Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2009, Article ID 518659, 15 pages
doi:10.1155/2009/518659

Research Article

SmartCell: An Energy Efficient Coarse-Grained Reconfigurable
Architecture for Stream-Based Applications

Cao Liang and Xinming Huang

Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, MA 01609, USA

Correspondence should be addressed to Xinming Huang, xhuang@ece.wpi.edu

Received 2 February 2009; Accepted 15 April 2009

Recommended by Markus Rupp

This paper presents SmartCell, a novel coarse-grained reconfigurable architecture, which tiles a large number of processor elements
with reconfigurable interconnection fabrics on a single chip. SmartCell is able to provide high performance and energy efficient
processing for stream-based applications. It can be configured to operate in various modes, such as SIMD, MIMD, and systolic
array. This paper describes the SmartCell architecture design, including processing element, reconfigurable interconnection fabrics,
instruction and control process, and configuration scheme. The SmartCell prototype with 64 PEs is implemented using 0.13 ym
CMOS standard cell technology. The core area is about 8.5mm?, and the power consumption is about 1.6 mW/MHz. The
performance is evaluated through a set of benchmark applications, and then compared with FPGA, ASIC, and two well-known
reconfigurable architectures including RaPiD and Montium. The results show that the SmartCell can bridge the performance and
flexibility gap between ASIC and FPGA. It is also about 8% and 69% more energy efficient than Montium and RaPiD systems for
evaluated benchmarks. Meanwhile, SmartCell can achieve 4 and 2 times more throughput gains when comparing with Montium
and RaPiD, respectively. It is concluded that SmartCell system is a promising reconfigurable and energy efficient architecture for
stream processing.

Copyright © 2009 C. Liang and X. Huang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. Introduction

Nowadays, stream-based applications, such as multimedia,
telecommunications, signal processing, and data encryp-
tions, are the dominant workloads in many electronic
systems. The real-time constraints of these applications,
especially over portable devices, often have stringent energy
and performance requirements. Many other military applica-
tions, including real-time synthetic aperture radar imaging,
automatic target recognition, surveillance video processing,
optical inspection, and cognitive radio systems, have similar
needs. The general purpose solutions, such as general
purpose processors (GPPs), are widely used in conventional
data-path oriented applications due to their flexibility and
ease of use. However, they cannot meet the increasing
requirements on performance, cost, and energy in the data
streaming application domain due to their sequential soft-
ware executions. The application-specific integrated circuits
(ASICs) become inevitably a customized solution to meet

these ever-increasing demands for highly repetitive parallel
computations. It is reported that they are potentially two to
three orders of magnitude more efficient than the processors
in terms of combined performances of computational power,
energy consumption, and cost [1]. Although ASICs can
provide best performance for specific applications, it is not
desirable for all circuitry designs. ASICs generally have fixed
data flow with predefined functionalities that makes them
infeasible to accommodate to new system requirements or
changes in standards. The long design cycle and high non-
recursive engineering (NRE) cost also become an obstacle to
meet the stringent cost and time-to-market requirements.
Reconfigurable architectures (RAs) have long been pro-
posed as a way to achieve a balance between flexibility as
of GPP and performance as of ASICs. The hardware-based
RA implementation is able to explore the spatial parallelism
of the computing tasks in targeted applications, meanwhile
avoiding the instruction fetching, decoding, and executing
overhead of the software implementations, which results

in an energy and performance gain over general purpose
processors. On the other hand, RAs maintain the postfabric
flexibility to be configured, either offline or on the fly,
to accommodate to new system requirements or protocol
updates that is not feasible in ASIC implementations. Also,
the flexibility provided by RAs can improve fault tolerance
and system reliability. Design bugs can be easily fixed by
loading new configurations, and malfunctioned circuitry can
be excluded from other parts to achieve system recovery and
prolong the product’s lifetime.

Field-programmable gate arrays (FPGAs) are still the
dominating semiconductor technology in the reconfigurable
computing area. The most common SRAM-based FPGAs
decompose complex logic functions into smaller ones and
map them onto the Lookup Tables (LUTs) or other on-chip
embedded resources. The island-style routing fabrics can be
configured to form desired application datapath. The bit-
level fine-grained granularity is suitable to implement a large
variety of functions directly onto its rich hardware resources.
However, this flexibility comes at a significant cost in terms of
area, power consumption, and speed, due to its huge routing
area overhead and timing penalty. Furthermore, due to the
fine-grained nature, the compilation and configuration of
FPGAs take much longer than those in general purpose
processors.

In recognizing these issues, several research projects
have been developed toward coarse-grained reconfigurable
architectures, that include [2-7]. Benefiting from much
less routing overhead, these coarse-grained reconfigurable
architectures (CGRAs) have potential advantages to improve
the power efficiency of the fine-grained FPGAs.

This paper presents SmartCell as a novel CGRA sys-
tem, targeted for high-performance low-energy reconfig-
urable systems. SmartCell integrates a large number of tiny
processor cores (cells) onto a single chip. The cells are
interconnected with three levels of programmable switching
fabrics, including intracell connection, nearest neighbor
connection and a modified concentrated mesh (CMesh) on
chip network. The feature of dynamic reconfigurability is
achieved in two modes: coarse-grain cell broadcasting and
fine-grain ID-based configurations. The number of proces-
sor elements involved in the computing tasks can also be
dynamically changed to meet the application requirements.
For example, more cells can be involved to achieve high
computational performance, while fewer cells are put into
active mode when power consumption is more stringent.
It can be configured to operate in various computing
styles such as SIMD, MIMD, and systolic array, targeted at
applications with inherent data parallelism, high computing,
and communication regularities.

The rest of this paper is organized as follows: after
describing the background and examining some of the exist-
ing reconfigurable architectures in Section 2, the SmartCell
architecture is detailed in Section 3, including the designs
of computational units, layered interconnection fabrics,
and control/configuration schemes. Section 4 presents a
case study of mapping matrix multiplication onto the
SmartCell and analyzing its performance. Section 5 presents
the implementation of a seedling SmartCell system and its

EURASIP Journal on Embedded Systems

performance comparisons with other computing systems,
followed by the conclusions in Section 6.

2. Background and Related Work

In recent years, the state of computing has evolved from a sin-
gle CPU into a network of multiprocessors on chip running
in parallel at relatively low frequencies. The major driving
force behind is the need to achieve high computational
capacity meanwhile maintaining high-energy efficiency. This
feature has become critically important for many DSP
applications, especially in portable devices. In this section, we
briefly summarize several computing architectures targeted
for data streaming applications.

Traditional FPGAs use the static configuration streams
to control the functional and routing resources for user
specifications. The data parallelism and flexible on-chip
communications are essential to meet the high-performance
requirements of the computations being performed. Due
to the direct mapping of application tasks onto hardware
resources, FPGA 1is able to complete one operation in a
single clock cycle, which avoids the instruction fetching,
decoding, and executing overheads as in the software pro-
Cessors.

However, as we mentioned previously, the fine-grained
granularity and the general purpose LUTs in the FPGAs
involve high routing overheads and intensive controlling
requirements, which in turn degrades the performance and
makes the compilation and configuration very slow. In
realizing these problems, the commercial FPGA vendors
have introduced more coarse-grained components as the
computing basics in their newly developed FPGAs. The
Virtex-4 [8] and Virtex-5 [9] series are among the latest
Xilinx FPGAs, which have a mixed granularity of basic logic
cells with coarse-grained DSP slices to enhance the signal
processing capacity and power consumption performance.
Similar idea can be found in Altera’s Stratix II FPGAs [10].
In addition, 6-input and 8-input LUTs are introduced to the
Virtex 5 and Stratix II FPGAs, respectively, as the substitute
of the traditional 4-input LUT. This is helpful to reduce
the routing overhead and to ease the configuration process.
But the SRAM-based FPGAs have some fundamental limits
that hamper them becoming the mainstream computing
media for the data streaming applications. The system
configuration SRAM cells are very greedy on power and
area and are needed to be held during the entire operation
process. It is studied in [11] that the FPGA consumes
about 14 times more dynamic power and is about 35 times
larger than equivalent ASICs on average when only logic
elements are used. Furthermore, the FPGAs do not support
instruction sequencing and are thus infeasible or very costly
to make any changes on the fly. Unlike FPGAs, the SmartCell
system can achieve the online flexibility by simply pointing
to a new instruction code. The coarse-grained nature of the
SmartCell avoids low level compilation and high routing
overhead involved in the FPGA designs. The hardware
circuitry for the domain specific operations also results in
smaller area and better energy efficiency than FPGAs.

EURASIP Journal on Embedded Systems

A number of researches have been carried out to
explore efficient CGRA designs as summarized in [12]. The
RAW [6] system incorporates 16 simplified 32-bit MIPS
processors in a 2D mesh structure to provide high parallel
computing capacities. The RaPiD [2] architecture links a
large number of heterogeneous reconfigurable components
in a 1D array structure, including ALUs, multipliers, and
RAMs. The potential applications for RaPiD are those of
a linear systolic nature or applications that can be easily
pipelined among the computational units. In the PipeRench
[4] system, several reconfigurable pipeline stripes are offered
as an accelerator for data streaming applications. Limited
configurable interconnection fabrics are developed, includ-
ing a local network inside a stripe, unidirectional nearest
neighbor connection between stripes, and some global buses.
The Matrix [3] approach incorporates a large number of 8-
bit Basic Functional Units (BFUs) in a 2D mesh structure.
Its routing fabrics provide 3 levels of 8-bit bus connections,
which can be configured into SIMD, MIMD, or VLIW styles.
In the Chess [7] system, 4-bit ALUs are tiled in a hexagonal
array with adequate reconfigurable interconnect fabrics to
build a chessboard-like floorplan. The configuration contexts
of a complex function can be cast and forwarded among
active processors. Thus the functionality of the ALUs can
be changed on a cycle-by-cycle basis. The MorphoSys [5] is
an integrated and configurable system on chip, targeted for
high throughput and data parallel applications. A modified
RISC processor is embedded to control the reconfigurable
accelerating arrays with efficient memory interface between
them. The MorphoSys system is potentially to be operated
in the SIMD style due to the column wise or row wise
configuration broadcasts.

Many other reconfigurable architectures have been
implemented with various technologies [13-15]. Most of
them have been focused on the exploring of computational
models or efficient design with respect to area and perfor-
mance. The Processor-In-Memory- (PIM-) based systems
[16, 17] integrate the processing logic and memories onto
the same chip and try to perform the computations directly
in memories, which greatly reduces data transfer overhead
between CPU and main memory. The power consumption
is another important aspect of reconfigurable architecture
designs. In [18, 19], power efficient architectures are devel-
oped for specific applications and are compared with fine-
grained implementations. However, they are not generic
coarse-grained architectures but some specific models for
data streaming applications.

Most recently, some other CGRA systems have also
been developed to provide ultralow power consumption,
such as ADRES [20] and Montium [21] with limited
computing resources. The SmartCell system integrates some
of the prominent features in the previous systems. The 16-
bit granularity of the basic operations is efficient for the
data parallelism exploration, while keeping a low cost of
computing and communications. The SmartCell can also
be configured to operate in SIMD, MIMD, and systolic
array styles due to the distributed configuring contexts
and rich on-chip connections. Dynamic configuration can
be performed in both fine and coarse-grain modes. The

uniform delay of the hierarchical interconnections also eases
the scheduling of the stream processing among multiple
cell units. In combination of these features, we say that
the SmartCell system is a unique approach in the CGRA
family. In Section 5, a direct comparison of the SmartCell
performance in terms of energy efficiency and system
throughput against RaPiD and Montium will be presented.

3. SmartCell Architecture

In this section, the proposed SmartCell architecture is
described in detail, including the design of processing
element, cell structure, on-chip interconnections, and system
control and configuration schemes. Figure 1 depicts the
components and organization of the integrated SmartCell
architecture.

3.1. Key Features. In a typical SmartCell architecture, a
set of cell units is organized in a tiled structure. Each
cell block consists of four processing elements (PEs) along
with the control and data switching fabrics. A three-level
layered interconnection network is designed for the intra-
and intercell communications. A serial peripheral interface
(SPI) is designed as an efficient way to load/reconfigure
instruction codes into active cell units. By reconfiguring
the instruction memories, the data flow can be dynamically
changed to accommodate to different application demands.
Some important features of the SmartCell architecture are
summarized as follows.

(i) Coarse-grained granularity: SmartCell is designed to
generate coarse-grained configurable system targeted
for computation intensive applications. The process-
ing elements operate on 16-bit input signals and
generate a 36-bit output signal, which avoids high
overhead and ensures better performance compared
with fine-grained architectures.

(ii) Flexibility: due to the rich computing and com-
munication resources, versatile computing styles are
feasible to be mapped onto the SmartCell architec-
ture, including SIMD, MIMD, and 1D or 2D systolic
array structures. This also expands the range of
applications to be implemented.

(iii) Dynamic reconfiguration: by loading new instruction
codes into the configuration memory through the
SPI structure, new operations can be executed on
the desired PEs without any interruption with others.
The number of PEs involved in the application is also
adjustable for different system requirements.

(iv) Fault tolerance: fault tolerance is an important
feature to improve the production yields and to
extend the device’s lifetime. In the SmartCell system,
defective cells, caused by manufacturing fault or
malfunctioned circuits, can be easily turned off and
isolated from the functional ones.

(v) Deep pipeline and parallelism: two levels of pipeline
are achieved—the instruction level pipeline (ILP) in

EURASIP Journal on Embedded Systems

PE22

| PE21 |

g
T >
g

PE38

PE40

| PE33 |
;

2 e BB i
H :

FiGURE 1: Overview of the SmartCell architecture. The SmartCell architecture is featured in a 2D tiled structure that consists of cell units

and layered interconnection networks.

a single processor element and the task level pipeline
(TLP) among multiple cells. The data parallelism can
also be explored to concurrently execute multiple
data streams, which in combine ensures a high
computing capacity.

(vi) Hardware virtualization: in our design, distributed
context memories are used to store the configuration
signals for each PE. The cycle-by-cycle instruction
execution supports hardware virtualization that is
able to map large applications onto limited comput-
ing resources.

(vii) Explicit synchronization: a program counter (PC) is
designed to schedule instruction execution time for
each PE on the fly. Variant delays are also available for
input/output signals inside each PE. Therefore, the
SmartCell can provide explicit synchronization that
eases the exploration of computing parallelisms.

(viii) Unique system topology: the cell units are tiled in
a 2D mesh structure with four PEs inside each cell.
This topology provides variant computing densities
to meet different computational requirements. With
the help of the hierarchical on-chip connections, the

SmartCell architecture can be dynamically reconfig-
ured to perform in variant operational styles.

3.2. Cell Unit and Processing Element. The reconfigurable
cell units are the fundamental components in SmartCell,
which are aligned in a 2D mesh structure as shown in
Figure 1. Each cell consists of four identical PEs. The PE is
composed of an arithmetic unit and a logic unit, I/O muxes,
instruction controllers, local data registers, and instruction
memories, as shown in Figure 2. It can be configured to
perform basic logic, shift, and arithmetic functions. The
arithmetic unit takes two 16-bit vectors as inputs for basic
arithmetic functions to generate a 36-bit output without
loss of precision during multiply-accumulate operations.
The PE also includes some logic and shift operators, usually
found in targeted data streaming applications. The basic
operations supported by SmartCell processor are listed in
Table 1. Multiple PEs can be chained together through the
programmable on-chip connections to implement more
complex algorithms.

An up to 4-stage pipeline structure is developed in each
processor, as denoted in different colors in Figure 2. The
Src select stage inputs data from the on-chip connection

EURASIP Journal on Embedded Systems

TaBLE 1: List of basic operations supported by SmartCell proces-
SOrS.

Basic operations

Arithmetic Unit add, sub, mult, MAC, abs sum
Logic Unit and, or, not, xor, nand, compare, etc.
Shift Unit shift right, shift left, circular shift

Src
select
Instr. N j, \L
controller Y2 =1 ¥ Erel
1 I 1
T —E% Arithmetic | ! Logic !
. N
Instr. N ‘in_lt_ _____ ,: ! unit | Exe2
MEM | | m—m————F———@—> |
Des
. I select
PE architecture

FIGURE 2: Processor element architecture. The PE component
can be configured to perform 16-bit basic arithmetic operations,
including logic, shift, adder, multiplier, and MAC. An instruction
controller is designed for the cyclic configuration of the computa-
tional units and data flows.

calculated by other PEs or itself and stores the data into its
local register banks. The execution stages (Exel and Exe2)
occupy two clock cycles for basic multiply-add and other
logic operations. The Des select stage selects the output result
and sends it back to the on-chip interconnections. Unlike
traditional pipelined processor design, the pipeline stages
are not fixed in SmartCell. Bypass path can be selected in
every stage except for Src select to allow fast passing through
input data or intermediate results to the next operating unit
to reduce the processing delay if required. The traditional
decoding stage is replaced by an instruction controller,
which generates all control and scheduling signals in parallel
with the 4 pipeline stages. An instruction code, pre-stored
into the instruction memory, is loaded into the instruc-
tion controller on a cycle-by-cycle basis to provide both
functionality and datapath control for a specific algorithm.
In summary, the flexible 4-stage pipeline structure avoids
the deep instruction pipelines of fetching, decoding, and
registering read/write and ALU operations in conventional
general purpose processors. Additionally, the instruction
code can be dynamically reconfigured in various modes
to adapt to different application requirements. Therefore,
SmartCell is able to provide comparable energy efficiency as
an ASIC while maintains dynamic programmability as a DSP.

The instruction code is designed in a 64-bit frame
format, as shown in Table2. A 9-bit program counter
control (PC control) section is used to indicate execution
time, next instruction address, and valid memory ranges
for the mapped application. The datapath and operation

TABLE 2: Frame format of the instruction code.

64 bits/instruction code
No. of bits 9 20 7 10 11 7
PC Datapath I/O Operation NoC RESV

control control

Format

control delay control

Instr. MEM

North PE

4 7/

>‘\//1’ ! \ \,<
s S

» LY

T 1=, /C"

A Y

LIRS
i AN \\|>(:/ A& 7 7
N 7
Instr, in NN
D >

SPI instruction <
loading at}i

Instr. MEM
| Data |
Eest PE

West PE
| Datg |

Instr. MEM

Cell unit

Figure 3: Cell unit structure. Each cell consists of 4 PEs and 4
instruction memories in pairs. A configurable crossbar is designed
as the intracell data exchange network. The SPI buses are designed
to form a ripple array structure for instruction loading and dynamic
reconfiguration.

control signals specify the configuration of data flow and
computing units, while the I/O delays are used for synchro-
nization scheduling among multiple computing units. An
11-bit Network-on-Chip (NoC) control signal is designed
to configure the on-chip communication network. A 7-bit
undefined section is reserved for future functional extension.
New instruction will not be loaded and executed until the
current one expires. The instructions are accessed in a
cyclic manner that supports periodical execution of a set of
operations. In our current design, a 20 by 64-bit instruction
memory block is attached to each PE.

In a cell unit, four PEs placed in the east, west, south, and
north directions form a quad structure with a fully connected
crossbar unit located at the center, as shown in Figure 3. The
crossbar network supports arbitrary nonblocking connec-
tions among PEs in the same cell. Instruction memories are
attached to each PE and are chained in a linear array fashion
by serial peripheral interface (SPI) for configurations. The
data exchange controls are also provided by the instruction
code in a cyclic manner.

3.3. Three-Level Layered On-Chip Interconnection. As the
CMOS technology scaling down, interconnect has become an
increasingly important issue for integrated circuit design. In

many signal processing applications, the system throughput
is significantly affected by communication costs. The design
of efficient data exchange scheme has become a key feature
for high-performance systems. Shared bus connection with
high bandwidth is usually adopted in modern multicore
CPU designs. But the lack of scalability and high power
consumption penalty make it not favorable for data stream-
ing applications. Other solutions are available for on-
chip switch topology, such as fully connect crossbar and
island-style mesh networks. The crossbar network provides
the flexibility to connect any components in the network
with limited transfer delays. Despite of these advantages,
crossbar suffers from high silicon area costs, high power
consumption, and low scalability. On the other hand, island-
style mesh network is often used in FPGAs, in which each
computing unit is attached with its own switch fabrics to
transmit/receive data or to relay data to adjacent nodes.
The mesh network offers regular structure and is easy to
scale. But it suffers from longer delays and complex control
logics. In realizing these facts, a compromised hierarchical
routing structure with three-level networks is designed for
the SmartCell: the fully connected crossbar unit for intracell
data exchange, the static nearest neighbor connection for
intercell communications, and the reconfigurable modified
CMesh network for concurrent data communication among
nonadjacent cell units.

3.3.1. Fully Connected Crossbar Intracell Interconnection.
Initially, a centralized shared register memory (SRM) block
is designed for the intracell communications. But it was
abandoned due to its high area and power costs and complex
memory access controls. In the current design, the PEs and
instruction memories are placed at the four edges in a cell.
A fully connected crossbar switch box is able to provide a
nonblocking data exchange connection. Compared to the
SRM implementation, the control logics are substantially
simplified in the crossbar connection, which in turn results
in a better timing and area performance.

3.3.2. Static Nearest Neighbor Intercell Interconnection. In our
system, the homogeneous cell units are tiled in a 2D mesh
structure. Thus the adjacent cells can be connected directly
through short wires. Since four PEs in a cell are placed at four
edges, each PE can be directly linked to the nearest PE located
in the adjacent cell, as shown in Figure 1. This static network
supports single cycle bidirectional data transmission of 2 16-
bit and 1 36-bit signals between connected PEs. These signals
are aligned up with the cell’s internal signals to provide
the PE’s inputs. No extra synchronizations and delays are
involved. This low latency and self-synchronization feature
is critical for exploration of task level parallelism among cell
units in many multimedia and signal processing applications.

3.3.3. Reconfigurable Hierarchical CMesh Network. Besides
the local connections, it is realized that some applications
also require dynamic data exchanges between nonadjacent
cells, such as Radix-2 FFT, 2D DCT. After examining
the major existing on-chip interconnection techniques, a

EURASIP Journal on Embedded Systems

HyEnEyE

LN
[%

P

Vertical_out¥
,,,,,,,,,,,,, ‘

5 Cello_in — > Cello_out 2
g Celll_}n—:ﬁ ——— Celll_out =
Tg Cell2_in ———| . ————> Cell2_out 7?,
8 Cell3 in | Switch ! . S
= Cell3_in —— ————> Cell3_out S

Horizontal_in —4— ——~4+—> Horizontal_out

[}

|

: Routing

I arbitrator

Vertical_in

FIGURE 4: Reconfigurable hierarchical CMesh network: (a) modi-
fied CMesh Architecture; (b) switch fabrics of the CMesh network.

modified CMesh network is adopted in our SmartCell
architecture. It is studied in [22] that the CMesh network
has the potential to provide best performance in terms of
average latency and network efficiency among other NoCs,
including Mesh, Torus, and FTree. As shown in Figure 4(a),
the modified CMesh segments the network into clusters,
with 4 cell units sharing the same switching component.
The switch architecture, depicted in Figure 4(b), is designed
to connect four local cells with adjacent cluster networks.
Each cell inputs/outputs a 36-bit signal from/to the switch
fabric that forms a local I/O interface. The switch component
also receives two sets of 4 36-bit inputs from horizontal and
vertical directions and outputs the same amount of data
in these two directions. A routing arbitrator component is
designed to dictate the proper data transmission that can be
configured by the NoC control bits in the instruction code.
Dimension-Order Routing (DOR) is implemented to
route data firstly in one direction and then in another for
multihop data transmissions. Because no closed loop can be

EURASIP Journal on Embedded Systems

Instruction & |

|
PE _ID | T T I\D_\l T H T T I]\)_\z L T T 1 II\)_\”[L U H T T I]\)_\I\I | :
! | [[[| | | | [| | | { | | [I !
" | Instd MEM Instr. MEM Instr. MEM. Instr. MEM i
| | 1 [[| | | | [| | | { | | 1 I
| | [[| | | | | | | | | { | | [J !
| |
Section select | T T T T }
(a)

Instruction & —=---------- - - oo Output t
Cell_ID _H Celllo T H% n:XIt)uceli)
:JH\L}H Hl\l/lll TR N |
| I | ‘
| st MEME | Tt BN - { st MM | hte, VM
| [. | [. | [| B . | 1
Section select el - e - P

(b)

FIGURE 5: Diagram of two modes of reconfigurations. (a) ID-based fine-grain configuration. (b) Cell broadcasting coarse-grain
configuration. A global select signal is developed for memory partitioning.

SPI input
Instr. reg
T A
Decoder
Instr. MEM
Connection Function
Ctrl signal Ctrl signal
SPI output Communication PE config.

network

FIGURE 6: Diagram of configuration controller architecture. The
control signals for the PE functionality and the data communica-
tions are decoded based on the current instruction code stored in
the instruction register. The SPI interface is designed for instruction
loading and updating.

generated, the DOR scheme guarantees no traffic contention
exists. Instead of arranging the routers in a ring style as in
traditional CMesh network, high-level routers that connect
four local routers are designed and chained together to
form another CMesh network. It is so-called hierarchical
CMesh network. This hierarchical CMesh network reduces
the number of long wires compared with traditional CMesh.
Also, the same routing components can be easily added
to or reduced from the SmartCell architecture for system
scalability. In our design, each cell can receive a 36-bit signal
through the CMesh network every clock cycle, which leads
to a single-hop system throughput of 57.6 Gbits/s for a 4 by
4 SmartCell operating at 100 MHz.

3.4. Configuration and Control Flow. A serial peripheral
interface (SPI) is designed to configure and update the
instruction memories, as shown in Figure 3. In this structure,
the instruction memories are linked in a ripple array fashion
with the inputs and outputs chained one to another. During
the initial configuration procedure, the instruction code is
loaded to the first PE’s instruction memory and is then
shifted down to the second one and so on. This procedure
stops after the last active PE is configured. The run-time
reconfiguration can be achieved by the same SPI structure.
Two modes are provided for the fine-grained ID-based
configuration and coarse-grained broadcasting, as shown
in Figures 5(a) and 5(b). Some applications require fine
control of individual PE to perform different tasks. The
ID-based fine-grained configuration is used in this case.
The new instruction code and the ID of the PE to be
configured are sent into the SPI chain. The PE bypasses the
information to the next one until it reaches the desired PE.
On the other hand, a group of PEs is configured to perform
the same operation in the SIMD style for many other
applications. To reduce latency, a cell broadcasting coarse-
grained configuration is designed to currently write the
reconfiguring contexts into all instruction memories in the
same cell, based on the input Cell ID. In a 4 by 4 SmartCell
system, 32 and 8 clock cycles are needed on average for an
instruction code to reach the configuration component in
fine-grain and coarse-grain modes, respectively.

However, the configuring propagation latency is not the
same for different PE/Cell units along the SPI chain: the
nearer to the input port, the faster the configuration can be
done. To compromise this unbalanced configuration latency,
a memory partitioning scheme is developed in our design.
In this scheme, new instruction codes can be loaded into the
unused context memories while the PEs are still operating
in the current contexts. Once the new contexts are fully
loaded, a global select signal is used to indicate the switch
of operation context. The configuration latency is hidden
by this means. Multiple contexts can be efficiently swapped
within one clock cycle.

8 EURASIP Journal on Embedded Systems

Call i al2 | al3 iald- -
a2l | a22 : a23 :a24 |
a23la24 - -
Al ! ! | ! Bl B2 --- Bn
a3l 1a32 a331a34 -+ (oo Toomoooo- Too - m————— - —==
| L ! ' b1l bl2 bl3 bl4|bl5 bl6 b17 b1 | [T1 | CIl
I a4l lad2Mad3 tadd - -y T T T TS T T TS oo oo o s oo ot
_f__'r"f_f__'ra_____ b21 b22 b23 b2f Pp5 b26 b27 b28 | |T2
I 1 1 L uUX T [Wit 70! =1
(Aol AP 1a3 Ta b32 b33 b34 Dhbs b36 b37 b3s !¢ T3
a6l ! a62 1 a63 1a64 - T T TT T T o oo o mETe o oo s o e i
A2 C | | 1b4l b42 b43 b4d |b45 bd6 b47 bds | T4
}a71:a72:a73:a74---: B :L |
| 1 ", TS TTTTTTTTTTTTT ST T TS -
a8l a82 | a83 a4 . .
S U |
Am, . |
e e e e e e e e e e e e e e
(a)
S z i
L g J T VI
1| Cell Cell Cell Cell | !
: 11 12 13 14 !
i Al
: A2
Bl —¢ | A3
I K. ;
1
tl o cell Cell Cell Cell | 1
vl 2 23 2
1
) T 7 £
B2 — | $:
i J N2 N N !
: Cell Cell Cell Cell 1
: 31 32 33 s
I 1
A5
i L Ab
i — A7
i ll—:—As
i Cell Cell Cell Cell !
: 41 42 43 44 |
LT T T T
1 i 1
(b)

FiGure 7: lllustration of subblock matrix multiplication algorithm and mapping onto SmartCell. (a) Subblock matrix multiplication scheme
with timing information; (b) algorithm mapping and data sharing on SmartCell system.

Pipline structure of 4 PEs in the smae cell

C P Pipel . Pipe2 T Pipes R Piped i
| Time | PE oP | PE oP | PE oP | PE oP :
1 1 1 1 1
Lo el @I xbID | ! ! .
L2or2 cl2=al1 x01> | 1 21 =@Dx b1l | ! !

TI 3 13 ca3=all xQ@1®» ! 2 @2=a21Xbl2 | 1 €31 =@3DX b1l ! |
4 14 cl4=all 3 23=a2l Xbl3 1 2 c32=a31 Xbl2 1 1 c41 =@4Dx b1l _ !
Fe Tt T T T T T T e T = L st { e b e et ienn
R cll+ @ 4 c4=a2lxbls 3 33=a31 xb13 | 2 c42=a4l X b12 |
6 12 cl2+=al2x®2D 1 1 Ql+=@2DXb2l 1 4 c34=a31 Xbld 1 3 c43=a4l Xb13 !
1 1 1 1 1

T2: 7 13 c3+=al2 @23 12 c22+4=a22XDb22 1 1 31+ =@Dx b2l 1 4 c44=a4l X bl4 |
08 14 cl4+=al2xB2D 1 3 23+=a22xDb23 | 2 32+ =a32 X b22 | 1 cddt =@DX b2l |
] e e e e e e e — L -
1 1
1 . !

FIGURE 8: Pipelined computations for one subblock result of matrix C. The data in red circle denotes the external inputs in each time step.

EURASIP Journal on Embedded Systems

Figure 6 depicts the control flow in a processing unit. At
run-time, a configuration context is loaded into the instruc-
tion register and is then partitioned into interconnection and
functionality controls. The next context is loaded only after
the current one expires. Cyclic data flows can be configured
through the looping of instructions in the memory.

4. A Case Study: Mapping of Matrix
Multiplication onto SmartCell

A broad range of complex scientific and multimedia applica-
tions strongly depends on the performance of matrix-matrix
multiplication. In this section, we use matrix multiplication
as a case study to demonstrate how to map applications onto
the SmartCell and to analyze its performance.

Various methods have been proposed in literature for
high-performance matrix multiplication designs, such as
Cannon’s algorithm [23], Strassen’s algorithm [24], and
more recently systolic algorithms using special systolic arrays.
A subblock matrix multiplication scheme is adopted in our
design. In this scheme, the operand matrices are partitioned
into smaller submatrices, each of which is then processed
separately by different hardware resources in parallel. The
result matrix is generated into subblocks of regular dense
matrix. This scheme can be efficiently mapped onto our
SmartCell system to explore both spatial and temporal
parallelisms for high computing performance. At the same
time, it achieves good data reusability among hardware
resources to ease the stress of external memory bandwidth
requirement.

In our design, the operand matrices A and B are
partitioned into subblocks of 4 rows and 4 columns
respectively, as shown in Figure 7(a). They are then fed to
the computing resources in column-major and row-major
order, respectively, with the timing sequences from T1 to T4
depicted in the same figure. The independent 4 by 4 subblock
results can be potentially calculated in parallel by different
computing resources. Given the SmartCell architecture, each
4-row/column pair can be efficiently mapped onto the 4 PEs
in the same cell unit. The mapping of the subblock matrix
multiplication onto a 4 by 4 SmartCell system is illustrated
in Figure 7(b). In this scheme, eight subblocks of matrix A
are concurrently input to the cell units and each subblock
is shared between two vertically placed cells. Two subblocks
from B matrix are simultaneously broadcast to the rows of
cells with one block shared by two rows. By this means,
16 subblocks of the result matrix C can be computed in
parallel. For further performance optimization, inner cell
pipeline structure is also explored. The pipeline structure
of one subblock result is illustrated in Figure 8. Initially,
element pair (all, b11) is loaded into PEl and generates
partial result of cl11. The calculated result is stored in the
local register that can be accumulated during the next loops.
After that, the second pair (a21, b12) is loaded into PE1 and
PE2 along with previous data for the computation of ¢21 and
c12, respectively. The calculations of the 4 rows in the result
matrix are carried out in 4 pipes. Data used by the previous
pipe is shared by the next pipe during the following time step

TaBLE 3: Application domain and test benches.

Test benches
64-tap FIR, 32-tap IIR

Application domain

Signal processing

Multimedia
and image processing

64-point FFT, 8 by 8 2D-DCT,
8 by 8 Motion Estimation (ME)
in 24 by 24 area
128 by 128 MMM,

Scientific computing . .
64th order Polynomial Evaluation (PoE)

through the crossbar unit. After 4 time steps, all pipes are
filled up with computing data and are able to operate at full
rate. This scheme only requires input of two external data in
each step to maintain full operation of 4 PEs as highlighted
in red circles in Figure 8.

To evaluate its performance, a 32 by 32 square matrix
multiplication is mapped onto a 4 by 4 SmartCell system.
In general, each final element requires 32 clock cycles to
finish the 32 MAC operations involved in it. Due to the
fully pipelined structure, a 4 by 4 subblock result can be
calculated in a single cell within 128 clock cycles. The final
32 by 32 matrix C is decomposed into 64 independent 4 by
4 subblocks, which can be calculated by the available 16 cells
in parallel. Thus a total number of 512 clock cycles is needed
to compute a single 32 by 32 matrix multiplication, which
leads to a system throughput of 195.3 KMatrices/s running
at 100 MHz.

5. Hardware Synthesis Results and
Performance Comparisons

In this section, a SmartCell system with 4 by 4 cell units
is designed and synthesized in standard cell ASICs. The
area and timing performance is provided based on the
synthesis reports. Seven benchmark applications listed in
Table 3 have been manually mapped onto the SmartCell
system. These benchmarks represent a wide range of real-
time applications from signal/image processing to scientific
computing. The power/energy consumption and system
throughput results are then compared with other computing
platforms, including FPGA and standard cell ASICs. Finally,
we compare the energy efficiency and system throughput
performance with other CGRA systems, including RaPiD
and Montium. The reason to choose RaPiD is that it
shares similar hardware resources with our design, and the
performance of interest for a common set of benchmarks
are disclosed in details. Montium is among several recently
developed ultralow power CGRA systems. It uses the same
process technology as SmartCell. Its performance results for
some benchmarks are also available in literature. The system
throughputs and energy consumption are compared among
these systems. The software programming environment is
also presented at the end of this section.

5.1. SmartCell Prototype. The prototype SmartCell system
is developed and synthesized with standard CAD tools.

10

TABLE 4: System design and simulation parameters.

System dimension 4by4

ModelSim, Synopsys CAD tools
TSMC 0.13 ym process

Synthesis environment Worst case condition

Voltage 1V

100 MHz

Design tools
Library

Simulation frequency

A functional RTL model is firstly designed in HDL hardware
description language and is then synthesized in Synopsys
DesignCompiler to generate the CMOS standard cell ASICs
using TSMC .13 ym technology. No custom optimization
is applied during this process. The area and timing results
are also generated by DesignCompiler using worst case
conditions. The synthesized design is then annotated via
a set of benchmarks for power consumption estimations
in Synopsys PowerCompiler. Some experimental setups are
listed in Table 4.

For power consumption and system throughput evalu-
ations, all benchmarks are simulated at the same operating
frequency of 100 MHz. The same simulation frequency was
also used by RaPiD for its power consumption analysis.
Because the RaPiD was designed in 0.5 ym process and was
operated at 3.3V, a fair comparison requires scaling down
its power consumption by a reasonable factor. In our study,
full scaling [25] is performed that scales down the power
consumption from 3.3V to 1V by a factor of 3.3%. By this
means, the process dimension is also scaled down to 0.15 ym.
To compensate the effect of dimension scaling, constant
voltage scaling [25] is then performed to scale up the power
consumption by a factor of 1.7. Therefore, the RaPiD power
consumption is scaled down by an overall factor of 9.34.

The same benchmarks are also directly implemented on
the FPGA platform to provide performance comparison.
The state-of-the-art Altera’s Stratix II FPGA in 90nm
process technology is selected as the benchmark platform.
In particular, an EP2S30 FPGA device is used, since it is the
smallest Stratix II FPGA that contains the same number of
multipliers as in the SmartCell system. The benchmarks are
designed in Altera’s Quartus II 6.1 CAD tool and simulated
at 100 MHz in ModelSim. The PowerPlay Analyzer is used
to evaluate the power consumption based on the switching
annotation generated from the gate level simulations. For fair
comparison, only the core power consumption is recorded in
the FPGA implementation, since the I/O and aux power is
not included in others.

The ASIC implement is also generated for each test
bench using the same HDL code as in the FPGA designs. It
is expected to provide the best power/energy performance
at a cost of flexibility. We use the same 0.13 ym process
technology as in the SmartCell. Due to the large set of
benchmarks under test, standard cell circuits are generated
automatically by the Synopsys CAD tools without custom
optimizations. We estimate the power consumption of the
ASICs based on the gate level simulations at 100 MHz.

EURASIP Journal on Embedded Systems

Total area is about 8.2 mm?2

On—chip memory and
register 41%

Interconnection
14%

Logic units

(a)

Total power is 158 mW

Interconnection & memory 53%

FIGURE 9: Area and average power consumption of the 4 by
4 SmartCell system: (a) area breakdown, (b) average power
consumption breakdown at 100 MHz.

Similarly, only the logic core power is recorded as done in
the other platforms.

5.2. SmartCell Area, Timing, and Power Consumption Per-
formance. The area of the SmartCell system according to
the synthesis tool is about 8.2mm?, which is about 1.6
million gates. The system area, breakdown into PE, on-chip
memory and registers, and interconnection, are shown in
Figure 9(a). The area of the processing elements is further
decomposed into arithmetic units and logic units. The
interconnection area is calculated by subtracting the area
of the processing units and on-chip memories from the
total area. The synthesis results indicate that the processing
units contribute to about 45% of the total area, with 36%
for arithmetic units and 9% for logic units. The on-chip
memory and register together comprise about 41% of the
area, mainly due to the long instruction format and intensive
controlling requirements. Furthermore, custom optimiza-
tions or library components are likely to reduce the on-chip

EURASIP Journal on Embedded Systems

memory occupation area. The three-level hierarchical on-
chip interconnections roughly take 14% of the total area.

The SmartCell can operate at a maximum frequency of
about 123 MHz. Further investigation reveals that the single
cycle MAC unit inside the arithmetic component takes about
5.5 nanoseconds of the total critical path delay, with 3.2
nanoseconds for the 18-bit multiplier and 2.3 nanoseconds
for the 36-bit adder. Again, custom optimizations can be
performed to improve the timing result such as using
pipelined multiplier and carry lookahead adder. Also the
123 MHz maximum frequency is captured from the worst
case critical path delay. Register delay is available between the
MULT and ADD components to break the MAC operation
into 2 cycles. Therefore, the critical path that is used for
most benchmarks is shorter than that reported by the CAD
tools. The configuration time is another important matrix in
reconfigurable architecture designs. In SmartCell system, the
tull chip fine-grain configuration can be completed within 13
microseconds at 100 MHz. Dynamic reconfiguration can be
much faster, depending on how different the new configuring
context is. For example, 64 cycles are needed to reconfigure
the SmartCell from 2D-DCT to 64-tap IIR applications.
Furthermore, if both configuring contexts have already been
preloaded into the instruction memory, only one cycle is
required to switch between IIR and DCT applications using
the memory partitioning scheme. For most applications
under test, the SmartCell can be dynamically reconfigured in
less than 1 microsecond, which is much faster than the fine-
grained FPGA reconfigurations.

The power consumption of the SmartCell for different
benchmarks is estimated in PowerCompiler based on netlist
annotation from gate level simulations. Table 5 lists the
power consumption (dynamic power Ppy, and total core
power Pcore) and energy efficiency (Egg) performance for
seven benchmark applications. All figures are generated at
100 MHz. Clock gating is automatically added by synthesis
tool to dynamically turn off the clocks for unused registers.
This requires an enable signal, indicating whether the register
is in use or not, to be attached to each register during the
design stage. Figure 9(b) shows the power dissipation for
different parts of the SmartCell system. The processing units
consume about 41% of total power, with 33% for ALUs
and 8% for logic components. The on-chip memories and
interconnections consume another 53% of total power. On
average, the SmartCell consumes about 160 mW at 100 MHz.
At last, the energy efficiency, evaluated by the total number of
operations per second per watt, is also calculated, as shown
in Table 5. A peek performance of 44.1 GOPS/W is achieved
in the motion estimation application. SmartCell provides an
average 37.8 GOPS/W energy efficiency from all benchmarks
under test.

5.3. Comparison of Power/Energy Consumption with FPGA
and ASICs. In this section, we compare the power and
energy consumption performance with other computing
platforms, including FPGA and ASIC. Table 6 gives the
power consumption and system throughput of each bench-
mark, all generated at 100 MHz. Due to similar algorithm

11

TaBLE 5: SmartCell power consumption and energy efficiency of
different benchmarks at 100 MHz.

FIR IR MMM 2DDCT ME FFT PoE
Ppy, (mW) 143 180 137 156 142 165 141
Peoe (MW) 152 189 146 165 151 174 150
Ee 42.1 339 448 388 44.1 183 427

(GOPS/W)

mapping structures and the same simulating frequency, the
evaluated platforms can achieve the same system throughput
for all benchmarks except for 64-point FFT. Pipelined FFT
structure is adopted in both FPGA and ASIC implementa-
tions, which generates 1 output per clock cycle after some
initialization time. While in our design, a parallel structure
is mapped onto the SmartCell system, with 16 butterfly
units running concurrently. Consequently, 60 clock cycles are
required in the SmartCell to complete 1 block of 64-point
FFT, which yields a throughput of 107 MS/s. Figure 10(a)
compares the power consumption results of these three
platforms, which has been normalized to the results of ASIC
implementations. As expected, the ASIC implementations
outperform both SmartCell and FPGA. SmartCell is about
2.7 ~ 5.4 less power efficient than ASICs. The maximum
gap is observed in the FFT applications. A reason for this is
that a smaller number of multipliers are used in the pipelined
FFT structure and fewer memory data switching activities are
involved. On the other hand, SmartCell outperforms FPGA
by a factor of 2.7 ~ 4.8 in terms of power consumption.

A more meaningful figure is depicted in Figure 10(b) that
compares the average energy efficiency (GOPS/W) among
the evaluated platforms, normalized to FPGA result. As
expected, the ASICs are the most energy efficient among
the evaluated platforms. It provides an average 16.4x energy
efficiency gain compared with the FPGA result. However, this
performance gain is achieved at a cost of no postfabrication
flexibility and high engineering design cost. The energy
performance provided by the SmartCell falls somewhere in
between. It is about 4.1x more energy efficient than FPGA
and is about 4x less than the ASIC implementations. This
result demonstrates that the coarse-grained architecture is
able to fill the energy efficiency gap between the fine-grained
FPGA and logic specific ASIC architectures.

5.4. Comparison with Other CGRA Systems. In this section,
we compare the SmartCell system with some other CGRA
systems, including Montium and Rapid. SmartCell and
Montium [26] occupy about 8.2 mm? and 1.8 mm? silicon
area, respectively, with the same 0.13 ym technology, while
RaPid [27] consumes about 5.7 mm? in 0.5 ym technology.
The power consumption of different benchmarks is given
in Table 7. On average, Montium consumes 3.2x and 7.5x
less power than SmartCell and RaPid, respectively. However,
the direct comparison of power consumption does not mean
much, due to different system configurations, hardware
resources, computing precision, memory sizes, and so forth.
For the same reason, the amount of actual operations
per second cannot be easily generated to compare the

12 EURASIP Journal on Embedded Systems

TaBLE 6: SmartCell power consumption and energy efficiency of different benchmarks at 100 MHz.

SmartCell FPGA ASIC

Power Throughput Power Throughput Power Throughput

(mW) (mW) (mW)
FIR 152 100 MS/s 725 100 MS/s 31 100 MS/s
IIR 189 100 MS/s 896 100 MS/s 45 100 MS/s
MMM 143 763 Metrics/s 445 763 Metrics/s 36 763 Metrics/s
2D-DCT 165 2.8 MBlocks/s 795 2.8 MBlocks/s 60 2.8 Mblocks/s
ME 145 3.5 MBlocks/s 573 3.5 MBlocks/s 27 3.5 Mblocks/s
FFT 174 107 MS/s 475 100 MS/s 32 100 MS/s
PoE 150 100 MS/s 628 100 MS/s 55 100 MS/s
RC5 140 50 MBlocks/s 553 50 MBlocks/s 9 50 MBlocks/s

energy efficiency as calculated in Section 5.3. Instead, a more
realistic way is to compare the total energy consumption to
finish the same amount of tasks. It provides a fair comparison
of the relative energy efficiency among evaluated systems.
The system throughput is also calculated and compared
based on the number of clock cycles required to finish these
tasks.

As listed in Table 7, five benchmarks have been mapped
onto the SmartCell system. Three of them are shared by
the RaPid and Montium, individually. Montium achieves
the best power consumption performance, since limited
computing resources of only 5 ALUs are provided. The cycle
column in the table denotes the number of clock cycles
needed to compute one data block, except for the FIR filter
design. In the 20-tap FIR benchmark, 2 blocks of 512 samples
are used to generate the cycle and energy figures, as done
n [26]. The results demonstrate that in most applications,
the SmartCell requires less clock cycles to finish the same
amount of task comparing with the RaPid and Montium
implementations. This is benefitted from more processing
parallelism provided by SmartCell to reduce the computing
complexity. For example, in the SmartCell implementation,
three data pipes can be created to process the 20-tap FIR
filter in parallel. On the other hand, a recursive processing
scheme is adopted in Montium, since at most 5-tap FIR
can be handled at the same time. This recursive scheme
also involves extra control and data exchange overheads. The
energy consumption is also compared in Table 7, which is
computed as the product of average power consumption and
number of clock cycles.

The normalized energy consumption is depicted in
Figure 11(a). When the Montium system is compared, the
SmartCell dissipates the same amount of energy in the 64-
point FFT and consumes about 18.6% more energy in the 8
by 8 2D DCT. For the 20-tap FIR benchmark, 42.0% energy
saving is observed in our SmartCell implementation. On
the other hand, SmartCell always outperforms RaPid with
respect to energy consumption. A maximum 11.7 energy
gain is achieved in the 128 by 128 matrix multiplication. On
average, SmartCell is about 7.8% and 69.3% more energy
efficient than Montium and RaPid, respectively, for evaluated
benchmarks.

Figure 11(b) compares the normalized system through-
put of different platforms. The SmartCell and the RaPid
provide same throughput in motion estimation application,
due to similar algorithm mapping structures. SmartCell out-
performs both Montium and RaPid in all other benchmarks
regarding to system throughput. In the FIR application, the
SmartCell is about 6x faster than Montium system. SmartCell
also shows a maximum throughput gain of 4.2x over RaPid
system in the matrix multiplication implementations. Aver-
agely, SmartCell provides about 4.0x and 2.2x throughput
gains against the Montium and RaPid systems, respectively.

5.5. Development of Software Environment. Another impor-
tant aspect in our research is to develop a software pro-
gramming environment to assist the automatic application
mapping onto the SmartCell system. Due to the control
intensive nature, a prototype software compiler, named
Smart_C, is proposed to facilitate the context generation in
targeted application domain. Figure 12 represents the generic
application mapping flow of the Smart_C environment.

Two phases are included in this design flow: application
and architecture analysis phase (Phase I) and application
mapping phase (Phase II). During Phase I, a high-level
application description file (preferably in C language) is
input into the Smart_C environment. An application abstrac-
tion step is performed to parse the input application file
and to extract the work loads from it. All candidate loops
are broken into linear sequences. The data dependencies
among them are also analyzed during this step. On the other
side, a hardware description and system requirement file are
input to generate the hardware abstract, which specifies the
computing resources and IO models for all available PEs.
At last, the parallelism/pipeline exploration and application
partitioning are performed to create scheduling code based
on the hardware and software abstracts. The communication
flow among active PEs are also scheduled here. The second
application mapping phase transforms the scheduling code
into configuring contexts that can be directly loaded into the
instruction memories. Firstly, the control signals are deter-
mined for every computing and communication component
to form the desired application datapath. Two modes are

EURASIP Journal on Embedded Systems

25

20 7
15 m
10

LA

FIR IIR MMM 2D DCT ME FFT PoE

Normalised power

I ASIC
[SmartCell
[FPGA

(a)

18 .
16.4
16
14
12

10

4.1

Normalised energy efficiency

FPGA SmartCell ASIC

(b)

FiGure 10: Diagram of power and energy efficiency comparisons
among SmartCell, FPGA, and ASICs. (a) Power consumption for
different benchmarks, normalized to the ASIC results; (b) average
energy efficiency comparison, normalized to FPGA result.

provided for offline and online configurations. In the offline
configuration, the context file can be directly downloaded
into the instruction memories for all active PEs. On the
other hand, if the online configuration is performed, the
differences between the current context and the generated
one are examined. Only the PEs observing different contexts
are needed to be updated.

At the current stage, the application mapping envi-
ronment (Phase II) has been implemented to generate
the configuration contexts from an input assembly code.
Due to the regular system structure and data flow pattern
involved in the targeted application domain, the cell level
configuration can be generalized to use the same prototype
models. In this case, we create two sets of computation and
communication libraries, each of which specifies all available
computing operations and I/O models for a cell unit.
Given an application, the designer is responsible to properly

13

12

Normalised energy consumption
for same amount of task
(o))

4 L
| I_\
2D DCT ME FFT 128 MMM 32 MMM
B Montium
[SmartCell
[RaPid
(a)
7
o 6F M
=
a,
=
3 5
e
k=)
= 4+ I
k]
2,
< 3
s
= L
g 2
5
Z 1t _|
O I
2D DCT ME FFT MMM 20-tap FIR
B Montium
[SmartCell
[RaPid

(b)

FiGure 11: Diagram of energy consumption and throughput com-
parison among Montium, SmartCell, and RapiD. (a) Normalized
energy consumption for same amount of task; (b) normalized
system throughput.

partition the kernel operations onto the PE components
and to explore the data flows among them. After that, an
application description code can be created in representing
of the computing and I/O models specified in the assembly
libraries. According to these models, the context generator
is able to automatically decode the control signals for the
computing components from the input assembly code. The
interconnection context can also be generated based on the
input I/O models and the system architecture configuration.
By this means, the configuration overhead can be greatly
reduced. The following steps remain the same as described
earlier. The development of the system analysis phase (phase
I) involves lots of experiences on system and task level profil-
ing, analysis, and optimizations as usually found in complex
compiler designs. Benefitting from the regular tile structure

14 EURASIP Journal on Embedded Systems
TABLE 7: Power and energy comparison among the evaluated CGRA systems.
SmartCell RaPid [27] Montium [21, 26]

Power Cycles Energy Power Cycles Energy Power Cycles Energy

(mW/MHz) (n]) (mW/MHz) (n]) (mW/MHz) (n])

2D DCT 1.65 36 59 4.29 64 275 0.5 96 48

ME 1.46 1156 1688 2.35 1156 2717 — — —

FFT 1.74 60 104 — — — 0.541 192 104

MMM 1.46 33K 48K 4.28 131K 561 K — — —

20-tap FIR 1.47 341 501 — — — 0.42 2057 864
High level app. SmartCell. Other issues such as loop breaking, redundancy
description optimization also need to be addressed in the compiler
Pmmmmoosmommooooo- d-------ommeoeo algorithm design. These challenges lead to couple interesting

App. profiling i directions for our future work.
& analysis !
Phase I }
profile analysis ! HW description 6. Conclusions
Parallel exploration | & Systemrequirements .

& app. partition ‘ This paper presents the SmartCell as a novel reconfigurable
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, l architecture for stream-based applications. It is a coarse-
I | grained architecture that tiles a large number of processor
Control signal | Assembly C(:)de elements with reconfigurable communication fabrics. A
Phase I generation [| prototype with 64 PEs is implemented with TSMC 0.13 ym
app. mapping l technology. This chip consists of about 1.6 million gates
with an average power consumption of 1.6 mW/MHz for

Context generation

Offline cory &n‘l‘ine config.

Config. difference
generation

|

App. update

App. mapping

Config. file

FIGURE 12: Design flow and application mapping environment for
SmartCell.

and uniformed control logics, SmartCell can be configured
for different system requirements of high performance or
ultralow power consumption. The compiler needs to be
robust enough to take advantage of hardware flexibility. One
possible solution is that the compiler can read in a system
constraint file, providing the system requirements, available
hardware resources, targeted frequency, and so forth, based
on which the configuration contexts are generated to satisfy
these system requirements. Hardware virtualization also
needs to be handled by the compiler to breakdown large
computing tasks into smaller ones that can be fitted on
the hardware resources and be processed individually. The
optimization of task partitioning and scheduling needs to
be properly addressed in the compiler design to explore
both spatial and temporal parallelism potentially offered by

the evaluated benchmarks. The benchmarking results show
that SmartCell is able to bridge the energy efficiency gap
between the fine-grained FGPAs and customized ASICs.
When compared with Montium and RaPid, SmartCell shows
4x and 2x throughput gains and is about 8% and 69% more
energy efficient, respectively. The performance results show
that SmartCell is a promising reconfigurable and energy
efficient platform for stream processing.

Acknowledgments

This work has been supported in part by the Defense
Advanced Research Projects Agency (DARPA) Young Faculty
Award under Grant W911NF-07-1-0191-P00001, and by the
National Science Foundation (NSF) through award ECS-
0725522.

References

[1] B. Khailany, W. J. Dally, U. J. Kapasi, et al., “Imagine: media
processing with streams,” IEEE Micro, vol. 21, no. 2, pp. 35—
46, 2001.

[2] C. Fisher, K. Rennie, G. Xing, et al., “Emulator for exploring
RaPiD configurable computing architectures,” in Proceedings
of the 11th International Conference on Field-Programmable
Logic and Applications, pp. 17-26, 2001.

[3] E. Mirsky and A. DeHon, “MATRIX: a reconfigurable com-
puting architecture with configurable instruction distribution
and deployable resources,” in Proceedings of IEEE Symposium
on FPGAs for Custom Computing Machines, pp. 157-166, 1996.

[4] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R.
R. Taylor, “PipeRench: a virtualized programmable datapath

EURASIP Journal on Embedded Systems

in 0.18 micron technology,” in Proceedings of the Custom
Integrated Circuits Conference, pp. 63—66, 2002.

[5] H.Singh, M.-H. Lee, G. Lu, E J. Kurdahi, N. Bagherzadeh, and
E. C. Filho, “MorphoSys: an integrated reconfigurable system
for data-parallel and computation-intensive applications,”
IEEE Transactions on Computers, vol. 49, no. 5, pp. 465-481,
2000.

[6] M. B. Taylor, J. Kim, J. Miller, et al., “The RAW microproces-

sor: a computational fabric for software circuits and general-

purpose programs,” IEEE Micro, vol. 22, no. 2, pp. 25-35,

2002.

T. Marshall, L. Stansfield, J. Vuillemin, and B. Hutchings, “A

reconfigurable arithmetic array for multimedia applications,”

in Proceedings of the ACM/SIGDA 7th International Symposium

on Field Programmable Gate Arrays, pp. 135—-143, 1999.

[8] Xilinx, http://www.xilinx.com/products/virtex4/index.htm.
[9] Xilinx, http://www.xilinx.com/products/virtex5/index.htm.
[10] Altera, http://www.altera.com/products/devices/stratix2/st2-

index.jsp.

[11] I. Kuon and J. Rose, “Measuring the gap between FPGAs
and ASICs,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 26, no. 2, pp. 203-215,
2007.

[12] R. Hartenstein, “A decade of reconfigurable computing: a
visionary retrospective,” in Proceedings of IEEE Conference and
Exhibition on Design, Automation and Test in Europe, pp. 642—
649, 2001.

[13] J. Becker and M. Vorbach, “Architecture, memory and
interface technology integration of an industrial/academic
configurable system-on-chip (CSoC),” in Proceedings of the
IEEE Computer Society Annual Symposium on VLSI, pp. 107—
112, 2003.

[14] A. DeHon, Y. Markovsky, E. Caspi, et al., “Stream computa-
tions organized for reconfigurable execution,” Microprocessors
and Microsystems, vol. 30, no. 6, pp. 334-354, 2006.

[15] Y. Kim, M. Kiemb, C. Park, J. Jung, and K. Choi, “Resource

sharing and pipelining in coarse-grained reconfigurable archi-

tecture for domain-specific optimization,” in Proceedings of

Design, Automation and Test in Europe (DATE °05), vol. 1, pp.

12-17, 2005.

J. Zawodny and P. Kogge, “Cache-in-memory,” in Innovative

Architecture for Future Generation High-Performance Processors

and Systems, pp. 3—11, Maui, Hawaii, USA, January 2001.

J. Draper, J. Sondeen, S. Mediratta, and I. Kim, “Imple-

mentation of a 32-bit RISC processor for the data-intensive

architecture processing-in-memory chip,” in Proceedings of the

IEEE Low Power Electronics and Design, pp. 161-166, 2005.

[18] M. Lanuzza, M. Margala, and P. Corsonello, “Cost-effective
low-power processor-in-memory-based reconfigurable dat-
apath for multimedia applications,” in Proceedings of the
International Symposium on Low Power Electronics and Design,
pp. 161-166, 2005.

[19] S. Khawam, T. Arslan, and F. Westall, “Synthesizable recon-
figurable array targeting distributed arithmetic for system-
on-chip applications,” in Proceedings of the 18th International
Parallel and Distributed Processing Symposium (IPDPS *04), pp.
2051-2058, 2004.

[20] E. Bouwens, M. Berekovic, A. Kanstein, and G. Gaydad-

jiev, “Architecture exploration of the ADRES coarse-grained

reconfigurable array,” in Springer Reconfigurable Computing:

Architectures, Tools and Applications, pp. 1-13, 2007.

L. T. Smit, G. K. Rauwerda, A. Molderink, P. T. Wolkotte, and

G. J. M. Smit, “Implementation of a 2-D 8 x 8 IDCT on the

reconfigurable Montium core,” in Proceedings of International

~

(16

(17

(21

(22]

(23]

[24]

[25]

[26]

15

Conference on Field Programmable Logic and Applications
(FPL °07), pp. 562-566, 2007.

J. Balfour and W. J. Dally, “Design tradeoffs for tiled CMP
on-chip networks,” in Proceedings of the 20th International
Conference on Supercomputing, pp. 187—198, 2006.

L. Cannon, A cellular computer to implement the kalman filter
algorithm, Ph.D. thesis, Montana State University, Bozeman,
Mont, USA, 1969.

V. Strassen, “Gaussian elimination is not optimal,” Numerische
Mathematik, vol. 13, pp. 354-356, 1969.

S. M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits
Analysis and Design, McGraw-Hill, New York, NY, USA, 3rd
edition, 2002.

P. M. Heysters, G. J. M. Smit, and E. Molenkamp, “Energy-
efficiency of the Montium reconfigurable tile processor,” in
Proceedings of the International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA *04), pp. 38—44,
2004.

D. Cronquist, C. fisher, M. Figueroa, P. Franklin, and C.
Ebeling, “Architecture design of reconfigurable pipelined
datapaths,” in Proceedings of the 20th Anniversary Conference
on Advanced Research in VLSI, pp. 23-40, 1999.

	1. Introduction
	2. Background and RelatedWork
	3. SmartCell Architecture
	3.1. Key Features
	3.2. Cell Unit and Processing Element
	3.3. Three-Level Layered On-Chip Interconnection
	3.3.1. Fully Connected Crossbar Intracell Interconnection
	3.3.2. Static Nearest Neighbor Intercell Interconnection.
	3.3.3. Reconfigurable Hierarchical CMesh Network

	3.4. Configuration and Control Flow

	4. A Case Study:Mapping ofMatrix Multiplication onto SmartCell
	5. Hardware Synthesis Results and Performance Comparisons
	5.1. SmartCell Prototype
	5.2. SmartCell Area, Timing, and Power Consumption Performance
	5.3. Comparison of Power/Energy Consumption with FPGA and ASICs
	5.4. Comparison with Other CGRA Systems
	5.5. Development of Software Environment

	6. Conclusions
	Acknowledgments
	References

