
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2009, Article ID 543720, 10 pages
doi:10.1155/2009/543720

Research Article

Multicore Software-Defined Radio Architecture for
GNSS Receiver Signal Processing

Heikki Hurskainen, Jussi Raasakka, Tapani Ahonen, and Jari Nurmi

Department of Computer Systems, Tampere University of Technology, P. O. Box 553, 33101 Tampere, Finland

Correspondence should be addressed to Heikki Hurskainen, heikki.hurskainen@tut.fi

Received 27 February 2009; Revised 22 May 2009; Accepted 30 June 2009

Recommended by Markus Rupp

We describe a multicore Software-Defined Radio (SDR) architecture for Global Navigation Satellite System (GNSS) receiver
implementation. A GNSS receiver picks up very low power signals from multiple satellites and then uses dedicated processing
to demodulate and measure the exact timing of these signals from which the user’s position, velocity, and time (PVT) can be
estimated. Three GNSS SDR architectures are discussed. (1) A hardware-based SDR that is feasible for embedded devices but
relatively expensive, (2) a pure SDR approach that has high level of flexibility and low bill of material, but is not yet suited for
handheld applications, and (3) a novel architecture that uses a programmable array of multiple processing cores that exhibits both
flexibility and potential for mobile devices. We present the CRISP project where the multicore architecture will be realized along
with numerical analysis of application requirements of the platform’s processing cores and network payload.

Copyright © 2009 Heikki Hurskainen et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Global navigation has been a challenge to mankind for
centuries. However, in the modern world it has become
easier with the help from Global Satellite Navigation Systems
(GNSSs). NAVSTAR Global Positioning System (GPS) [1]
has been the most famous implementation of GNSS and
the only fully operational system available for civilian users,
although this situation is changing.

Galileo [2] is emerging as a competitor and complement
for GPS, as they both are satellite navigation systems based on
Code Division Multiple Access (CDMA) techniques. CDMA
is a technique that allows multiple transmitters to use same
carrier simultaneously by multiplying pseudorandom noise
(PRN) codes to the transmitted signal. The PRN code rate
is higher than data symbol rate which divides the energy of
a data symbol to a wider bandwidth. The used PRN codes
are unique to each transmitter and thus transmitter can be
identified in reception when received signal is correlated with
a replica of the used PRN code.

The Russian GLONASS system, originally based on
Frequency Division Multiple Access (FDMA), is adding a

CDMA feature to the system with GLONASS-K satellites
[3]. China has also shown interest in implementing its
own system, called Compass, during the following decade
[4]. The GPS modernization program [5] introduces addi-
tional signals with new codes and modulation. Realiza-
tion of the new navigation systems and modernization of
GPS produce updates and upgrades to system specifica-
tions.

Besides changing specifications, GNSS is also facing chal-
lenges from an environmental point of view. The resulting
multipath effects make it more difficult to determine exact
signal timing crucial for navigation algorithms. Research
around multipath mitigation algorithms is active since
accurate navigation capability in environments with heavy
multipaths is desired. Among interference issues multipath
mitigation is also one of the biggest drivers for the introduc-
tion of new GNSS signal modulations.

Designing a true GNSS receiver is not a trivial task. A true
GNSS receiver should be reconfigurable and flexible in design
so that the posibilities of new specifications and algorithms
can be exploited, and the price should be low enough to
enable mass market penetration.



2 EURASIP Journal on Embedded Systems

2. GNSS Principles and Challenges

2.1. Navigation and Signal Processing. Navigation can be
performed when four or more satellites are visible to
the receiver. The pseudoranges from receiver to satellites
and navigation data (containing ephemeris parameters) are
needed [1, 6, 7].

When pseudoranges (ρ) are measured by the receiver,
they can be used to solve unknowns, the users location
(x, y, z)u and clock bias bu with known positions of satellites
(x, y, z)i. The relation between pseudorange, satellite posi-
tion, and user position is illustrated in

ρi =
√
(xi − xu)

2 + (yi − yu)
2 + (zi − zu)

2 + bu. (1)

The transmitted signal contains low rate navigation
data (50Hz for GPS Standard Positioning Service (SPS)),
repeating PRN code sequence (1023 chips at 1.023MHz for
GPS SPS) and a high rate carrier (GPS SPS is transmitted at
L1 band which is centered at 1575.42MHz) [1]. For Galileo
E1 Open Service (OS) and future GPS L1C it also contains
a Multiplexed Binary Offset Carrier (MBOC) modulation
[8, 9]. These signal components are illustrated in Figure 1.

The signal processing for GNSS can be divided into
analog and digital parts. Since the carrier frequencies of the
GNSS are high (>1GHz) it is impossible to perform digital
signal processing on it. In the analog part of the receiver,
which is called the radio front-end, the received signal is
amplified, filtered, downconverted, and finally quantized and
sampled to digital format.

The digital signal processing part (i.e., baseband process-
ing) has two major tasks. First, the Doppler frequencies and
code phases of the satellites need to be acquired. The details
of the acquisition process are well explained in literature, for
example, [1, 7]. There are a number of ways to implement
acquisition, with parallel methods being faster than serial
ones, but at the cost of consuming more resources. The
parallel methods can be applied either as convolution in the
time domain (matched filters) or as multiplication in the
frequency domain (using FFT and IFFT).

Second, after successful acquisition the signals found
are being tracked. In tracking, the frequency and phase of
the receiver are continously fine-tuned to keep receiving
the acquired signals. Also, the GNSS data is demodulated
and the precise timing is formed from the signal phase
measurements. A detailed description of the tracking process
can be found, for example, in [1, 7]. The principles for data
demodulation are also illustrated in Figure 1.

2.2. Design Challenges of GNSS. The environment we are
living in is constantly changing in topographic, geometric,
economic, and political ways. These changes are driving the
GNSS evolution.

Besides new systems (e.g., Galileo, Compass), the existing
ones (i.e., GPS, GLONASS) are being modernized. This
leads to constantly evolving field of specifications which
may increase the frustration and uncertainty among receiver
designers and manufacturers.

The signal spectrum of future GNSS signals is growing
with the new systems. Currently the GPS L1 (centered at
1575.42MHz) is the only commercially exploited GNSS
frequency band. Galileo systems E1 OS signal will be sharing
the same band. Another common band of future GPS and
Galileo signals will be centered at 1176.45MHz (GPS L5 and
Galileo E5a).

The GPS modernization program is also activating the
L2 frequency band (centered at 1227.60MHz) to civilian
use by implementing L2C (L2 Civil) signal [10]. This band
has already been assigned for navigation use, but only for
authorized users via GPS Precise Positioning Service (PPS)
[1].

To improve the signal code tracking and multipath
performance new Binary Offset Carrier (BOC) modulation
was originally introduced as baseline for Galileo and modern
GPS L1 signal development [11]. The later agreement
between European and US GNSS authorities further spec-
ified the usage of Multiplexed BOC (MBOC) modulation
in both systems. In MBOC modulation two different binary
subcarriers are added to the signal, either as timemultiplexed
mode (TMBOC), or summed together with predefined
weighting factors as Composite BOC (CBOC) [8, 9, 12].

Like any other wireless communication, satellite naviga-
tion also suffers from multipaths in environments prone to
such (e.g., urban canyons, indoors). The problem caused by
multipaths is even bigger in navigation than in communi-
cation since precise timing also needs to be resolved. The
field of multipath mitigation is actively researched and new
algorithms and architectures are presented frequently, for
example, in [13–15].

Besides GNSS there are also other wireless commu-
nication technologies that are developing rapidly and the
direction of development is driven towards multipurpose
low cost receivers (user handsets) with enhanced capabilities
[16].

3. Overview of SDR GNSS Architectures

In this section we present three architectures for Software-
Defined Radio (SDR) GNSS receiver. A simplified definition
of SDR is given in [17]. “Radio in which some or all of the
physical layer functions are software defined.”

The root SDR architecture was presented in [18]. Figure 2
illustrates an example of GNSS receiver functions mapped
on to this canonical architecture. Only the reception part of
the architecture is presented since current GNSS receivers are
not transmitting. Radio Frequency (RF) conversion handles
the signal processing before digitalization. The Intermediate
Frequency (IF) processing block transfers the frequency of
the received signal from IF to baseband and may also take
care of Doppler removal in GNSS. The baseband processing
segment handles the accurate timing and demodulation, thus
enabling the construction of the navigation data bits. The
division into IF and baseband sections can vary depending
on the chosen solution since the complex envelope of the
received signal can be handled in baseband also. Desired
navigation output (Position, Velocity, and Time (PVT)) is
solved in the last steps of the GNSS receiver chain.



EURASIP Journal on Embedded Systems 3

Receiver (reception)

Navigation 
data recovery

Navigation 
data

Replica
PRN

Replica
carrier

Replica
subcarrier

Binary
subcarrier

CarrierPRN code

Satellite (transmission)

Transmission medium
(i.e. space)

Figure 1: Principles for GNSS signal modulation in transmission and demodulation in reception.

User 
interface

Navigation 
processing

Baseband
processing

BasebandIF processing

Code 
correlation

Carrier 
wipeoff

A/D
conversion

Down
conversion

AGC

Radio

LNA

Local 
oscillator

Frequency 
synthesis

Carrier 
NCO

Code NCO
&

generation

Source

Figure 2: Canonical SDR architecture adapted to GNSS. It is modified from [18].

Current state-of-the-art mass market receivers are based
on a chipset or single-chip receiver [19]. The chipset or
single-chip receiver is usually implemented as an Applica-
tion Specific Integrated Circuit (ASIC). ASICs have high
Nonrecurring Engineering (NRE) costs, but when produced
in high volumes they have very low price per unit. ASICs
can also be optimized for small size and to have small
power consumption. Both of these features are desired in
handheld, battery operated devices. On the other hand,
ASICs are fixed solutions and impossible to reconfigure.
Modifications in design are also very expensive to realize with
ASIC technology.

This approach has proven to be successful in mass market
receivers because of price and power consumption advan-
tages although it may not hold its position with growing
demand for flexibility and shortened time to market.

3.1. Hardware Accelerated SDR Receiver Architecture. The
first SDR receiver architecture discussed in this paper is the
approach where the most demanding parts of the receiver are
implemented on a reconfigurable hardware platform, usually
in the form of a Field Programmable Gate Array (FPGA)
progammed with a Hardware Description Language (HDL).
This architecture, comprised of radio front-end circuit,
reconfigurable baseband hardware, and navigation software
is well known and presented in numerous publications, for
example, [16, 20–22]. FPGAs have proved to be suitable
for performing GNSS signal processing functions [23]. The
building blocks for hardware accelerated SDR receivers are
illustrated in Figure 3.

In this architecture the RF conversion is performed by
analog radio. The last step of the conversion transforms
the signal from analog to digital format. IF processing
and baseband functionalities are performed in accelerating
hardware. The source, PVT for the GNSS case, is constructed
in navigation processing.

The big advantage for reconfigurable FPGAs in compar-
ison to ASIC technologies is the savings in design, NRE and
mask costs due to shorter development cycle. The risk is also
smaller with FPGAs, since the possible bugs in design can
be fixed by upgrades later on. On the other hand FPGAs are
much higher in unit price and power consumption.

A true GNSS Receiver poses some implementation
challenges. The specifications are designed to be compatible
(i.e., systems do not interfere with each other too much)
and the true interoperability is reached at receiver level. One
example of interoperative design challenges is the selection
of the number of correlators and their spacing for tracking,
since different modulations have different requirements for
the correlator structure.

3.1.1. Challenges with Radio Front End. Although the focus
of this paper is mainly on baseband functions, the radio
should not be forgotten. The block diagram for a GNSS
single frequency radio front end is given on the left-hand
side of Figure 3. In the radio the received signal is first
amplified with the LowNoise Amplifier (LNA) and then after
necessary filtering it is downconverted to low IF, for example,
to 4MHz [24]. The signal is converted to a digital format
after downconversion.



4 EURASIP Journal on Embedded Systems

User 
interface

Navigation 
processing

Acquisition 
engine

Automatic 
gain control

(AGC)

Tracking 
channels 

1 to N

General purpose 
processor

Reconfigurable 
hardware (FPGA)

A/D
conversion

Down
converter

Radio front end ASIC

Low noise 
amplifier

(LNA)

Local 
oscillator

Frequency 
synthesis

Figure 3: Hardware accelerated baseband architecture. From left to right: analog radio part, reconfigurable baseband hardware, and
navigation software running on GPP.

The challenges for GNSS radio design come from the
increasing amount of frequency bands. To call a receiver a
true GNSS receiver and also to get the best performance,
more than one frequency band should be processed by the
radio front-end. Dual- and/or multifrequency receivers are
likely choices for future receivers, and thus it is important to
study potential architectures [25].

Another challenge comes from the increased bandwidth
of new signals. With increased bandwidth the radio becomes
more vulnerable to interference. For mass market consumer
products, the radio design should also meet certain price
and power consumption requirements. Only solutions with
reasonable price and power consumption will survive.

3.1.2. Baseband Processing. The fundamental signal process-
ing for GNSS was presented in Figure 1. The carrier and
code removal processes are illustrated in more detail in
Figure 4. The incoming signal is divided into in-phase and
quadrature-phase components by multiplying it with the
locally generated sine and cosine waves. Both phases are
then correlated in identical branches with several closely
delayed versions (for GPS; early, prompt, and late), of the
locally generated PRN code [1]. Results are then integrated
and fed to discriminator computation and feedback filter.
Numerically Controlled Oscillators (NCOs) are used to steer
the local replicas.

An example of the different needs for new GNSS
signals is the addition of 2 correlator fingers (bump-
jumping algorithm) due to Galileo BOC modulation [26].
In Figure 4 additional correlator components needed for
Galileo tracking are marked with darker shade. In most
parts the GPS and Galileo signals in L1 band are using
the same components. The main difference is that due
to the BOC family modulation Galileo needs additional
correlators; it is very-early (VE) and very-late (VL) to remove
the uncertainty of main peak location estimation [27]. The
increasing number of correlators is related to the increase
in complexity, measured by the number of transistors in the
final design [13].

The level of hardware acceleration depends on the
selected algorithms. Acquisition is rarely needed compared
to tracking and thus it is more suitable for software imple-
mentation. FFT-based algorithms are more desirable for
designer to implement in software since hardware languages
are usually lacking direct support for floating-point number
calculus. Tracking on the other hand is a process containing
mostly multiplication and accumulation using relatively
small word lengths. The thing that makes it more suitable
for hardware implementation is that the number of these
relatively simple computations is high, with a real-time
deadline.

3.2. Ideal SDR GNSS Receiver Architecture. The ideal SDR
is characterized by assigning all functions after the analog
radio to a single processor [18]. In the ideal case all hardware
problems are turned to software problems.

A fundamental block diagram of a software receiver is
illustrated in Figure 5 [28]. The architecture of the radio
front-end is the same that was illustrated in Figure 3. After
radio the digitized signals are fed to buffers for software
usage. Then all of the digital signal processing, acquisition,
and tracking functions are performed by software.

In the literature, for example, [28, 29], the justification
and reasoning for SDR GNSS is strongly attributed to the
well-known Moores law which states that the capacity of
integrated circuits is doubling every 18–24 months [30].
Ideal SDR solutions should become feasible if and when
available processing power increases. Currently reported
SDR GPS receiver implementations are working in realtime
only if the clock speed of the processor is from 900MHz [31]
to 3GHz [29], which is too high for mobile devices but not,
for example, a laptop PC.

In the recent years, the availability of GNSS radio front
ends with USB has improved, making the implementa-
tion of a pure software receiver on a PC platform quite
straightforward. The area where pure software receivers have
already made a breakthrough is postprocessing applications.
Postprocessing with software receivers allows fast algorithm



EURASIP Journal on Embedded Systems 5

Quadrature branch
 (not shown)

Discriminator
computation 

& filtering

I & D

VE E P L VL
Code
NCO

Carrier
NCO Code generator

In-phase branch

sin cos

Figure 4: GPS/Galileo tracking channel.

Navigation 
processing

Tracking 
channels 

1 to N

General purpose processor

Buffers & buffer 
control

User 
interface

Acquisition 
engine

Radio front end
ASIC

GNSS radio 
front end

Figure 5: Software receiver architecture. On left-hand side: analog radio part, and on right-hand side: baseband and navigation implemented
as software running on a GPP.

prototyping and signal analysis. Typical postprocessing
applications are ionospheric monitoring, geodetic applica-
tions, and other scientific applications [21, 32].

Software is definitely more flexible than hardware when
compared in terms of time to market, bill of materials, and
reconfigurable implementation. But with a required clock
frequency of around 1GHz or more, the generated heat and
battery life will be an issue for small handheld devices.

3.3. SDR with Multiple Cores. What about having an array of
reconfigurable cores for baseband processing? In a multicore
architecture baseband processing is divided among multiple
processing cores. This reduces the clock frequency needed
to a range achievable by embedded devices and provides an
increased level of parallelism which also eases the work load
per processing unit.

An example of the GNSS receiver architecture with
reconfigurable baseband approach is illustrated in Figure 6.
In this example one of the four cores is acting as an
acquisition engine and the remaining three are performing
the tracking functions. A fixed set of cores is not desirable
since the need for acquisition and tracking varies over time.
For example, when receiver is turned on, all cores should be

performing acquisition to guarantee the fastest possible Time
To First Fix (TTFF). After satellites have been found more of
the acquisition cores are moved to the tracking task.

If (and when) manufactured in large volumes the
(properly scaled) array of processing cores can be eventually
implemented in an ASIC circuit. This lowers the per unit
price and makes this solution more appealing for mass
markets, while still being reconfigurable and having high
degree of flexibility.

In the next section we present one future realization of
this architecture.

4. CRISP Platform

Cutting edge Reconfigurable ICs for Stream Processing
(CRISP) [33] is a project in the Framework Programme
7 (FP7) of the European Union (EU). The objectives of
the CRISP are to research the optimal utilization, effi-
cient programming, and dependability of a reconfigurable
multiprocessor platform for streaming applications. The
CRISP consortium is a good mixture of academic and
industrial know-how with partners; Recore (NL), University
of Twente (NL), Atmel (DE), Thales Netherlands (NL),



6 EURASIP Journal on Embedded Systems

Navigation 
processing

Tracking 
channels

Tracking 
channels

Tracking 
channels

General
purpose

 processor

Reconfigurable platform (array of cores)

User 
interface

Acquisition 
engine

Radio front end
ASIC

GNSS radio 
front end

Figure 6: Software reconfigurable baseband receiver architecture. From left: analog radio part, baseband implemented on an array of
reconfigurable cores, and navigation software running on GPP.

Tampere University of Technology (FI), and NXP (NL). The
three-year project started in the beginning at 2008.

The reconfigurable CRISP platform, also called General
Streaming Processor (GSP), designed and implemented
within the project, will consist of two separate devices:
General Purpose Device (GPD) and Reconfigurable Fabric
Device (RFD). The GPD contains off-the-shelf General
Purpose Processor (GPP) with memories and peripheral
connections whereas the RFD consists of 9 reconfigurable
cores. The array of reconfigurable cores is illustrated in
Figure 7 [34], with “R” depicting a router.

The reconfigurable cores are Montium cores (it was
recently decided to use Xentium processing tile as Recon-
figurable Core in the CRISP GSP. The Xentium has at
least similar performance to the Montium (with respect to
cycle count), but is designed for better programmability
(e.g., hardware supporting optimal software pipelining)).
Montium [35] is a reconfigurable processing core. It has
five Arithmetic and Logical Units (ALUs), each having two
memories, resulting in total of 10 internal memories. The
cores communicate via a Network-on-Chip (NoC) which
includes two global memories. The device interfaces to other
devices and outer world via standard interfaces.

Within the CRISP project the GNSS receiver is one of
the two applications designed for proof of concept for the
platform. The other is a radar beamforming application
which has much higher demands on computation than a
standalone GNSS receiver.

4.1. Specifying the GNSS Receiver for the Multicore Platform.
In the CRISP project our intention is to specify, implement,
and integrate a GNSS receiver application supporting GPS
and Galileo L1 Open Service (OS) signals on the multicore
platform. In this case, the restriction for L1 band usage comes
from the selected radio [24], but in principle the multicore
approach can be extended to multifrequency receivers if a
suitable radio front-end is used.

4.1.1. Requirements for Tile Processor. The requirements
of GNSS L1 application have been studied in [36]. The

Table 1: Estimation of GNSS baseband process complexity for
Montium Tile Processor running at 200MHz, max performance of
1GMAC/s [36].

Process Usage (MMAC/s) Usage of TP (%)

Acquisition (GPS) 43.66 4.4

Acquisition (Galileo) 196.15 19.6

Tracking (GPS) 163.67 16.4

Tracking (Galileo) 229.14 22.9

results, restated in Table 1, indicated that a single Montium
core running at 200MHz clock speed is barely capable of
executing the minimum required amount of acquisition and
tracking processes. This analysis did not take into account
the processing power needed for baseband to navigation
handover nor navigation processing itself. With this it is
evident that an array of cores (more than one) is needed
for GNSS L1 purposes. The estimations given in Table 1 are
based on reported [35] performance of the Montium core.
The acquisition figures are computed for a search speed of
one satellite per second and the tracking figures are for a
single channel.

The results presented in Table 1 reflect the complexity
of the processes when the input stream is sampled at
16.368MHz, which is the output frequency of the selected
radio front end for CRISP platform [24]. This is approxi-
mately 16 times the navigation signal fundamental frequency
of 1.023MHz.

The GNSS application can also be used with a lower rate
input stream without a significant loss in application perfor-
mance. For this paper, we analyzed the effect of the input
stream decimation to the complexity of the main baseband
processes. The other parameters, such as acquisition time
and number of frequency bins for acquisition and number
of active correlators per channel for tracking, remained the
same as in [36].

Figures 8 and 9 illustrate the effect of decimation by
factors 1, 2, 4, 8, and 16 to the utilization of theMontium Tile
processor. Decimation factor 1 equates to the case where no



EURASIP Journal on Embedded Systems 7

RFD

RR

RRR

R

R R R

Test IF

Chip IF

Chip IF

Channel
data out

RF front
end data

in

Network IF

Reconfigurable
core

Network IF

Reconfigurable
core

Network IF

Reconfigurable
core

Network IF

Reconfigurable
core

Network IF

Reconfigurable
core

Network IF

Reconfigurable
core

Network IF

Reconfigurable
core

Network IF

Reconfigurable
core

Network IF

Reconfigurable
core

Smart
memory

Smart
memory

Parallel IF

Parallel IF

Parallel IF

Parallel IF

JTAG

Serial IF

Serial IF

Serial IF

Tracking channel 3

Tracking channel 4Tracking channel 1

Tracking channel 2 Tracking channel 5

Tracking channel 0

Acquisition 0

Serial IF

Figure 7: Array of 9 reconfigurable cores [34] with example mapping of GNSS application illustrated, the selection of cores is random. “R”
depicts router and “IF” interface.

decimation is applied, that is, results shown in Table 1. The
presented figures show how the complexity of both processes,
measured as Montium Tile Processor utilization percentage,
decreases exponentially as decimation factor increases. The
behavior is the same for GPS and Galileo signals, except that
utilization with Galileo signals is a bit larger than with GPS
in all studied cases.

To ease the computational load of the Tile Processor the
decimation of the input stream seems to be a feasible choice.
The amount of decimation should be sufficient to effect
meaningful savings in TP utilization without significantly
degrading performance of the application. For the current
GPS SPS signal, decimation by factor 4 (4.092MHz) is
feasible without significant loss in receiver performance.
Factor of 8 (2.046MHz) is equal to the Nyqvist rate for
1.023MHz, which is the PRN code rate used in GSP SPS
signal.

In the Galileo case, decimation factor 4 is the maximum
decimation factor. This is because with a sampling frequency
of approximately 4MHz the BOC(1,1) component of the
Galileo E1 OS signal can be still received with a maximum
loss of only −0.9 dB, when compared with the reception of
the whole MBOC bandwidth [12]. (This applies also to the
modern GPS L1C signals, but they are not specified in our
application [36].)

Table 2: Estimation of GNSS baseband process complexity with
decimated (by factor 4) input stream. Montium Tile Processor
running at 200MHz, max performance of 1GMAC/s.

Process Usage (MMAC/s) Usage of TP (%)

Acquisition (GPS) 9.57 0.96

Acquisition (Galileo) 43.66 4.37

Tracking (GPS) 40.92 4.09

Tracking (Galileo) 57.28 5.73

In the ideal case the decimation of the input stream
should be changing with the receiver mode (GPS/Galileo).
Since in CRISP the decimation of the radio stream will be
implemented as hardware in FPGA, which is connecting the
radio to the parallel interface of the final CRISP prototype
platform, the run time configuration of the decimation factor
is not feasible. For this reason, in the rest of the paper we will
focus on the scenario where fixed decimation factor of 4 is
used, resulting in a stream sample rate of 4.092MHz.

Table 2 shows baseband complexity estimation for the
case when input stream is decimated by a factor of four.
When it is compared to the original figures of complexity
shown in Table 2, it can be seen that the utilization of TP
is over four times smaller.



8 EURASIP Journal on Embedded Systems

2 4

GPS
Galileo

Input stream decimation factor

6 8 1210 14 16
0

4

6

2

8

10

M
on

ti
u

m
 t

ile
 p

ro
ce

ss
or

 u
ti

liz
at

io
n

 (
%

)

12

14

16

18

20

Figure 8: Acquisition process utilization ofMontiumTile Processor
resources as a function of the decimation factor of the input stream.

2 4

GPS
Galileo

Input stream decimation factor

6 8 1210 14 16
0

5

10

M
on

ti
u

m
 t

ile
 p

ro
ce

ss
or

 u
ti

liz
at

io
n

 (
%

)

15

20

25

Figure 9: Tracking process utilization of Montium Tile Processor
resources as a function of the decimation factor of the input stream.

4.1.2. Requirements for the Network-on-Chip. To analyze the
multicore GNSS receiver application we built a functional
software receiver with the C++ language, running on a PC.
The detailed analysis of the software receiver will be given in
substantial paper [37].

In our SW receiver each process was implemented as a
software thread. With approximating one process per core
this approach enabled us to estimate the link payload by
logging communication between the threads.

We estimated a scenario where one core was allocated
to perform acquisition and six cores were mapped for the
tracking process. This scenario is illustrated in Figure 7. Dig-
itized RF front-end data is input to the NoC via an interface.

4000
4100

4300
4400
4500

4200

Pa
yl

oa
d 

(b
yt

es
/m

s)

0 0.5 1

Time (ms)

1.5 2 2.5 3.53 4.54 5
×103

(a) Acquisition link payload

4090
4095

4105
4110
4115

4100

Pa
yl

oa
d 

(b
yt

es
/m

s)

0 0.5 1

Time (ms)

1.5 2 2.5 3.53 4.54 5
×103

(b) Average tracking link payload

Figure 10: Link payloads for GPS acquisition process (a) and
average payload of GPS tracking processes (b).

A specific chip interface is used to connect the RFD to the
GPD, and it is used to forward channel data (channel phase
measurement data related to pseudorange measurements,
and navigation data) to the GPD. The Selected mapping
is a compromise between minimal operative setup (one
acquisition and four tracking) and the needs of dependability
testing processes, where individual cores may be taken offline
for testing purposes.

The scenario was simulated with a prerecorded set of
real GPS signals. Since signal sources for Galileo navigation
were not available, the Galileo case was not tested. The
link payloads caused by the cores communicating while the
software was running for 5 seconds is illustrated in Figure 10.

The results show that, in GPS mode, our GNSS appli-
cation causes a payload for each link/processing core with a
constant baseline of 4096 Bytes/millisecond. This is caused
by the radio front-end input, that is, the incoming signal.
In this scenario we used real GPS front end data which was
sampled at 4.092MHz, each byte representing one sample.
This sampling rate is also equal to the potential decimation
scenario discussed earlier.

With a higher sampling rate the link payload baseline will
be raised, but on the other hand one byte can be preprocessed
to contain more than one sample, decreasing the traffic
caused by radio front-end input.

The first peak in the upper part of Figure 8 is caused
by the acquisition process output. When GNSS application
starts, FFT-based acquisition is started and the results are
ready after 60 milliseconds, which are then transmitted to
tracking channels. This peak is also the largest individual
payload event caused by the GNSS application.

After a short initialization period the tracking processes
start to produce channel output. An Average of simulated
GPS tracking link/processing core payloads is illustrated
in Figure 10(b). Every 20 milliseconds a navigation data
symbol (data rate is 50Hz in GPS) is transmitted and once
a second higher transmission peak is caused by the loop



EURASIP Journal on Embedded Systems 9

phase measurement data, which is transmitted to GPD for
pseudorange estimation.

In Galileo mode, the payload caused by incoming signal
will be equal since the same radio input will be used for
both GPS and Galileo. However, the transmission of data
symbols will cause a bigger payload since data rate of Galileo
E1 signals is 250 symbols per second [8]. Galileo phase
measurement rate will remain the same as in GPS mode.

From the results it is seen that the link payload caused by
the incoming RF signal is the largest one in both operating
modes, and if the link payload needs to be optimized the
reduction of it is the first thing to be studied. The results also
indicate that when GNSS application is running smoothly
the link payloads caused by it are predictable.

Note that this estimation does not contain any over-
heads caused by network protocol or any other data than
navigation related (dependability, real-time mapping of the
processes). These issues will be studied in our future work.

4.2. Open Issues. Besides the additional network load caused
by other than the GNSS application itself, there are also
some other issues that remain open. There may be challenges
in designing software for a multicore environment. Power
consumption as well as the final bill of materials (BOMs),
(i.e., final price of the multicore product) remains an open
issue at the time of this writing. In future these issues will
be studied and suitable optimizations performed after the
prototyping and proof of concepts have been completed
successfully.

5. Conclusions

In this paper we discussed three Software-Defined Radio
(SDR) architectures for a Global Navigation Satellite System
(GNSS) receiver. The usage of flexible architectures in
GNSS receiver was justified with the need for implementing
support for upcoming navigation systems and new algo-
rithms developed, and especially for multipath mitigation.
The hardware accelerated SDR architecture is quite close
to the current mass market solutions. There the ASIC is
replaced with a reconfigurable piece of hardware, usually an
FPGA. The second architecture, ideal (or pure) SDR receiver
is using a single processor to realize all necessary signal
processing functions. Real-time receivers remain a challenge,
but postprocessing applications are already taking advantage
of this architecture.

The third architecture, SDR with multiple cores, is a
novel approach for GNSS receivers. This approach benefits
in both having high degree of flexibility, and when properly
designed and scaled, a reasonably low unit price in high
volume production. In this paper we also presented the
CRISP project where such a multicore architecture will
be realized along with the analysis of GNSS application
requirements for the multicore platform.

We extended the previously published analysis of pro-
cessing tile utilization to cover the effect of input stream
decimation. Decimation by factor four seems to offer a
good compromise between core utilization and application
performance.

We implemented a software GNSS receiver with processes
implemented as threads and used that to analyze the GNSS
application communication payload for individual links.
This analysis indicated that the incoming signal represents
the largest part of the communication in the network
between processing cores.

Acknowledgments

The authors want to thank Stephen T. Burgess from Tampere
University of Technology for his useful comments about
the manuscript. This work was supported in part by the
FUGAT project funded by the Finnish Funding Agency for
Technology and innovation (TEKES). Parts of this research
are conducted within the FP7 Cutting edge Reconfigurable
ICs for Stream Processing (CRISP) project (ICT-215881)
supported by the European Commission.

References

[1] E. D. Kaplan and C. J. Hegarty, Eds., Understanding GPS,
Principles and Applications, Artech House, Boston, Mass, USA,
2nd edition, 2006.

[2] J. Benedicto, S. E. Dinwiddy, G. Gatti, R. Lucas, and M.
Lugert, “GALILEO: Satellite System Design and Technology
Developments,” European Space Agency, November 2000.

[3] S. Revnivykh, “GLONASS Status and Progress,” Decem-
ber 2008, http://www.oosa.unvienna.org/pdf/icg/2008/icg3/04
.pdf.

[4] G. Gibbons, “International system providers meeting (ICG-
3) reflects GNSS’s competing interest, cooperative objectives,”
Inside GNSS, December 2008.

[5] U. S. Airforce, “GPS Modernization Fact Sheet,” 2006,
http://pnt.gov/public/docs/2006/modernization.pdf.

[6] M. S. Braasch and A. J. van Dierendonck, “GPS receiver
architectures and measurements,” Proceedings of the IEEE, vol.
87, no. 1, pp. 48–64, 1999.

[7] K. Borre, D. M. Akos, N. Bertelsen, P. Rinder, and S. H.
Jensen, A Software Defined GPS and Galileo Receiver—A
Single-Frequency Approach, Birkhäuser, Boston, Mass, USA,
2007.

[8] “Galileo Open Service, Signal in space interface control
document (OS SIS ICD),” Draft 1, February 2008.

[9] “Interface Specification—Navstar GPS Space segment/User
segment L1C Interfaces,” IS-GPS-800, August 2007.

[10] R. D. Fontana, W. Cheung, and T. Stansell, “The modernized
L2C signal—leaping forward into the 21st century,” GPS
World, pp. 28–34, September 2001.

[11] “Galileo Joint Undertaking—Galileo Open Service, Signal in
space interface control document (OS SIS ICD),” GJU, May
2006.

[12] G. W. Hein, J.-A. Avila-Rodriguez, S. Wallner, et al., “MBOC:
the new optimized spreading modulation recommended
for GALILEO L1 OS and GPS L1C,” in Proceedings of
the IEEE/ION Position, Location, and Navigation Symposium
(PLANS ’06), pp. 883–892, San Diego, Calif, USA, April 2006.

[13] H. Hurskainen, E. S. Lohan, X. Hu, J. Raasakka, and J. Nurmi,
“Multiple gate delay tracking structures for GNSS signals
and their evaluation with simulink, systemC, and VHDL,”
International Journal of Navigation and Observation, vol. 2008,
Article ID 785695, 17 pages, 2008.



10 EURASIP Journal on Embedded Systems

[14] S. Kim, S. Yoo, S. Yoon, and S. Y. Kim, “A novel unambiguous
multipath mitigation scheme for BOC(kn, n) tracking in
GNSS,” in Proceedings of the International Symposium on
Applications and the Internet Workshops, p. 57, 2007.

[15] F. Dovis, M. Pini, and P. Mulassano, “Multiple DLL archi-
tecture for multipath recovery in navigation receivers,” in
Proceedings of the 59th IEEE Vehicular Technology Conference
(VTC ’04), vol. 5, pp. 2848–2851, May 2004.

[16] F. Dovis, A. Gramazio, and P. Mulassano, “SDR technology
applied to Galileo receivers,” in Proceedings of the International
Technical Meeting of the Satellite Division of the Institute of
Navigation (ION GPS ’02), Portland, Ore, USA, September
2002.

[17] “SDR Forum,” January 2009, http://www.sdrforum.org.
[18] J. Mitola, “The software radio architecture,” IEEE Communi-

cations Magazine, 1995.
[19] P. G.Mattos, “A single-chip GPS receiver,”GPSWorld, October

2005.
[20] P. J. Mumford, K. Parkinson, and A. G. Dempster, “The

namuru open GNSS research receiver,” in Proceedings of the
International Technical Meeting of the Satellite Division of the
Institute of Navigation (ION GNSS ’06), vol. 5, pp. 2847–2855,
Fort Worth, Tex, USA, September 2006.

[21] S. Ganguly, A. Jovancevic, D. A. Saxena, B. Sirpatil, and S.
Zigic, “Open architecture real time development system for
GPS and Galileo,” in Proceedings of the International Technical
Meeting of the Satellite Division of the Institute of Navigation
(ION GNSS ’04), pp. 2655–2666, Long Beach, Calif, USA,
September 2004.

[22] H. Hurskainen, T. Paakki, Z. Liu, J. Raasakka, and J. Nurmi,
“GNSS receiver reference design,” in Proceedings of the 4th
Advanced Satellite Mobile Systems (ASMS ’08), pp. 204–209,
Bologna, Italy, August 2008.

[23] J. Hill, “Navigation signal processing with FPGAs,” in Pro-
ceedings of the National Technical Meeting of the Institute of
Navigation, pp. 420–427, June 2004.

[24] Atmel, “GPS Front End IC ATR0603,” Datasheet, 2006.
[25] M. Detratti, E. Lopez, E. Perez, and R. Palacio, “Dual-

frequency RF front end solution for hybrid Galileo/GPS
mass market receiver,” in Proceedings of the IEEE Consumer
Communications and Networking Conference (CCNC ’08), pp.
603–607, Las Vegas, Nev, USA, January 2008.

[26] P. Fine and W. Wilson, “Tracking algorithms for GPS offset
carrier signals,” in Proceedings of the ION National Technical
Meeting (NTM ’99), San Diego, Calif, USA, January 1999.

[27] H. Hurskainen and J. Nurmi, “SystemC model of an interop-
erative GPS/Galileo code correlator channel,” in Proceedings of
the IEEE Workshop on Signal Processing Systems (SIPS ’06), pp.
327–332, Banff, Canada, October 2006.

[28] D. M. Akos, “The role of Global Navigation Satellite System
(GNSS) software radios in embedded systems,” GPS Solutions,
May 2003.

[29] C. Dionisio, L. Cucchi, and R. Marracci, “SOFTREC G3,
software receiver and signal analysis fog GNSS bands,” in
Proceedings of the 10th IEEE Internationl Symposium on Spread
Spectrum Techniques and Applications (ISSSTA ’08), Bologna,
Italy, August 2008.

[30] G. E. Moore, “Cramming more components onto integrated
circuits,” Proceedings of the IEEE, vol. 86, no. 1, pp. 82–85,
1998.

[31] S. Söderholm, T. Jokitalo, K. Kaisti, H. Kuusniemi, and
H. Naukkarinen, “Smart positioning with fastrax’s software
GPS receiver solution,” in Proceedings of the International
Technical Meeting of the Satellite Division of the Institute of

Navigation (ION GNSS ’08), pp. 1193–1200, Savannah, Ga,
USA, September 2008.

[32] J. H. Won, T. Pany, and G. W. Hein, “GNSS software defined
radio: real receiver or just a tool for experts,” Inside GNSS, pp.
48–56, July-August 2006.

[33] “CRISP Project,” December 2008, http://www.crisp-project
.eu.

[34] P. Heysters, “CRISP Project Presentation,” June 2008,
http://www.crisp-project.eu/images/publications/D6.1
CRISP project presentation 080622.pdf.

[35] P. M. Heysters, G. K. Rauwerda, and L. T. Smit, “A flexible,
low power, high performance DSP IP core for programmable
systems-on-chip,” in Proceedings of the IP/SoC, Grenoble,
France, December 2005.

[36] H. Hurskainen, J. Raasakka, and J. Nurmi, “Specification of
GNSS application for multiprocessor platform,” in Proceedings
of the International Symposium on System-on-Chip (SOC ’08),
pp. 128–133, Tampere, Finland, November 2008.

[37] J. Raasakka, H. Hurskainen, and J. Nurmi, “Modeling multi-
core software GNSS receiver with real time SW receiver,”
in Proceedings of the International Technical Meeting of the
Satellite Division of the Institute of Navigation (ION GNSS ’09),
Savannah, Ga, USA, September 2009.


	1. Introduction
	2. GNSS Principles and Challenges
	2.1. Navigation and Signal Processing
	2.2. Design Challenges of GNSS

	3. Overview of SDR GNSS Architectures
	3.1. Hardware Accelerated SDR Receiver Architecture
	3.1.1. Challenges with Radio Front End
	3.1.2. Baseband Processing

	3.2. Ideal SDR GNSS Receiver Architecture
	3.3. SDR withMultiple Cores

	4. CRISP Platform
	4.1. Specifying the GNSS Receiver for the Multicore Platform
	4.1.1. Requirements for Tile Processor
	4.1.2. Requirements for the Network-on-Chip

	4.2. Open Issues

	5. Conclusions
	Acknowledgments
	References

