
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2009, Article ID 425173, 17 pages
doi:10.1155/2009/425173

Research Article

Low-Power Bitstream-Residual Decoder for
H.264/AVC Baseline Profile Decoding

Ke Xu and Chiu-Sing Choy

Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong

Correspondence should be addressed to Ke Xu, kexu@ee.cuhk.edu.hk

Received 11 July 2009; Revised 21 October 2009; Accepted 2 December 2009

Recommended by Leonel Sousa

We present the design and VLSI implementation of a novel low-power bitstream-residual decoder for H.264/AVC baseline profile.
It comprises a syntax parser, a parameter decoder, and an Inverse Quantization Inverse Transform (IQIT) decoder. The syntax
parser detects and decodes each incoming codeword in the bitstream under the control of a hierarchical Finite State Machine
(FSM); the IQIT decoder performs inverse transform and quantization with pipelining and parallelism. Various power reduction
techniques, such as data-driven based on statistic results, nonuniform partition, precomputation, guarded evaluation, hierarchical
FSM decomposition, TAG method, zero-block skipping, and clock gating , are adopted and integrated throughout the bitstream-
residual decoder. With innovative architecture, the proposed design is able to decode QCIF video sequences of 30 fps at a clock rate
as low as 1.5 MHz. A prototype H.264/AVC baseline decoding chip utilizing the proposed decoder is fabricated in UMC 0.18 μm
1P6M CMOS technology. The proposed design is measured under 1 V ∼ 1.8 V supply with 0.1 V step. It dissipates 76 μW at 1 V
and 253 μW at 1.8 V.

Copyright © 2009 K. Xu and C.-S. Choy. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

The Motion Picture Experts Group and Video Coding
Experts Group (MPEG and VCEG) have jointly developed
a new standard named as H.264/AVC that outperforms the
earlier MPEG-4 and H.263 standards, and provides much
better compression of video images under the same bit rate.
This significant coding gain is achieved at the expense of
higher codec complexity.

One of the major differences between H.264/AVC and
previous standards is the way that the quantized trans-
form coefficients are handled. A more efficient method
called Context-Adaptive Variable Length Coding (CAVLC) is
employed. In this scheme, VLC tables are switched according
to already transmitted syntax elements. Since these VLC
tables are specifically designed to match the corresponding
image statistic, the entropy coding performance is improved
in comparison to schemes using only a single VLC table
[1].

Besides CAVLC, H.264/AVC adopts variable block size
motion prediction to provide more flexibility. The intra

prediction can be applied either on 4× 4 blocks individually
or on entire 16 × 16 macroblock (MB) as a whole. The
interprediction is based on a tree-structure where the
motion vector and prediction can adopt various block sizes
and partitions ranging from 16 × 16 MB to 4 × 4 block.
To identify these prediction modes, motion vectors, and
partitions, H.264/AVC specifies a very complex algorithm
to derive them from their neighbors. The deblocking filter
in H.264/AVC depends on a parameter called Boundary
Strength (BS) to determine whether current block edge
should be filtered. The derivation of the BS is highly adaptive
which relies on the modes and coding conditions of the
adjacent blocks.

The transform/inverse transform also operates on blocks
of 4 × 4 pixels to match the smallest block size. The
transform is still Discrete Cosine Transform (DCT) but with
some fundamental differences compared to those in previous
standards [2]. In addition, H.264/AVC employs a hierarchical
transform architecture, as depicted in [3].

In general, H.264/AVC defines a hybrid block-based
video codec with complex coding techniques to trade high



2 EURASIP Journal on Embedded Systems

computational complexity for low bit rate. However, its
intended applications, such as video transmission and play
back on mobile terminals, place great demands on lowering
power consumption to support real-time video decoding
on battery-powered devices. Conventional implementations
like μP or DSP cannot meet this requirement. For example,
the design reported in [4] employs a 130 MHz ARM996
processor and is only capable of QCIF decoding at 7.5 fps.
Even if some software solutions can achieve QCIF at 30 fps,
the power consumption is relatively large and may not
be suitable for battery-powered applications. A hardwired
decoder targeting low power consumption is thus indispens-
able.

Although motion compensation and in-loop filter are
the bottlenecks in the entire H.264/AVC decoding process,
the bitstream-residual decoder which is the subject of this
paper contributes to around 40% and 20% of total chip’s
area and power, respectively. A lot can still be gained if these
costs are carefully optimized. In addition, the bitstream-
residual decoder serves as a controller for the datapath
to follow. Designs in [5–8] are representative examples of
ASIC implementations of H.264/AVC decoder. However,
they require an external RISC or host processors for syntax
parsing and system control. Since we are only concerned
with baseline profile, it is possible and advantageous to
design a completely hardwired and self-contained decoder
which does not need additional help from microprocessor.
Furthermore, the proposed decoder is designed to function
properly under various supply voltages that cannot be found
in [6–8].

This paper shows how to integrate low-power strategies
in the design of a power-efficient bitstream-residual decoder.
Since there is no universal power saving approach that will
work for all designs, power saving techniques suitable for
various modules are proposed and integrated to achieve
optimal results. Various low-power design techniques, such
as statistic-based data driven decoding, hierarchical FSM
decomposition, and nonuniform Look-Up-Table (LUT)
partition giving rise to smaller tables are employed in
the design of the syntax parser. A self-adaptive decoding
sequence, coupled with zero-block-aware methodology, is
applied in both the CAVLC and IQIT decoding. By making
use of zero codewords, substantial amount of power can be
saved. Both pipelining and parallelism are adopted in the
IQIT decoder to increase the throughput and provide the
headroom for voltage scaling. A TAG method is proposed
for MV decoding. Signal and clock gating are widely adopted
throughout the design of the whole bitstream-residual
decoder.

The rest of the paper is organized as follows. The
decoding pipeline and decoder architecture are described in
Section 2. The design of the syntax parser is illustrated in
Section 3. Basic algorithm and the parameter decoder design
are presented in Section 4. Related background and the
design of a parallel architecture for IQIT, together with the
low-power techniques employed, are described in Section 5.
We present the implementation details, measurement results,
and comparisons in Section 6. Finally, we conclude the paper
in Section 7.

2. System Architecture

2.1. System Block Diagram. The whole bitstream-residual
decoder architecture is depicted in Figure 1. A hierarchical
FSM resides in the syntax parser whose states are one-to-one
mapped to each possible syntax element. Under the control
of the FSM, the syntax parser processes the codewords of
all levels in a proper and smooth order. The FSM also
directs the decoding steps of the hybrid-length decoder and
the IQIT decoder. The CAVLC decoder, which is part of
the hybrid-length decoder, is only invoked when handling
codewords at residual-level. Its outputs are fed to the IQIT
decoder to construct residual blocks. According to current
block type (DC or AC, luma or chroma) indicated by the
FSM state, the IQIT decoder selects the appropriate butterfly
algorithm and computes pixel residue on a 4 × 4 basis.
According to the output of hybrid-length decoder, together
with parameters of neighboring blocks, parameter decoder
generates the necessary prediction control parameters, like
Prediction Mode (PM), Motion Vector (MV), and Boundary
Strength (BS).

2.2. Pipeline Architecture. The bitstream-residual decoder
utilizes a 4× 4 block level pipeline shown in Figure 2. Com-
pared with a 16 × 16 macroblock level pipeline, it has three
advantages. First, it matches the smallest block size specified
in H.264/AVC. Second, temporary memory, such as buffer
or SRAM for storing intermediate data, can be substantially
smaller because one only needs to save one 4 × 4 block at a
time instead of 16× 16. Third, it greatly facilitates data reuse
of neighboring blocks during prediction. These advantages
make a substantial contribution to power savings. The IQIT
decoder is also pipelined to increase the throughput. For
pipeline of other blocks like prediction, please refer to [9].

3. Syntax Parser

3.1. Parser Structure. The syntax parser consists of several
building blocks [10]. The circular bitstream buffer serves as a
bridge between the off-chip bitstream RAM and the on-chip
hybrid-length decoder. It holds the current 128-bit bitstream
to be processed and a refilling mechanism helps to obtain
new bitstream when necessary. The heading one detector
detects the first appeared “1” in an encoded codeword for
both the Exp-Golomb decoder and the CAVLC decoder. For
syntax at residual level, CAVLC decoder is invoked; otherwise
the syntax elements are processed either in fixed-length or
Exp-Golomb decoder. The FSM orchestrates the decoding
steps of the whole parser. Details of these building blocks are
described in the following sections.

3.2. Circular Bitstream Buffer. Figure 3 describes the pro-
posed circular buffer, interfacing between the off-chip bit-
stream RAM and the on-chip hybrid-length decoder. It
keeps the current 128-bit bitstream to be processed. To
accommodate codewords of hybrid-length without a fixed
byte boundary in the input bitstream, the bitstream buffer
is addressed in bit.



EURASIP Journal on Embedded Systems 3

Heading-one detector output

Bitstream buffer output

Upper nC

nC
dec

Coeff token
LUT

Le
ft

n
C

T1
decoding

level
decoding

Total zeros
LUT

Run before
LUT

Coeff
level

Coeff level
zig-zag order

Detailed
architecture of

CAVLC decoder

External
bitstream

RAM 16

Circular bitstream
buffer (128 bit)

Syntax parser

Heading-
one

detector

Parser FSM

CAVLC
decoder

Exp-Golomb
decoder

Fixed-length
decoder

Hybrid-length decoder

IQIT decoder

Transpose
memory

In
ve

rs
e

qu
an

ti
za

ti
on

1D
-I

D
C

T

2D
-I

D
C

T

In
ve

rs
e

qu
an

ti
za

ti
on

Intra 4× 4 PM
decoding

Inter MV
decoding

BS decoding

To intra
prediction

To inter
prediction

To deblocking
filter

Data signal
Control signal

Parameter decoder

Figure 1: Bitstream-residual decoder block diagram.

Parsing above residual level Parsing at residual level Parsing at residual level Parsing at residual level

Parameter decoder CAVLC decoder CAVLC decoder CAVLC decoderIQIT decoder IQIT decoder IQIT decoder

Prediction Prediction Prediction

Sum = residual + prediction Sum = residual + prediction

4× 4 block level: block14× 4 block level: block0 4× 4 block level: block23

Bitstream-
residual
pipeline

Prediction
pipeline

One macroblock

· · ·
· · ·
· · ·
· · ·

Figure 2: Pipeline architecture of entire decoder system.

The working principle of the circular buffer can be
modeled by two hardware “threads” which manage the
communication among the off-chip RAM, the bitstream
buffer, and the hybrid-length decoder. Thread1 controls
the bitstream flow from the RAM to the buffer, while
thread2 controls the bitstream flow from the buffer to the
decoder, operating like a sliding window. With independent
operations of the two threads, buffer refill and read are
independent to each other. Compared with the line-buffer
architecture used in [11], the proposed design does not
involve any data movement within the buffer; thus a great
deal of power can be saved.

3.3. Heading One Detector. Based on the definition of Exp-
Golomb code, if the first appeared “1” inside an encoded
codeword is located, the whole codeword can be successfully
extracted and decoded. A “first 1 decoder” was proposed
in [12] which splits the 16-bit input equally into four
parts and each part decides whether there is a “1” inside.

However, no power optimization was realized since this
scheme treated all the 16 bits with equal importance. From
the SystemC modeling, statistical distribution of heading
one’s position was obtained as in Table 1, which indicates
that the heading one appears within the first two positions
(0∼1) with 80% possibility and the first six positions (0∼5)
with 99% possibility.

According to the above analysis, a priority-based heading
one detector with nonuniform input bits partition, depicted
in Figure 4(b), is proposed in [13]. By selectively turning on
the relatively larger decoder unit “dec4” (20% active) and
“dec10” (1% active), power can be saved since there is often
no need to search all the 16 input bits. By constructing [12],
which is shown in Figure 4(a) with the same technology,
postlayout power simulation shows that our design is three-
times more power efficient.

3.4. Complex FSM Design. The syntax parser performs
hybrid decoding of fixed-length and variable-length syntax



4 EURASIP Journal on Embedded Systems

RAM Thread1 Thread2Buffer Decoder

Low watermark2

O
ff

-c
h

ip
bi

ts
tr

ea
m

R
A

M

H
yb

ri
d-

le
n

gt
h

de
co

de
r

RAM control

2
RAM address

18

Bitstream

16

Low watermark1

PC

7

16 bit window

Bitstream

16
Buffer
valid

1

4
3

2
10127126

125

65 64 63 62 61

Figure 3: Circular bitstream buffer.

Mux

4

Priority encoder0 Priority encoder1

2 4

4

[15 : 12] [11 : 8] [7 : 4] [3 : 0]

(a)

Input bitstream [0 : 15]

100% active

EnableDec2

0 1

2 3 4 5

6 7 8 9 10 11 12 13 14 15

1% active

20% active

EnableDec4

Dec10

4

2

4

1

3–1 mux

Data signals
Control signals

(b)

Figure 4: Heading one detector comparison.

elements. Designs in [5–8, 10] rely on external RISCs for
codeword decoding higher than MB level, which lead to
additional hardware cost, as well as IO power consumption.
In our design, a complex FSM is utilized to orchestrate the
syntax decoding at all levels. The type of each incoming
codeword can be indicated by an FSM state. For baseline
profile decoding, there are 25 syntax tables and 187 states
needed to be addressed. A flattened FSM with many states is
not a low power option because the whole FSM would switch
all the time and the control/data flow is extremely complex
and power consuming. A hierarchically decomposed FSM,
consisting of 13 small sub-FSMs, is described in Figure 5.

The total number of FSM states is reduced from original 187
to 107 (43% reduction) by FSM decomposition and states
merging.

Further benefits can be gained by attending to some
particularities in state transitions. We use probability-related
Gray coding and variable-length state assignment to achieve
minimum hamming distance between two possible adjacent
FSM states. In addition, the FSM is clocked by nine gated
clocks to avoid unnecessary switching activities. Figure 6(a)
shows average active cycles of the nine gated clocks while
Figure 6(b) indicates a power reduction of 37.6% by FSM
gating. These results were obtained by feeding the decoder



EURASIP Journal on Embedded Systems 5

Parser

nal unit

slice layerSPS PPS

slice headerslice data

subMB predMB pred Residual
dec ref pic

marking
ref pic list
reordering

CAVLC
decoding

level1

level2

level3

level4

level5

level6

Figure 5: Hierarchically decomposed FSM.

10e1

10e2

10e3

10e4

10e5

10e6

10e7

To
ta

la
ct

iv
e

cl
oc

k
cy

cl
es

10 9 8
7 6 5 4 3 2 1

Test video sequences
1 2 3 4 5 6 7 8 9

Different gated clocks

(a)

1 2 3 4 5 6 7 8 9 10

Testing video sequences

R
el

at
iv

e
p

ow
er

Gating
Without gating

1: Container
2: Mother daughter
3: News
4: Akiyo

5: Foreman
6: Clair
7: Silent
8: Hall
9: Coastguard
10: Carphone

(b)

Figure 6: FSM clock gating.

with ten 300 frames video sequences at 30 fps, as shown in
Table 2.

3.5. Data Driven LUT Partition. As specified in
H.264/AVC, there are several LUTs used in bitstream
parsing. For instance, codeNum (0∼47) is mapped to
coded block pattern (CBP, 0∼47) in different ways for
Intra 16× 16, Intra 4× 4, and Inter-macroblock. Except for
Intra 16 × 16, Intra 4 × 4 and Inter-CBP decoding require
one-to-one mapping without any arithmetic operations.
Average energy consumption for decoding each codeNum
for these two cases can be modeled as suggested in [14, 15]:

Eavg =
N∑

i=1

PiEi, (1)

where Pi is the probability that codeNum = i will occur, Ei
is the energy required to decode such a codeNum, and N is
the total number of codeNums in the table where N = 48 for
both Intra 4× 4 and Inter-macroblock.

In conventional approach, the energy required to decode
the codeNum does not vary much over the codeNum’s
probability, because the whole table is implemented as a
single LUT which is active all the time. This ignores the fact
that a small amount of codeNums do occur more frequently
compared to the majority. Therefore, the power consumed
is predominantly in the decoding of codeNums with high
occurrence probability. The statistical distribution of CBP for
two typical 300 frame video sequences is plotted in Figure 7.

In our proposed approach, the decoding of codeNum for
Intra 4 × 4 and Inter-macroblock is separated since they are
independent.



6 EURASIP Journal on Embedded Systems

5

10

15

20

25

30
(%

)

Intra 4× 4 1st
sub-LUT 3 entries

0 5 10 15 20 25 30 35 40 45 50

codeNum

(a) Intra 4× 4 CBP distribution in akiyo 300 frames

5

10

15

20

25

30

(%
)

Intra 4× 4 1st
sub-LUT 3 entries

0 5 10 15 20 25 30 35 40 45 50

codeNum

(b) Intra 4× 4 CBP distribution in foreman 300 frames

5

10

15

20

25

30

35

40

(%
)

Inter 1st
sub-LUT 1 entry

Inter 2nd
sub-LUT 3 entries

0 5 10 15 20 25 30 35 40 45 50

codeNum

(c) Inter CBP distribution in akiyo 300 frames

5

10

15

20

25

30

35

40

(%
)

Inter 1st
sub-LUT 1 entry

Inter 2nd
sub-LUT 3 entries

0 5 10 15 20 25 30 35 40 45 50

codeNum

(d) Inter CBP distribution in foreman 300 frames

Figure 7: CBP statistical distribution.

For Intra 4 × 4 prediction, from Figures 7(a) and 7(b),
the most probable CBP lies at 15, 31, and 47, indicated by the
three peaks. Their corresponding input codeNums are 2, 1,
0, respectively. They account for 50%∼70% of all inputs. So
the proposed LUT is divided into two tables, a smaller one
for CBP 15/31/47 that is active most of the time and a larger
one for other CBP values. Thus the energy model (1) can be
rewritten as

Eavg = P1E1 + (1− P1)E2 + Eoverhead, (2)

where P1 is the match probability of the first table; E1 is
the corresponding energy; E2 is the energy consumption
of the second table; Eoverhead is the energy consumption by
the circuit overhead resulting from partitioning the table.
Like selection muxes, this power is very small and can be
neglected. Without loss of generality, it is reasonable to
assume that the complexity/energy of the LUT is propor-
tional to the number of input codeNums since one-to-one
mapping is required for decoding. We obtain

Eorg = 48, E1 = 3, E2 = 45. (3)

After partitioning, upper bound and lower bound of
consumed energy are found when P1 = 50% and 70%:

Emax = 0.5× E1 + 0.5× E2 = 24,

Emin = 0.7× E1 + 0.3× E2 = 15.6.
(4)

Compared with the original single LUT energy consump-
tion, the energy saving varies from 50% to 67.5%.

The LUT partition for interprediction can be derived in
analogy. The ideal energy saving varies from 62% to 72%.
From postlayout power simulation, the energy reduction is
51%.

3.6. Signal Gating. Signal gating refers to a class of general
techniques to mask unwanted switching activity from prop-
agating forward, avoiding unnecessary power dissipation. In
this paper, we use precomputation logic to disable registers
and to avoid inconsequential logic switching (guards).
Illustration of these two signal gating techniques is shown
in Figures 8 and 9, respectively. By trading area for power
in signal gating, we add a small circuit (less than 7% of the
total gate count) to minimize the switching activities of a
large scale combinational logic. In the example shown, power



EURASIP Journal on Embedded Systems 7

Exp-Golomb output

Precomputation
slice type

3

5
mb type

mb type general

en

en

en

R3

R2

R1

R

CBP decoding for
intra 16× 16

(directly mapping)

CBP decoding for
intra 4× 4

(LUT partition)

CBP decoding for
inter

(LUT partition)
Intra

mapping

Inter
mapping

P skip
mapping

I PCM
mapping

Figure 8: Precomputation for CodedBlockPattern decoding.

QPy

chroma qp
index offset

6

6

R1

R2

QPi

6

Qpi < 30

Qpi ≥ 30

Guards

QPc
decoding
(simple)

QPc
decoding

(complex)

1

0

Qpi < 30

Clip to
[0, 51] 6

QPc

Figure 9: Guarded evaluation for Chroma Quantisation Parameter (QPc) decoding.

saving is achieved when only 1/2∼1/3 of the original logic is
active at the same time.

3.7. CAVLC Decoder. CAVLC is a lossless entropy cod-
ing algorithm where VLC tables for various elements are
switched according to previously coded elements. It is used
to encode the residual data organized in 4× 4 or 2× 2 blocks
of transform coefficients.

Since the system bottleneck usually lies in the prediction
module, the CAVLC decoder, together with the serially con-
nected IQIT decoder, runs as a parallel pipeline along with
the prediction module. The input to the CAVLC decoder and
the following IQIT decoder are decoded coefficient levels.
They are zig-zag ordered at the CAVLC decoder outputs and
should be reordered before entering the IQIT decoder.

3.7.1. LUT Partition. Similar to bitstream parsing, CAVLC
decoding also needs to address several LUTs. Operation that

is the most power critical is the mapping of coeff token to
TotalCoeff and TrailingOnes as it requires the decoding of a
complex LUT (coeff token LUT in Figure 1) with 270 entries.
By exploiting the statistical distribution of coeff token as
plotted in Figure 10, and adopting a similar data-driven LUT
partition scheme described in part E, the original LUT is
divided into 16 smaller ones ordered in decreasing priority
as shown in Figure 11. Table TX0 has the highest priority and
is also much smaller than the others. Only when TX0 fails to
decode input nC, TX1 will be activated. T40 is an exception
since its decoding operation is mathematically based instead
of table lookup. A power reduction as much as 67% is
realized against the original single LUT solution.

3.7.2. Zero-Block-Aware. By simulating different video
sequences of various resolutions and QP, we observed, as
shown in Table 3, that there are many zero-valued blocks
of residual coefficients, whose distributions are not directly



8 EURASIP Journal on Embedded Systems

Table 1: Statistical results of heading one position.

Whole input
bitstream

Intra coded
frame

Inter coded
frame

Position = 0 55.36% 51.37% 56.61%

Position = 1 24.15% 24.36% 24.08%

Position = 2 11.16% 10.70% 11.31%

Position = 3 5.49% 6.21% 5.26%

Position = 4 2.17% 3.69% 1.72%

Position = 5 0.88% 1.6% 0.65%

Position = 6 0.41% 0.91% 0.25%

Position = 7 0.16% 0.4% 0.08%

Position = 8 0.08% 0.25% 0.03%

Position = 9 0.06% 0.24% 0.01%

Position = 10 0.04% 0.15% Nearly 0

Position = 11 0.01% 0.06% Nearly 0

Position = 12 Nearly 0 0.04% Nearly 0

Position = 13 Nearly 0 0.03% Nearly 0

Position = 14 Nearly 0 Nearly 0 Nearly 0

Position = 15 Nearly 0 Nearly 0 Nearly 0

Average
0.81 1.12 0.74

position

Table 2: 10 QCIF 300 frames video sequences.

QP Bitrate (kb/s)
Bits/frame
(Intra)

Bits/frame
(Inter)

Mother &
daughter

24 78.92 24,215 2,512

News 26 94.8 32,161 3,018

Akiyo 28 24.83 19,005 721

Claire 28 30.68 12,939 937

Foreman 28 130.24 21,911 4,177

Silent 30 65.06 21,350 2,058

Container 30 28.65 20,768 843

Hall 32 30.75 15,644 931

Coastguard 34 65.39 13,107 2,097

Carphone 36 45.19 10,418 1,431

related to video resolution. Skipping the decoding of these
blocks and directly setting their corresponding output to
zero would save a lot of power and improve the performance.

By combining zero block cases with normal non-
zero cases, a fast zero-block-aware switching mechanism is
adopted as in Figure 12.

Zero-block-aware can be exploited in three hierarchical
levels.

(1) Slice level: at this level, we decide whether a 16 × 16
macroblock should be skipped.

Taking the decoding of the 10 QCIF 300 frames video
sequences (Table 2) as an example, all these sequences have
significant portion of skipped MB (64%) when targeting
low-bit rate applications, as illustrated in Figure 13.

101

102

103

104

105

1
2

3
4

5
6

Most possible 1 ∼ 6 entries

Sum of
remaining entries

8 ≤ nC
4 ≤ nC < 8

nC = −1
2 ≤ nC < 4

0 ≤ nC < 2

Figure 10: Coeff token distribution.

Table 3: Zero block distribution.

QP
Percentage of Bitrate

zero block MB (kb/s)

QCIF 176× 144
Coastguard 34 42.5% 65.39

Foreman 28 26.5% 130.24

CIF 352× 288
Flower 22 23.7% 3,557

Paris 26 52.1% 1,072

4CIF 704× 576
Soccer 28 33.1% 2,879

City 32 45.3% 1,359

HDTV 1280× 720
Jets 24 54.6% 2,088

Raven 32 65.7% 1,305

HDTV 1920× 1088
Blue sky 20 33% 16,013

Rush hour 32 51% 2,499

(2) Macroblock level: at this level, we decide whether
an 8 × 8 block should be skipped. Figure 14 illustrates the
distribution of CodedBlockPattern in the aforementioned 10
QCIF video sequences. For luma components, 72% of 4 × 4
blocks in an MB are set as all-zero residual block, while
for chroma, 87% of 4 × 4 blocks contain only zero residual
coefficients.

(3) 4 × 4 block level: at this level, we decide whether a
4 × 4 block should be skipped. Statistic results show that
there is more than 50% chance that CAVLC decoding can be
terminated immediately after decoding the TotalCoeff.

The control unit for the CAVLC decoder makes use of
these zero-block-aware techniques to automatically recog-
nize block skipping and to enable signal gating to avoid
redundant operations.

4. Parameter Decoder

The parameter decoder includes three parts, Intra 4 × 4
PM (Prediction Mode) decoding, inter-MV (motion vector)
decoding, and BS (Boundary Strength) decoding. Generally,



EURASIP Journal on Embedded Systems 9

n
C

se
le

ct
io

n

0 ≤ nC < 2

2 ≤ nC < 4

nC = −1

4 ≤ nC < 8

8 ≤ nC

T00
3 entries

T10
5 entries

T20
3 entries

T30
8 entries

T40
62 entries

T01
6 entries

T11
10 entries

T21
11 entries

T31
32 entries

T02
16 entries

T12
12 entries

T32
22 entries

T03
16 entries

T13
16 entries

T04
21 entries

T14
19 entries

Figure 11: LUT partition based on statistics.

Is P skip?
Yes

No

Corresponding
CBP= 0?

Yes

No
Coeff token

LUT
TotalCoeff
= 0?

Yes

No
Continue CAVLC

decoding

All zero

All zero

All zero

Non-
zero

4× 4

residual

4× 4 block levelMacroblock levelSlice level

Figure 12: CAVLC decoder zero-block-aware.

20

40

60

80

(%
)

1 2 3 4 5 6 7 8 9 10

Video sequence

Figure 13: P skip MB distribution.

0

2

4

6

8
10

(k
)

1 2 3 4 5 6 7 87 9 10

CBP = 0
CBP = 1/2/4/8
CBP = 3/5/6/9/10/12

CBP = 7/11/13/14
CBP = 15

Figure 14: CodedBlockPattern distribution.

it can be treated either as part of prediction/deblocking
filter module [9] or as a separate decoding block. Since the
decoding of Intra 4 × 4 PM and BS are straightforward, we
only discuss the design of Inter MV decoding here.

For the tree structured motion compensation, their
corresponding motion vectors are also tree structured. Each
MV should be coded and transmitted, as well as the choices
of partitions must be signaled in the encoded bitstream.
The proposed MV decoder, as shown in Figure 15, contains
several parts. Neighboring MV Store Buffers (SBs), which
include MV LSB(Left SB) and MV USB(Upper SB), as well
as current MV store buffers MV CSB(Current SB), provide
related MVs to four distinct decoders for MV addrA∼D
decoding. We noticed that the size of MV USB should be
large enough to accommodate the entire frame row which
is 88 byte for current QCIF resolution. However, if the
resolution scales up to HDTV1080p, MV USB becomes 960
byte which should be implemented in SRAM instead of
simple DFF-based buffers.

The motion vector of each partition is 16 bits with
8 bits for x direction and 8 bits for y direction (although
H.264/AVC standard allows a much larger motion vec-
tor range, our design only implements motion vector of
[−32, 31.75] in both x and y direction). For a single MB,
its corresponding MV LSB and MV USB require 64-bit
memory access if current MB is 4 × 4 partitioned. Since
interprediction is the major prediction mode for entire
video decoding, the frequently read and write operations on
such memories cause significant access power. Based on the
observation that a substantial amount of MBs inside a video
sequence are predicted at a relatively larger partitions, that is,
16× 16, 8× 16, or 16× 8 instead of 4× 4, we propose an MV
TAG method to reduce the memory access under such kind
of large granularity cases.

The working principle of the basic TAG operation is
described in Figure 16. We add 1 bit TAG signal for both
MV LSB and MV USB. The TAG operations can be divided



10 EURASIP Journal on Embedded Systems

MV USB

M
V

L
SB

MV CSB

Sliding window A Sliding window B Sliding window C Sliding window D

Decoder A Decoder B Decoder C Decoder D
Enable

MV addrA MV addrB MV addrC MV addrD

Direct selection Median computation
Enable

MV prediction

MV

MV difference

derived from bitstream

Figure 15: MV decoder.

into two categories, write and read, as described in the
following.

Write. If the current MB is partitioned at a finer granularity
of 4×4, each 4×4 block has its unique MV, which costs 16×
(8 + 8) bit memory write plus 1-bit TAG update. However, if
current MB is partitioned at a coarse granularity of 16 × 16
or 16× 8, all the 4× 4 blocks in the current MB of the same
row are characterized with identical MV. Therefore, it is not
necessary to update all the 4 × (8 + 8) bit for the current 4
4× 4 blocks in the same row with identical value. Therefore,
only MV of first 4× 4 block is updated (since the MV for the
2nd, 3rd, and 4th 4 × 4 blocks are the same) with TAG set
to 1 that indicates same value for 4 blocks. This help to save
64− 16 = 48-bit memory write operations.

Read. when neighboring MV stored in MV LSB is to be
read out as prediction of current MV, or current MV in
MV CSB is to be read out for interpolation, corresponding
TAG information is read out first instead of the MV itself. If
TAG = 0, which means that 4 4 × 4 blocks in the same row
have different MVs, their individual MVs have to be accessed
one by one. However, if TAG = 1, which means that 4 4 × 4
blocks in the same row have the identical MV, only the MV
of first 4 × 4 block needs to be read and treated as universal
MV of all the 4 4× 4 block in a row.

The TAG method for the 4× 4 blocks in a column works
similarly. The MV LSB has only one TAG, and the MV USB
has W MB TAGs where W MB is the picture width in MB.

To further reduce the memory access power, a two-level
TAG is adopted for MV CSB. The “TAG” signal indicates the
partition mode of the entire MB (16 × 16 or not), while

“TAG0∼TAG3” denote the individual partitions of 8 × 8
blocks of current MB. If the current macroblock is predicted
in 16×16 as a whole, “TAG” is set to 1 and only the upper-left
16-bit MV of current MB is accessed and used as the MV for
entire MB. TAG0∼TAG3 and other MVs are left unchanged.
If the current partition has a smaller partition like 16 × 8,
8 × 16, or 8 × 8, “TAG” equals 0 and TAG0∼TAG3 are set
to 1. Each upper-left 16 bit MV of 4 16 bit MV group is
updated. Otherwise (partition smaller than 8 × 8), “TAG”
and TAG0∼TAG3 are assigned with 0 which indicates that all
the 16 16-bit MV of the entire MB should be accessed.

The proposed TAG method significantly reduces MV
store buffer access. The original MV access for one MB
prediction is 384 bits (64 bit MV LSB, 64 bit MV USB, and
256 bit MV CSB). By utilizing the TAG for three MV store
buffers, MV access is reduced to 108 bits/MB in average with
total 71.9% reduction.

5. IQIT Decoder

The proposed IQIT decoder works on the output from the
CAVLC decoder and generates pixel residual data for each
4 × 4 block, which will be added with prediction results to
reconstruct fully decoded pictures. According to the current
block type indicated by the syntax parser FSM, different
inverse transform modes and quantization parameters as
well as quantization sequences are utilized.

5.1. Parallel Architecture. For a complete IQIT decoder,
generally there are three steps needed to be carried out:
inverse transform (IT), rescaling (IQ, inverse quantization),
and final rounding (not the rounding inside IQ). The



EURASIP Journal on Embedded Systems 11

MB

TAG
=0 16 bit 16 bit 16 bit 16 bit

4× 4 partition

MB

TAG
= 1 16 bit 16 bit 16 bit 16 bit

16× 16 or 16× 8 partition

Horizontal reduction

Vertical reduction TAG
=0

16 bit

16 bit

16 bit

16 bit

4× 4 partition

TAG
=1

16 bit

16 bit

16 bit

16 bit

16× 16 or 8× 16 partition

M
B

M
B

48 bit access reduction

48 bit access reduction

Figure 16: Basic TAG operation.

TAG
TAG

16 bit

16 bit

16 bit

16 bit

MV LSB
MV CSB

TAG0

TAG2

16 bit

16 bit

16 bit

16 bit

16 bit

16 bit

16 bit

16 bit

TAG1

TAG3

16 bit

16 bit

16 bit

16 bit 16 bit

16 bit

16 bit

16 bit

TAG 16 bit 16 bit 16 bit 16 bit

MV USB

TAG 16 bit 16 bit 16 bit 16 bit · · ·· · ·

Figure 17: Overall MV store buffer with TAG method.

inverse transform can be further decomposed into two One-
Dimensional (1D) transforms (1D-IDCT and 2D-IDCT,
resp.) and a transpose memory. For DC coefficients, rescaling
runs after 2D-IDCT and there is no rounding operation; for
AC coefficients, rescaling comes first before 1D-IDCT and
rounding follows 2D-IDCT. Serial decoding architectures are
not suitable for high-throughput applications. In this paper,
we propose a 4-parallel architecture which is capable of han-
dling four input pixels simultaneously. The implementation
of each of the three steps, IQ, IT, and rounding, is described
below.

5.2. Inverse Quantization (Rescaling). The rescaling factor of
each coefficient is chosen based on the coefficient position
inside a 4 × 4 block. A three-dimensional LUT which
is addressed by current quantization parameter and x/y
coordinates of input coefficients is used to derive the rescale
factor. The input coefficients are first multiplied by their
individual rescaling factor, the results are then rounded
(shifted) to achieve the final IQ results. Four-stage pipeline

with 4-parallel Processing Element (PE) are adopted as
shown in Figure 18.

In a single PE, QPy and QPc are selected by a 2-1
mux to get current QP which is used to address two LUTs:
mod6 LUT and div6 LUT. The standard originally requires
MODULAR and DIVISION operations for QP; however, it
is not wise and power-efficient to use dedicated modular
and divider as QP has only 52 possible values. The design
reported in [16] adopts recursive subtraction which needs
additional subtracters and causes long latency. We offer
an alternative solution: two LUTs instead of two complex
arithmetic modules. In comparison, LUT is faster, smaller,
and more power efficient. The only disadvantage is the
loss of flexibility which is not a concern in a dedicated
decoder.

5.3. Inverse Transform. The inverse transform specified in
H.264/AVC can be decomposed into a transpose memory
sandwiched between two separate 1D transforms. For a 4× 4
block, a total of 16 residual values need to be transformed



12 EURASIP Journal on Embedded Systems

Stage 1
4-parallel

Stage 2
4-parallel

Stage 3
4-parallel

Stage 4
4-parallel

QPy

QPc

x position

y position

Coefficient

Fixed value
M

u
x QP Mod6

LUT

Div6
LUT

Rescaling
factor
LUT

Su
b

M
u

l Shift

value
Arithmetic

shifter

Shift length

R
eg

is
te

r

R
eg

is
te

r

PE0

PE1

PE2

PE3

4-
pa

ra
lle

l

PE

Figure 18: Pipelined inverse quantization.

D0

D2

D1

D3

1/2

1/2

ACCU0

ACCU1

ACCU2

ACCU3

ACCU4

ACCU5

ACCU6

ACCU7

F0

F1

F2

F3

+

+

+

+

+

+

+

+

−

−
−

−

Figure 19: Hybrid 1D-IDCT architecture.

and they are organized in a 4-parallel subblock when going
through a 4-stage pipeline.

5.3.1. Reconfigurable IDCT Unit. To reduce the hardware
cost, a reconfigurable IDCT unit for all three transforms
(4×4 AC, 4×4 DC, 2×2 DC) is proposed in Figure 19. For AC
or 2 × 2 DC transform, the multiplexers before ACCU2 and
ACCU3 select either the direct input or the 1/2 scaled version
for the 4 × 4 DC transform. Thus a single reconfigurable
IDCT processing unit is capable of handling all the three
different inverse transforms.

5.4. Pipelining and Parallelism. The IQIT decoding clock
cycles of individual tasks for each 4 × 4/2 × 2 block are
summarized in Table 4.

The cycle numbers in Table 4 represent clock cycles when
4-parallel architecture is utilized. For one macroblock coded

Table 4: Individual tasks decoding cycle (4-parallel, wO pipeline).

IQ IT Final rounding Total

Luma DC (4× 4) 4 8 0 12

Luma AC (4× 4) 4 8 4 16

Chroma DC (2× 2) 1 1 0 2

Chroma AC (4× 4) 4 8 4 16

as Intra 16 × 16 mode, it needs (1 × 12 + 2 × 2 + 24 ×
16) = 400 cycles, while for one macroblock coded other than
Intra 16 × 16 mode, it requires (2 × 2 + 24 × 16) = 388
cycles. However, this throughput lags behind prediction part
and can be further improved by pipelining. The proposed
pipelining reduces 4 × 4 luma DC decoding from 12 cycles
to 9 cycles and reduces 4×4 luma/chroma AC from 16 cycles
to 10 cycles, as illustrated in Figure 20.

Figure 21 summarizes that in general 36.8% and 37.1%
clock cycles can be saved by pipelining for Intra 16 × 16
macroblock and other macroblocks, respectively.

5.5. Power Saving Techniques. It is observed that not all
residual blocks need to run through all IQIT steps. All-
zero blocks can skip the whole IQIT decoding while DC-
only blocks do not need any inverse transform. Current
designs like those in [17, 26] have not taken this into account
and process all the residual blocks in the same manner. In
the proposed design, residual blocks are handled differently
according to their types.

For 4 × 4 blocks containing nonzero AC coefficient,
they undergo the complete IQIT process, including inverse
quantization and transform. For 4 × 4 blocks containing
DC-only blocks, only their DC values are inverse quantized
and rounded and then expanded to all coefficient levels; no
inverse transform is invoked. For all-zero blocks, they skip



EURASIP Journal on Embedded Systems 13

Without
pipeline

With
pipeline

2 4 6 8 10 12 14 16

Luma/chroma AC

Clock
cycle

Rounding
1D-IDCT 2D-IDCT
IQ

IQ 1D-IDCT 2D-IDCT Rounding

2 4 6 8 10 12
Luma DC

Clock
cycle

IQ
1D-IDCT 2D-IDCT

IQ2D-IDCT1D-IDCT
Without
pipeline

With
pipeline

Figure 20: Pipeline improvements.

0

50

100

150

200

250

300

350

400

C
yc

le
n

u
m

be
r

400

253

388

244

In
tr

a
16
×

16
w

it
h

ou
t

pi
pe

lin
e

In
tr

a
16
×

16
w

it
h

pi
pe

lin
e

O
th

er
m

od
es

w
it

h
ou

t
pi

pe
lin

e

O
th

er
m

od
es

w
it

h
pi

pe
lin

e

Figure 21: Clock cycle savings by pipelining.

the whole IQIT module and an “all-zero” flag is used to
signal the later sum module, which adds “residual” with
“prediction” together. This technique not only reduces the
power consumed by the IQIT module itself but also leads to
savings in the sum module as well, since summation can be
avoided when all-zero blocks are encountered.

The occurrence distribution of these three blocks, all-
zero, DC-only, and normal block, is described as percentage
in Figure 22. This distribution is obtained from simulation
of same 10 video as mentioned before. The exact distribution
percentage for other video sequence may be different but not
by a lot. There are always a large percentage of all-zero blocks
and some DC-only blocks.

The aforementioned “skip” characteristic, as well as the
relatively regular structure of the IQIT decoder, provides the
possibility of clock gating at each decoding stage.

A uniform clock gating scheme is not viable as not
all IQIT components are active at the same time. Separate

IQ

1D
-I

D
C

T

2D
-I

D
C

T

R
ou

n
di

n
g

All-zero
blocks (95.4%)

DC-only
blocks (0.87%)

Normal
blocks (3.73%)

Skip IQIT

Skip IT

Figure 22: Skipping mechanism for different blocks.

4× 4 from
CAVLC IQ

1D
-I

D
C

T

2D
-I

D
C

T

R
ou

n
di

n
g

4× 4 to
sum

Slice/macroblock/block level decoding parameters

Clock

C1 C2 C3 C4

α : Gated clock active rate

gclk1
α1 = 4.25%

gclk2
α2 = 5.12%

gclk3
α3 = 4.71%

gclk4
α4 = 3.73%

Figure 23: IQIT decoder clock gating scheme.

clock gating arrangement for IQ, 1D-IDCT, 2D-IDCT, and
rounding allows each function unit to be selectively enabled
or disabled. Each gating condition is precomputed one cycle
ahead. These heterogeneous gated clocks are depicted in
Figure 23; gclk1∼gclk4 are generated separately according to
different conditions.

6. Design Implementation

6.1. Design Flow. The proposed bitstream-residual decoder
is coverified with the prediction module to realize a complete
H.264/AVC decoding system. High level SystemC model was
first constructed to verify the behavior of the whole decoder
system and to identify power reduction opportunities at
system level. HDL design flow was then employed to reduce
the design time and to obtain a technology independent
design. The whole decoder was partitioned into several
building blocks which were coded and verified individually
before system integration. To facilitate debugging, we com-
pared the intermediate results generated from the proposed
decoder with the associated test patterns captured from the
H.264/AVC reference software JM94 [18]. The proposed
bitstream-residual decoder was demonstrated firstly in an
FPGA, then in an ASIC implementation of a complete
H.264/AVC baseline decoder. Finally, the chip was measured
under various supply voltages.



14 EURASIP Journal on Embedded Systems

Figure 24: FPGA verification environment.

Sy
n

ta
x

pa
rs

er

Pa
ra

m
et

er
de

co
de

r

IQIT

(a)

Technology UMC 0.18 μm
CMOS 1P6M

Area 6.5 mm2

Gate count 61.6 k
Normal supply voltage 1.8 V
frequency 1.5 MHz
voltage 1.8 v

Measured Power 69 μW @ 1V
230 μW @ 1.8V

(b)

Figure 25: Chip photograph.

6.2. FPGA Prototyping. The whole decoder system has been
realized on a Xilinx emulation board shown in Figure 24. The
board consists of one Virtex4 [19] FPGA which implements
the decoder logic and one Epson chip which controls the
on-board TFT-LCD display. The FPGA-oriented RTL code
is synthesized, translated, placed and routed by Xilinx ISE
software, and simulated by ModelSim. The encoded video
sequences are fed into the FPGA RAM and are sequentially
fetched by the bitstream buffer of the bitstream-residual
decoder. After decoding, YUV format video pictures are
translated into RGB format and then are written to the
display memory for real-time display at 30 fps. Noted that
the test videos are all 300 frames of QCIF size, they occupy
only part of the 320×240 LCD display. The decoder takes up
7,048 4-input LUTs with an equivalent gate count of about
337,109.

Table 5: Gate count and power profiling.

Syntax parser Parameter decoder IQIT decoder

Gate count 23 k 24.3 k 14.3 k

Power (1.8 V) 148 μW 95.3 μW 9.7 μW

6.3. ASIC Implementation. The RTL-level ASIC-oriented
Verilog code was synthesized using UMC 0.18 μm 1P6M
standard cell technology by Synopsys Design Compiler. The
layout was realized by Synopsys Astro, and the postlayout
power consumption was obtained by Synopsys Prime Power.
The chip photograph and the specifications of the bitstream-
residual decoder are outlined in Figure 25. The implemented
gate count and power profiling are described in Table 5.

In order to maximize the power efficiency, supply voltage
scaling is needed since it has a quadratic effect on the power
consumption. The architecture level pipelining and paral-
lelism relax the constraint on the operating frequency and
thus provide the possibility of scaling. Since the standard cell
library was characterized at 1.8 V, the timing specifications
for 1 V supply need to be translated into 1.8 V.

The datapath timing delay can be modeled as (5):

d = kVdd

(Vdd −Vth)α
, (5)

where d is the path delay, k is an execution time constant,
Vdd is the supply voltage, Vth is the transistor threshold, and
α is the alpha power law constant [20]. For UMC 0.18 μm
technology, Vdd =1.8 V, Vth =0.5 V, and α ≈ 1.2. Based
on this model and the cell delay estimation from [21], the
datapath delay under 1 V supply voltage is estimated to
be 1.6∼1.8 times larger than that under 1.8 V supply. To
reserve a certain margin and to cope with process variation,
we assume that the path delay is 2 times larger. Therefore,
designing for 1.5 MHz at 1.0 V translates to 3 MHz equivalent
timing constraint for logic synthesis and physical design
under the normal case model (25◦C, 1.8 V).

6.4. Comparison. As compared with designs in [8, 22], the
proposed design has similar number of gates as in [22], while
reducing gate count significantly over [8].

The proposed decoder is able to decode QCIF sequence
of 30 fps at 1.5 MHz. Compared with [5, 7] in Table 7, this
work is the most throughput-efficient.

The power consumption breakdown for the bitstream-
residual decoder is described in Figure 26. The syntax parser
consumes the most power due to its high switching activity.
A large portion of the CAVLC decoder power is used in nC
decoding, which requires complex memory access. Although
the IQIT module accounts for more than 1/5 of the total
gates, its power consumption is less than 4% of the total due
to the clock gating and the innovative skipping mechanism.
The gate count of the parameter decoder is the largest among
the three blocks, but its power consumption is less than the
syntax parser for its low activity and extensive clock gating in
memory access.

The power comparisons of the VLC decoder, syntax
parser, and IQIT decoder are described in Tables 8, 9, and 10,



EURASIP Journal on Embedded Systems 15

Table 6: Gate count comparison.

Syntax parser Parameter decoder IQIT decoder

Proposed 23 k 24.3 k 14.3 k

[22] 19.8 k NA 19.8 k

[8] 52 k+2176 bit memory 29.8 k (only for inter MV) 9.3 k+7040 bit memory

Table 7: Performance comparison.

[7] [5] Proposed

Capability 720× 480 @ 30 fps 176× 144 @ 15 fps 176× 144 @ 30 fps

Frequency 25 MHz 1.15 MHz 1.5 MHz

Normalized throughput 0.414 Mpix/MHz 0.330 Mpix/MHz 0.506 Mpix/MHz

Table 8: VLC decoder power comparison.

[23] [24] Proposed

Frequency 20 MHz N/A 1.5 MHz

Power consumption 183 μW 75 μW 53 μW

Table 9: Syntax parser power comparison.

[25] Proposed

Frequency 27 MHz 1.5 MHz

Power consumption 2.87 mW 148 μW

Table 10: IQIT power comparison.

[24] [26] [27] Proposed

Frequency N/A 80 MHz 50 MHz 1.5 MHz

Power consumption 113 μW 13.7 μW 4.7 μW 9.7 μW

respectively. All the reference designs are scaled to 0.18 μm
technology with 1.8 V supply for a fair comparison. Note that
[23, 25] handle standards simpler than H.264/AVC, while
[26, 27] contain only IDCT which is half of a full IQIT
decoder.

All the power comparison above of the proposed design
was measured under 1.8 V supply voltage. The power can be
further reduced when the voltage is scaled down to 1 V.

To summary, the power saving happens in all building
blocks as shown in Figure 27. Original is our raw implemen-
tation without any power optimization. The IQIT decoder
achieves the largest power reduction due to the skip mecha-
nism with nonuniform clock gating. The main contribution
of the syntax parser derives from the power optimized
CAVLC decoder. Regarding the parameter decoder, power
saving in MV decoding plays a major role. Besides these
individual power reduction techniques used in the building
blocks, voltage scaling on the whole decoder may contribute
as much as 70% power saving. Under 1 V supply voltage, the
power consumption of the proposed decoder is 76 μW for
QCIF 30 fps decoding.

IQIT Other syntax parser

CAVLC
decoder

Bitstream
buffer

Intra PM
decodingBS

decoding

Inter MV
decoding

20.2%3.8%

27.3%

4.9% 5.6%
17%

21.2%

Figure 26: Residual decoder power consumption breakdown.

0

100

200

300

400

500

600

Po
w

er
(μ

W
)

Original

Syntax parser
power reduction

Parameter decoder
power reduction

IQIT decoder
power reduction

Voltage scaling
power reduction

−70%

−54%

−93%

−70%

1 V supply

1.8 V supply

Figure 27: Power reduction overview.

7. Conclusion

In this paper, a new architecture of a low-power bitstream-
residual decoder for H.264/AVC baseline decoding has been
introduced. Novel low power building blocks are proposed
and analyzed. Various power reduction techniques are uti-
lized in the architecture level and the circuit level. No special
process-dependent techniques like multi-Vth are adopted,
thus making the proposed design easily portable.

The FPGA verification is realized with Xilinx Virtex4
device. The VLSI implementation demonstrates that it is
readily realizable in an ASIC [28]. Implemented with the
UMC 0.18 μm technology, the proposed residual decoder



16 EURASIP Journal on Embedded Systems

uses 61.6 k gates and occupies 1/3 of the whole decoder
area. When running at 1.5 MHz for real-time QCIF 30 fps
decoding, this work consumes 253 μW at 1.8 V and 76 μW
at 1 V supply. The entire decoder architecture is scalable,
and all the techniques in this paper can be applied to larger
resolutions other than QCIF. Currently we are implementing
HDTV1080p decoder based on this architecture.

Acknowledgments

The authors thank Min Zhang for his help during FPGA
implementation and thank ASTRI Company for providing
the FPGA emulation board. The work is supported by a Hong
Kong SAR Government of Direct Grant of no. 2050332.

References

[1] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,” IEEE
Transactions on Circuits and Systems for Video Technology, vol.
13, no. 7, pp. 560–576, 2003.

[2] I. E. G. Richardson, H.264 and MPEG-4 Video Compression,
John Willey & Sons, New York, NY, USA, 2003.

[3] H. S. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky,
“Low-complexity transform and quantization in H.264/AVC,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 13, no. 7, pp. 598–603, 2003.

[4] S.-H. Wang, W.-H. Peng, Y. He, et al., “A platform-based
MPEG-4 advanced video coding (AVC) decoder with block
level pipelining,” in Proceedings of the International Conference
on Information, Communications and Signal Processing, vol. 1,
pp. 51–55, December 2003.

[5] T.-M. Liu, T.-A. Lin, S.-Z. Wang, et al., “A 125 μW, fully
scalable MPEG-2 and H.264/AVC video decoder for mobile
applications,” IEEE Journal of Solid-State Circuits, vol. 42, no.
1, pp. 161–169, 2007.

[6] T.-M. Liu, T.-A. Lin, S.-Z. Wang, et al., “An 865-μW
H.264/AVC video decoder for mobile applications,” in Pro-
ceedings of IEEE Asia Solid-State Circuits Conference, pp. 301–
304, November 2005.

[7] C.-C. Lin, J.-W Chen, H.-C. Chang, et al., “A 160K
gates/4.5 KB SRAM H.264 video decoder for HDTV applica-
tions,” IEEE Journal of Solid-State Circuits, vol. 42, no. 1, pp.
170–182, 2007.

[8] S. Park, H. Cho, H. Jung, and D. Lee, “An implemented
of H.264 video decoder using hardware and software,” in
Proceedings of the Custom Integrated Circuits Conference, pp.
271–275, September 2005.

[9] K. Xu and C.-S. Choy, “A power-efficient and self-adaptive
prediction engine for H.264/AVC decoding,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 16,
no. 3, pp. 302–313, 2008.

[10] K. Xu, C.-S. Choy, C.-F. Chan, and K.-P. Pun, “Power-efficient
VLSI implementation of bitstream parsing in H.264/AVC
decoder,” in Proceedings of IEEE International Symposium on
Circuits and Systems, pp. 5339–5342, May 2006.

[11] J.-H. Li and N. Ling, “Architecture and bus-arbitration
schemes for MPEG-2 video decoder,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 9, no. 5, pp.
727–736, 1999.

[12] D. Wu, W. Gao, M. Z. Hu, and Z. Z. Ji, “An Exp-Golomb
encoder and decoder architecture for JVT/AVS,” in Proceedings
of the 5th International Conference on ASIC, vol. 2, pp. 910–
913, October 2003.

[13] K. Xu, C.-S. Choy, C.-F. Chan, and K.-P. Pun, “Priority-based
heading one detector in H.264/AVC decoding,” EURASIP
Journal on Embedded Systems, vol. 2007, Article ID 60834, 7
pages, 2007.

[14] S. H. Cho, T. Xanthopoulos, and A. P. Chandrakasan, “A
low power variable length decoder for MPEG-2 based on
nonuniform fine-grain table partitioning,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 7, no. 2,
pp. 249–257, 1999.

[15] K. Xu, C.-S. Choy, C.-F. Chan, and K.-P. Pun, “A low-power
bitstream controller for H.264/AVC baseline decoding,” in
Proceedings of the 32nd European Solid-State Circuits Con-
ference (ESSCIRC ’06), pp. 162–165, Montreux, Switzerland,
September 2006.

[16] I. Amer, W. Badawy, and G. Jullien, “Hardware prototyping
for the H.264 4 × 4 transformation,” in Proceedings of
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP ’04), vol. 5, pp. 77–80, May 2004.

[17] Y.-T. Kuo, T.-J. Lin, C.-W. Liu, and C.-W. Jen, “Architecture for
area-efficient 2-D transform in H.264/AVC,” in Proceedings of
IEEE International Conference on Multimedia and Expo (ICME
’05), pp. 1126–1129, July 2005.

[18] Joint Video Team (JVT) reference software JM9.4, http://
iphome.hhi.de/suehring/tml/download.

[19] Xilinx, Inc., Xilinx Virtex4 Data Sheets, http://www.xilinx
.com/support/documentation/index.htm.

[20] K. A. Bowman, B. L. Austin, J. C. Eble, X. Tang, and J. D.
Meindl, “A physical alpha-power law MOSFET model,” IEEE
Journal of Solid-State Circuits, vol. 34, no. 10, pp. 1410–1414,
1999.

[21] Virtual Silicon, “0.18 μm Standard Cell Library,” revision 1.0,
pp. 4–7, July 2004.

[22] T.-C. Chen, C. Lian Jr., and L.-G. Chen, “Hardware architec-
ture design of an H.264/AVC video codec,” in Proceedings of
the Asia and South Pacific Design Automation Conference (ASP-
DAC ’06), pp. 750–757, January 2006.

[23] T.-H. Tsai, W.-C. Chen, and C.-N. Liu, “A low-power VLSI
implementation for variable length decoder in MPEG-1
Layer III,” in Proceedings of the International Conference on
Multimedia and Expo (ICME ’03), vol. 1, pp. 133–136, July
2003.

[24] T.-A. Lin, T.-M. Liu, and C.-Y. Lee, “A low-power H.264/AVC
decoder,” in Proceedings of IEEE VLSI-TSA International
Symposium on VLSI Design, Automation and Test (VLSI-TSA-
DAT ’05), pp. 283–286, April 2005.

[25] Y. C. Chang, C. C. Huang, W. M. Chao, and L. G. Chen, “An
efficient embedded bitstream parsing processor for MPEG-
4 video decoding system,” in Proceedings of the International
Symposium on VLSI Technology, Systems and Applications, pp.
168–171, 2003.

[26] T.-C. Wang, Y.-W. Huang, H.-C. Fang, and L.-G. Chen,
“Parallel 4×4 2D transform and inverse transform architecture
for MPEG-4 AVC/H.264,” in Proceedings of IEEE International
Symposium on Circuits and Systems, vol. 2, pp. 800–803, May
2003.

[27] K.-H. Chen, J.-I. Guo, K.-C. Chao, J.-S. Wang, and Y.-S.
Chu, “A high-performance low power direct 2-D transform



EURASIP Journal on Embedded Systems 17

coding IP design for MPEG-4 AVC/H.264 with a switching
power suppression technique,” in Proceedings of IEEE VLSI-
TSA International Symposium on VLSI Design, Automation and
Test (VLSI-TSA-DAT ’05), pp. 291–294, April 2005.

[28] K. Xu and C. S. Choy, “Low-power H.264/AVC baseline
decoder for portable applications,” in Proceedings of the
International Symposium on Low Power Design, pp. 256–261,
Portland, Ore, USA, September 2007.


	1. Introduction
	2. System Architecture
	2.1. System Block Diagram
	2.2. Pipeline Architecture

	3. Syntax Parser
	3.1. Parser Structure
	3.2. Circular Bitstream Buffer
	3.3. Heading One Detector
	3.4. Complex FSM Design
	3.5. Data Driven LUT Partition
	3.6. Signal Gating
	3.7. CAVLC Decoder
	3.7.1. LUT Partition
	3.7.2. Zero-Block-Aware


	4. Parameter Decoder
	5. IQIT Decoder
	5.1. Parallel Architecture
	5.2. Inverse Quantization (Rescaling)
	5.3. Inverse Transform
	5.3.1. Reconfigurable IDCT Unit

	5.4. Pipelining and Parallelism
	5.5. Power Saving Techniques

	6. Design Implementation
	6.1. Design Flow
	6.2. FPGA Prototyping
	6.3. ASIC Implementation
	6.4. Comparison

	7. Conclusion
	Acknowledgments
	References



