory, vol. 53, no. 11, pp. 4076–4091,
2007.

[21] F. Zarkeshvari and A. Banihashemi, “On implementation of
min-sum algorithm for decoding low-density parity-check
(LDPC) codes,” in Proceedings of the IEEE Global Telecommu-
nications Conference (GLOBECOM ’02), vol. 2, pp. 1349–1353,
November 2002.

[22] C. Jones, E. Valles, M. Smith, and J. Villasenor, “Approximate-
MIN constraint node updating for LDPC code decoding,” in
Proceedings of the IEEE Military Communications Conference
(MILCOM ’03), vol. 1, pp. 157–162, October 2003.

[23] M. Rovini, F. Rossi, N. L’Insalata, and L. Fanucci, “High-
precision LDPC codes decoding at the lowest complexity,” in
Proceedings of the 14th European Signal Processing Conference
(EUSIPCO ’06), September 2006.

[24] M. Rovini, G. Gentile, and L. Fanucci, “Multi-size circular
shifting networks for decoders of structured LDPC codes,”
Electronics Letters, vol. 43, no. 17, pp. 938–940, 2007.

[25] M. M. Mansour and N. R. Shanbhag, “A 640-Mb/s 2048-bit
programmable LDPC decoder chip,” IEEE Journal of Solid-
State Circuits, vol. 41, no. 3, pp. 684–698, 2006.

[26] T. Brack, M. Alles, F. Kienle, and N. Wehn, “A synthesizable IP
core for WiMax 802.16E LDPC code decoding,” in Proceedings
of the 17th IEEE International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC ’06), pp. 1–5,
September 2006.

	1. Introduction
	2. Architecture-Aware Block-LDPC Codes
	3. Decoding of LDPC Codes
	4. Decoding Pipelining and Idling
	4.1. System Notation
	4.2. Equal Output Processing
	4.3. Reversed Output Processing
	4.4. Unconstrained Output Processing
	4.5. Decoding of Irregular Codes

	5. Decoder Architectures
	5.1. Local Variable-to-Check Buffer
	5.2. Double Memory Access
	5.3. Storage of Variable-to-Check Messages

	6. A Case Study: The IEEE 802.11n LDPC Codes
	6.1. LDPC Code Construction
	6.2. Multiframe Decoder Architecture

	7. Decoder Performance
	7.1. Latency and Throughput
	7.2. Error-Correction Performance

	8. Implementation Results
	9. Conclusions
	References

