Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2009, Article ID 282708, 12 pages
doi:10.1155/2009/282708

Research Article

Microcontroller-Based Process Monitoring Using Petri-Nets

Marcos R. Frankowiak, Roger I. Grosvenor, and Paul W. Prickett

School of Engineering, Cardiff University, Queens Building, Newport Road, Cardiff CF24 3AA, UK

Correspondence should be addressed to Paul W. Prickett, prickett@cf.ac.uk

Received 29 July 2008; Revised 17 October 2008; Accepted 25 November 2008

Recommended by Wilfried Elmenreich

This paper considers the development of a Petri-net-based modelling tool as a mechanism for process and system monitoring.
The use of Petri-nets, which has previously been largely based in the areas of systems modelling and simulation, is shown here to
have great potential for deployment as a process monitoring and management application. Interfacing with real-world processes
has been achieved in part by introducing a specific set of extensions to the original Petri-net concept. This work has resulted in the
engineering of a tool that can be embedded within the process using a microcontroller platform. The potential for such systems to
provide low cost, yet powerful process management tools, is becoming increasingly evident, particularly given the ever-improving

capabilities of microcontrollers.

Copyright © 2009 Marcos R. Frankowiak et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. Introduction

The increasing level of complexity associated to many
engineering systems requires the use of design methodolo-
gies that enable their representation, comprehension, and
analysis. One such method, Petri-nets, was proposed in
the early 1960’s by Carl Adam Petri. Since then the basic
concepts have been developed and explored [1, 2]. Although
representing a mathematical formalism, the main feature
of Petri-nets is their capability of describing a system’s
behaviour in a graphical manner making the approach
suitable for modelling many engineering applications [3,
4]. Researchers have continuously suggested changes to the
original concepts and developed improvements including
some aimed at model validation thus supporting enhanced
accuracy and reliability [5] and in order to better represent
real-life situations [6]. It is not the aim of this paper to
present a full consideration of this research, much of which,
particularly work aimed at modelling manufacturing systems
[7], has been recently classified and reviewed [8]. Other uses
of the method include the development of fault detection
and isolation methods [9] and its deployment in relation
to process and condition monitoring [10]. The above taken
together clearly makes the case for considering Petri-net
models to be powerful and flexible tools with many potential
applications.

The approach described here in is based upon devel-
opments to Petri-net theory and application to support
the deployment of the designed system model within a
microcontroller. This exploits characteristics such as concur-
rency, sequencing, and synchronisation that make Petri-nets
a powerful tool for the representation and modelling of a
variety of discrete event systems. Similar developments, such
as in the use of the technique for the implementation of pro-
gramming languages [11] and as a graphical programming
method aligned with the acquisition and issuing of real-time
signals [12] led to Petri-net based computer (PC) and PLC
applications.

The potential of deploying Petri-nets in the creation
of microcontroller software design was clearly identified
in the early 1990’ [13]. The author was able to harness
the modelling attributes of Petri-nets, which allowed the
incorporation of interrupts, into controller software at the
design stage. The advantages and potential of deploying this
approach were illustrated in this paper in the context of
the operation of a bank of eight switched telephone lines.
More extensive discussion of the benefits and associated
implementation examples were provided in a later publi-
cation [14]. One limiting factor on the deployment of this
approach was the computing power of the then available
microcontrollers. The author identified the use of multiple
processors implementations as a possible resolution of these

limitations. He also suggested ways of designing the software
to overcome problems arising due to limitations of the
available microcontroller memory. It is with the deployment
of Petri-nets within into the much more powerful present
day microcontroller platforms that the research undertaken
within the Intelligent Process Monitoring and Management
(IPMM) Centre has been focussed [15]. The added com-
putational power and enhanced communication facilities
thus made available have allowed for the utilisation of more
complicated Petri-net models that can obtain their interrupt-
related information from a wider range of sources. The work
follows the development of a Petri-net-based machine tool
monitoring and management system [16], and is based upon
the increasing capabilities of microcontrollers to perform
data acquisition and analysis functions [17, 18] which have
supported machine tool-related applications [19, 20].

2. Petri-Net Representation

A Petri-net is a representation of a system or process
in the form of a graphical model, intended to either
explain or formally document the subject, often for human
interpretation. Formally a Petri-net structure “C” may be
taken to comprise of a finite set of places “P” and a finite
set of transitions “T.” Places equate to a representation of a
system state, transitions represent the events occurring in the
process execution. The sets of places P and transitions T are
disjoint, as defined by

PNT=0, (1)

where P(pi, p2,...,pn) is a finite set of places, n = 0 and
T(t1,ts,..., 1) is a finite set of transitions, k > 0.

The relationship between places and transitions may be
defined in terms of input “I” and output “O” functions.
Peterson [1] described I(¢;) as a mapping of the input
places of a transition ¢;, while O(¢;) maps the output places
of a transition #;. The relationship between places and
transitions, in terms of input and output functions, can be
described as follows:

pi. is an input place of ¢;,
pi is an output place of ¢;,

lfp, e I(t),
ifpcot). @

To support the approach developed later in this work, an
extension of these relationships is assumed:

tj is an input transition of p;,
tj is an output transition of p;,

if t; € I(pi),
it copn, O

These relationships allow the definition of the Petri-net
structure C in the form of the four tuple; C = (P, T,I,0).
The Petri-net represents a system in terms of a sequence
of events and states; the firing of transitions modifies
such states. To enable the execution of these transitions
primitive elements know as tokens are introduced. By adding
(generating) and removing (destroying) tokens within places
the enabling of transitions is achieved. The dynamic of the
net structure, and of the system or process being modelled,
may thus be enabled by the generation of tokens following

EURASIP Journal on Embedded Systems

specified events and the distribution of such tokens in places.
This is known as the Petri-net mapping and is defined by the
marking vector “u.” The marking vector and the set of places
are closely related; the marking “M” of a Petri-net can be
described as M = (P, T,1, O,). The initial marking vector is
described as y° and represents the very first marking map of
the system. The execution of a Petri-net can then be defined
in terms of a sequence of firing transitions (o, tj1,%2,...)
and a sequence of marking vectors (1%, !, p?,...).

Given the initial 4° and the sequence of transitions
that represent the Petri-net execution, it is possible to
determine the sequence of marking vectors. Similarly, given
the marking sequence, it is possible to establish the sequence
of transitions of the Petri-net execution. The capability of
reaching a marking y* from a previous marking by means
of a sequence of firing transitions is defined as “reachability”
and represents a useful property for the analysis of Petri-
net models. This relationship can be used to determine
the firing sequence vector, since the marking vector is
known. Although the main strength of Petri-nets is graphical
representation, this sort of mathematical formalism becomes
important to support analysis methods to validate a model.
Since graphical representations provide a more accessible
and easier to understand model of systems, most Petri-net
modelling procedures are illustrated using a Petri-net graph.
The equivalence between the structure outlined above and a
graph is presented in Figure 1.

This graphical representation of the Petri-net as a
bipartite directed multigraph depicts the sets of places P,
transitions T, and a representation of the input and output
functions in the form of a number of arcs “A.” These arcs
represent the relation between the places and transitions; A =
(a1,4a2,as,...). A token, which is represented as a dot within
a place in the graphical interpretation, resides in a place and
illustrates the current state of the system at any given time;
the assignment of tokens to places is the “marking” of the
net. Thus, by adding tokens, the ability to execute the Petri-
net is achieved. As events are represented by transitions in
the Petri-net, the execution of the event occurs when the
correct number of tokens has been assigned to the places
of the transition’s input function. Events are executed by
the firing of transitions, whereby the tokens from the input
places are removed and token(s) are assigned to each of the
output place(s) of the transition. This can only be achieved
if the transition is enabled, whereby for each input place p of
transition t a marking of at least the weight of the arc from p
to t is satisfied.

2.1. IPMM Extensions of Petri-Nets. Over several years,
IPMM researchers have developed Petri-nets to introduce
a revised management technique for the progression of
tokens through the entire model, which can include multiple
individual nets. The IPMM strategy was motivated by the
need for process modelling in machine tool condition
monitoring [16]. In this modified approach, tokens move
top-down through the net, originating at a token generator
“G” and being disposed of in a token bin “B” at the bottom.
The token generator facilitates interactions with processes

EURASIP Journal on Embedded Systems

)41

P2

Iy

48

a
ot

C=(P,T,I,0)
P = (p1+ pa+ ps+ pat ps+ pe+ p7+ ps)
T = (h1+ ta+ t3+ ty)

I(t1) = (p1) O(t1) = (p3,pa)
I(t2) = (p2,p3) O(t2) = (ps)
I(t3) = (pa,ps) O(ts) = (p7)
I(ts) = (pe>p7) O(ty) = (ps)

F1GURE 1: Graphical and textual representations of Petri-nets.

and events outside the definition of the net, which is intended
to equate to events prior to the process under observation.
Likewise, the token bin represents the end of the process. By
definition there is one token generator for each net but there
may be one or more token bins.

By defining the token generator and bin, IPMM modelled
nets facilitate a degree of process encapsulation that allows
for their existence as part of a larger process without the
need to explicitly state the full process definition. The system
interpreter needs only to understand that a token will be
introduced to the system at the generator and leave at the
bin. This ensures an explicit and obvious path through all
modelled nets to manage overall net execution. In particular,
the requirement for all net paths to terminate at a token bin
ensures that modelled processes have a well-defined finish
point, and as they can be counted at entry and exit of the net,
tokens are less likely to become unnoticeably stalled within
the net.

Graphical Petri-net models, as with state diagrams and
flow charts, quickly become large in size which can cause
significant problems in their comprehension. IPMM nets
implement a modular approach by decomposing the overall
net into a series of subnets, linked by a control-net. Formally,
every IPMM Petri-net modelled system has a single control-
net, together with zero or more subnets. The use of subnets is
another important concept where in a system can be divided
into specific parts, easing the modelling task and improving
the potential for analysis. By employing such notation, a
set of elements of the Petri-net might be abstracted to a
single element to simplify the main net representation. A
complicated system based on several hierarchical levels can
be represented by nested subnets.

Dividing a process into a series of subprocesses improves
both development and comprehension ease without intro-
ducing a significant processing overhead. This follows a
well-established practice in most nontrivial programming
languages of implementing subroutines or subprocedures
to perform a task before returning to the main execution
of the program. Where the process defined in a subnet
is called by different parts of the control-net, a saving of

development time and a reducing in the potential for error
is experienced. For example, in typical practical applications
the execution of an emergency stop procedure could be
called from any point of the process. Without subnets this
would require either multiple definitions within the net,
or a more complicated process definition to ensure it was
reachable from every transition. The subnetting allows for
a simple call to the subnet in the event of an emergency
stop, promoting simplicity, procedure reuse and the inherent
verification benefits associated with net standardisation.

Enhancements have also been made to the traditional
transition to incorporate a series of both digital and analogue
inputs from the modelled process. These are typically
induced Boolean variables (direct digital states from switches
or conditional range analysis from analogue inputs), which
can also be negated to provide additional functionality. Input
signals can thus be considered as external sensory or process
information entering the model. In practical terms, this
could include switches, gauges or, other type of sensors.
For simplicity in definition, it is assumed the output value
is discrete and easily measurable, and that the number of
potential signals is limited to a few values per transition.
This process is made possible and practical by the use
of a microcontroller to continuously acquire and analyse
appropriately conditioned signals and to make decisions
regarding thresholds, and so forth. as described later in
this paper. The addition of inputs to the basic transitions
changes the way in which transitions fire. In addition to each
input place of the transition needing to have the prescribed
number of tokens as previously outlined, the input signal
requirements also need to be satisfied.

From the above it can be stated that Petri-nets can sup-
port a modelling method that has mathematical formalism.
Up to this point their main strength has been in providing
graphical representations. One of the characteristics of the
method is the capability of modelling systems as sequences
of discrete events and states. To enable the method to better
function as a management and monitoring tool for real-life
systems the implementation of microcontroller-based nets
described below was enacted.

3. The Modelling Approach

To deploy this method for system or process monitoring
each place in a net must be taken as being representative
of the process state being monitored. Assuming that is a
finite number of input signals “k,” there will be a set of
input conditions, “X” defined by X = (x1,x2,%3,...,xx) that
represent the conditions required to enable the entire set of
Petri-net transitions. Given that the entire set of places of the
Petri-net are defined as previously by P(p1, p2, P3>---> Pm)>
then, the firing event of a transition ¢; is controlled by two
functions:

S(tj) = f(Xj1 X205 Xjw)s

Q(tj) = fAI(L), pl,

where I(t;) is the input function of the transition ¢; and y is
the Petri-net marking vector outlined in the previous section.
The function S represents the logical relation of all the input
signal conditions associated to a specific transition and can
only assume 0 (false) or 1(true). Thus,

w=0,w<k,

(4)

S(t]) = Xj1 'ij 0.Xj3 ® - - OX]'W. (5)

Each x; represents a condition of a specific input signal
in the domain of the specific transition. Therefore, x; will
also assume the logic representation 0 or 1. Considering a
transition ¢;, which requires an input signal condition x; s to
be satisfied, then x; can be described as

xif = f(yicji), (6)

where y; is a specific input signal of the entire set
Y(y1, Y25+ -+ Yis- .. » ¥z) of the monitored process signals and
cji is the desired status of this signal in the domain of
transition ¢;. Therefore,

xjr =0 if the status of y; # ¢ji,)
xjr =1 if the status of y; = ;.
Consequently,
S(tj)) =1 ifall xjr =1,
(]) if (8)

S(tj) =0 if any xjr = 0.

The second condition required to enable a transition t;
is represented by Q(t;). This is restricted to two options,
enabled or not enabled. Hence, the function can also be
considered as assuming two logic states: 0 and 1. This
results in the following relationships, considering an existing
marking u:

Q(t) =1
Q(t) =0

if p satisfies I(¢;) so that ¢; is enabled,
if 4 does notsatisfy I(¢;) in order to enable t;.
)

Either S(¢;) and Q(t;) can prevent ¢; from being fired,
however both are required to be true in order to enable ¢;.
This can be expressed as

S(tj) « Q(tj) =0,
S(t;) » Q(t5) = 1,

then ¢; is not enabled, (10)
then ¢; is enabled.

EURASIP Journal on Embedded Systems

Finally, it can be concluded that

‘le =‘I/{k71 +O(tj) —I(tj), lfS(t]) =1 (11)

It becomes clear that the marking of the Petri-net will
depend only on its representation in terms of places and
transitions, the relationship between them and the initial
marking u’. A new marking within the Petri-net is only
possible if all the required conditions are present together.
This makes process monitoring possible by keeping records
of the process marking and taking into account the process
signals and their required status within the domain of each
specific transition of the Petri-net that models the process.

The structures arising from the approach proposed by
this research were classified as dynamic and static. Those
that change their status during the execution of the Petri-net
(i.e., places) were said to be dynamic. Petri-net transitions
were considered as static structures. This is because within
this approach the transitions define the process as a fixed
sequence of events that do not change. Such classification
becomes important for the implementation of the approach
based on a microcontroller. Static elements can use the
program memory, avoiding the use of the data memory,
a valuable and limited resource in a microcontroller. This
goes some way towards overcoming memory related limi-
tations that may have restricted the deployment of similar
approaches [13].

4. The Modelling Flements

In order to enable a process to be modelled as a sequence
of events and states, the approach considers the two main
elements: transitions and places. Each is provided with
specific functionality to allow them to better represent
particular modelling requirements. Transitions were defined
as a structure that contains the information about the
conditions that characterise the specific process event and the
process states that will have their status changed following
the process event. The characterisation of the process events
as transitions effectively enabled the establishment of a Petri-
net “skeleton.” A collection of static structures can thus
be used to describe the process Petri-net in terms of such
events. These structures can be made to be autodescriptive
to allow a totally independent execution. In considering the
representation of these structures there was a need to provide
in their description the identification, preconditions (inputs)
and postconditions (outputs). To facilitate this approach the
following transition structures were defined.

4.1. Ordinary Transitions. These are the basic modelling
elements. They must have at least one Petri-net place and
one or more digital signal(s) from the process as input
conditions. When all the required input conditions are
present the transition is fired. This removes tokens from
the input places and adds tokens to the output places,
thus establishing a new marking vector within the model.
They were called “ordinary transitions” due to the fact that
they represent the basic structure required in the modelling
process. Figure 2 presents this structure diagram. The first

EURASIP Journal on Embedded Systems

Transition ID
Status
Signal mask 1

Signal 1 polarity

Signal mask 2 Digital input

information

Signal 2 polarity

Signal mask 1

Signal 3 polarity

Input sub-net ID

Input place ID 1

Number of tokens

Input places
inf .
Input place IDn information

Number of tokens
End ofinputplaces |
Output place ID 1
Number of tokens

Output places

information

Output place ID n

Number of tokens

End of output places
Output sub-net ID

End of structure

FIGURE 2: Ordinary transition data structure.

field in the structure is the transition identification, which
is numerically represented (1,2,3,...,n). The second field
provides specific information about the transition. Flags
within this field tell the system what sort of transition it
is. There is also a flag to indicate whether the firing of the
transition should become a public event (i.e., is associated
with the transmission of a message), or if it is only of interest
within this Petri-net, to update the process marking. These
two initial fields (Transition ID and Status) are common to
all transition structures.

Ordinary transitions can only handle digital input
signals. The following 6 (3 X 2) alternate fields in the
structure provide information regarding these signals and
their required status to enable the specific transition. The
signal mask reserves 1bit position for each signal (0 to 7).
A bit level 1 at a specific position indicates that this signal
must be taken into consideration at the given transition. The
signal polarity field indicates the required signal status (0 or
1), that is, the input to the transition required to be logically
true or false, and is aligned with the respective bit position
in the signal mask field. For simplified implementation, the
polarity assigned in the field must be inverted, meaning
that it is expressed as 0 when the signal is required to be
logically true. The existence of 3 groups of such field pairs
indicates the ability of a transition to handle up to 24 digital
inputs. This clearly indicates how the advances made in
microcontroller capabilities can support the enactment of
more complicated Petri-net models and hence support the
deployment of these monitoring tools in more challenging
applications. For implementation purposes, for those signals

that are of no relevance to the particular transition, the
corresponding bit position polarity was assigned as 1. This
provided a simpler way to test an entire set of 8 inputs
simultaneously, rather than individually.

Continuing with the structure definition in Figure 2,
the next field is the input subnet (input subnet ID). By
definition, if this field is assigned as zero, no subnet input
is linked to the transition; otherwise, the appropriate subnet
ID code is identified. The collection of input places is the
next information in the ordinary transition structure. The
input place ID identifies the Petri-net place that is assigned
as an input condition of the transition. The number of
tokens indicates the “multiplicity” of the arc linking the
input place to the transition (a condition becomes true if
the assigned number of tokens is found in the place). An
ordinary transition may have several input places, each one
with its individual multiplicity mark (limited to 255). An
“end of input places” field indicates that there are no more
input places to be considered in the domain of the specific
transition.

Similarly, the next collection of fields within the structure
is associated with output places. The output place ID
identifies the Petri-net place that should be updated due
to the transition firing. The number of tokens represents
the multiplicity of the arc linking the transition to the
output place, thus indicating the number of tokens the
place should receive. The “end of output places” is the
mark indicating that there are no more output places
linked. The output subnet field identifies, if appropriate,
the subnet element requiring notification of the specific
transition firing. A value 0 in the output subnet ID field
indicates that there is no such a requirement. The way in
which the subnet ID is made public is a matter of system
implementation. However, considering the nature of such
feature and its purpose, a message broadcast method was
adopted, allowing other Petri-nets to decide whether or not
to make use of the information. Such a method is common
in the implementation of distributed systems, provided with
local processing capabilities. The final field of an ordinary
transition structure is the end mark “end of structure,”
meaning that there are no more fields in this transition. This
field is mandatory in all the transition structures used in this
Petri-net approach.

4.2. Analogue Transitions. Analogue transitions were defined
to allow the use of analogue signals, together with Petri-
net places, as input conditions. Typically, the level of the
analogue signal is compared against a predefined threshold
or value. This type of transition was developed to support
a hybrid digital-analogue monitoring approach. Aside from
handling analogue inputs they act in the same way as ordi-
nary transitions. A method that considers two parameters
was proposed, in order to characterise such an event. The
first of such parameters would represent a threshold and the
second an analysis condition. In this way, it becomes possible
for the signal being monitored to be acquired and analysed in
real time by the microcontroller. Condition-based decisions
relating to the enactment of the analogue transition, such

Transition ID
Status
Condition Source ID
Threshold MSB
Threshold LSB
Input place ID

Number of tokens

Input places
information

Input place ID n

Number of tokens

End of input places
Output place ID 1

Number of tokens

Output places
information

Output place ID n

Number of tokens

End of output places
Output sub-net ID
End of structure

FIGURE 3: Analogue transition data structure.

as ({,),=), can be made. Importantly it becomes possible
capture any data that pertains to faulty enactments for
subsequent communication and analysis using the developed
IPMM architecture, as outlined in Section 5 below. Recent
evolutions in microprocessor technology mean that the
nature of the data acquisition and signal processing func-
tions now available can support increasingly sophisticated
decision-making tools. Current IPMM work is focussed
on frequency and time-based approaches [20, 21]. The
results arising from these methods can be incorporated into
the monitoring function via analogue transitions. Figure 3
illustrates the data structure of an analogue transition.

The transition ID and status fields follow exactly the
same description provided for the similarly named fields in
the ordinary transition structure. The condition field is the
identification of the comparison method requested. Further
implementation details are summarised in Table 1.

The source ID identifies which specific process analogue
source should be measured, in order to determine the firing
condition. The analogue transition allows only one analogue
source as input condition. The next two fields, the threshold
most significant byte (MSB) and least significant byte (LSB)
of the data structure need to be combined to produce the
threshold value required in the comparison test. All the
following remaining fields, from “input place ID” to “end of
structure,” have exactly the same meaning and representation
described for the ordinary transition structure. Although
linkage to an output subnet field was permitted by the
structure, the equivalent input field (input subnet ID) was
not considered to be necessary.

4.3. Delay and Output Transitions. Although original Petri-
net theory considered that transitions were instantaneous
events, the use of the method to model real applications
showed the necessity to represent events that take time to

EURASIP Journal on Embedded Systems

Transition ID
Status
Parameter MSB

Parameter LSB
Input place ID

Output place ID

End of structure

Transition ID
Common fields
Status
Input place ID Linked input place
Endofstructure | Commonfield

Figure 5: Output transition data structure.

execute; when attempting to monitor a process through its
signals, there might be occasions where some sort of flexi-
bility would be required. For example, the switching action
of an electrical signal can introduce noise that may induce
the misinterpretations of the signal’s levels. Therefore, this
modelling approach has provided a structure that enables the
insertion of a time delay, named a “delay transition.” Figure 4
defines the delay transition data structure used.

The structure considers only one input and one output
place. The firing is enabled by the existence of a single token
in the input place, that is, it has arcs that do not support
multiplicity. The two first fields in the structure are as
previously defined (for ordinary and analogue transitions).
The same applies to the last field (end of structure). The
input place represents the unique condition required to
enable the transition to fire. The output place field indicates
which of the Petri-net places should receive a single token
when the transition is fired. The delay value is specified via
two-field parameters (parameters MSB and LSB). Together,
these define the time delay in milliseconds (ms). Immediately
after being enabled, the token of the input place is removed.
After the delay expressed in the parameter field is elapsed the
transition is fired and the output place updated.

The final structure defined was required to enable the
monitoring hardware to issue local (hardware) alarms,
following a modelled event. Such an element was defined
as an “output transition” and its data structure is shown
in Figure 5. In this simple structure definition the common
fields apply as before; an output transition is enabled by only
one input place (input place ID), which requires a single
token. Although resulting in a token being removed from
the input place, there is no output place to be updated.
In line with formal Petri-net theory, it could be assumed
that an output transition, when fired, sends a token to a
subnet represented by the monitoring hardware/software
implementation. The resulting action of such an event is then
a matter of system implementation (hardware and software).

4.4. Places. In this modelling approach, the actual condition
of any active process state is represented by “tokens” within

EURASIP Journal on Embedded Systems

TaBLE 1: Petri-net monitoring approach graphic modelling elements.

Field Size Representation Description
Transition ID 8 bits 1to 254 Petri-net transition identification.
Place ID 8 bits 0 to 254 Petri-net place identification (input & output).
Subnet ID 8 bits 0to 255 Petri-net subnet identification (input & output).
Number of tokens 8bits 0t 255 Arc multiplicity—number of tokens required from an input place or added
to an output place.
Status 8 bits — Defines transition structure and actions. Detailed in Figure 5.
Signal mask 8 bits — Selection of the digital signals considered in the transition domain.
Signal polarity 8 bits — Digital signals level, with reversed polarity—default binary 1.
=:0000 binary) . o .
Condition 4 bits 1000 binary Comparing condition of a nondigital parameter in an analogue data
structure.
<:0001 binary
Source ID 4bits lLto 15 Nondigital input parameter identification, representing the signal input in
an analogue transition
Threshold MSB + LSB 16 bits 0 to 65535 Value to be considered in the comparison process of an analogue transition.
Parameter MSB + LSB 16 bits 0 to 65535 Delay, in milliseconds, to be performed by a delay transition.
End of input places 8 bits 255 Input places delimiter.
End of output places 8 bits 255 Output places delimiter.
End of structure 8 bits 255 Defines the end of the structure.

the associated place. An empty place, that is, one without
any tokens, indicates an inactive state. As the sequence
of process events occurs places change condition due to
the flow of tokens. Places thus require an identification
to distinguish them from each other. Here a continuous
numbering method was employed (1,2, 3,...,n). Each place
must provide a container (counter) that holds the number
of tokens belonging to the place. The number of tokens will
then vary (increase or decrease) during the system’s execu-
tion. The maximum number is bounded by the container
data type size. In considering the use of a microcontroller,
the “byte” was selected as the place container data type, since
instructions are optimised for the processor’s natural data
format. Thus, the number of tokens of a place was bounded
to 255.

Place “0” has a special meaning for the system imple-
mentation. It represents the initial state in the Petri-net,
that is, the place that should receive the first token after
initialisation. It follows Peterson’s [1] suggestion of a “start
place” with a token and no tokens elsewhere. A second
meaning of place “0” is for a Petri-net reset request. A reset
condition is identified by an output place “0,” which should
result in the system restarting the Petri-net execution (initial
start state). The monitoring functions are thus inevitably
linked to places. In the approach developed here the structure
of the Petri-net linking the places and defined by static
transition information was stored in the microcontroller’s
program memory. The dynamic information relating to the
status of the places however was placed in the program
memory, making it more accessible and more able to support
the monitoring function outlined below. In the initial
installations practical considerations limited the number of
available places to 254.

5. Implementations Aspects

The nature of the Petri-net monitoring approach outlined
above means that implementations do not need to be
restricted to a particular platform. The approach could
potentially be based on different processors because the way
in which each Petri-net is actually executed is mainly a
question of software development. However, since one of
the main objectives of this research was the proposition of
a low-cost monitoring system that can be embedded within
systems, work was focused on the use of microcontrollers.
The description of a monitoring task within the system
is represented by the transition structure’s characterisation
of the process events. In terms of an implementation, such a
set of data structures is defined as a data table. An element
named “end of table” and represented by the numerical
“0” identifies the condition that indicates the end of such
table. Earlier research deploying Petri-nets in a monitoring
function [16] had identified the potential uses of providing
a “time-out feature,” characterised by a transition failing
to fire within a defined period of time. Considering the
implementation aspects in a microcontroller environment,
it was decided to associate such a feature with places, rather
than transitions. Thus, in the approach proposed by this
research, “time-out” records will be produced in response
to a process state (selected Petri-net place) lasting longer
than previously recorded (or defined). Within this proposed
monitoring approach, certain Petri-net places assume greater
relevance in the implementation of special functions for the
assessment of processes. Such places need to be defined in the
system implementation as a set, associated to the function
they will perform (i.e., to monitor the status of a specific
part of the process by means of generating “beginning” and

8 X digital inputs

8 X digital inputs

fi

8 X digital inputs

1 X digital output

4 X analogue
mnputs

CAN controller
Microcontroller

il

CAN transceiver

2 X pulse counts

— CAN bus —

FIGURE 6: Monitoring module hardware block diagram.

“ending” records or triggering the acquisition of analogue
signals). This is different to transitions, which are defined
individually within an essentially static structure but can still
be used to provide information relating to that structure. The
nature of the process related information thus made available
is shown in Table 2.

The hardware architecture supporting this implementa-
tion was fully detailed in a previous paper [13]. The Petri-
net structure was implemented into a microcontroller-based
monitoring module (MM). This was provided with data
acquisition, communication, and processing capabilities.
A block diagram illustrating the main MM components
is shown in Figure 6. In order to provide the necessary
flexibility and data integration capabilities, communication
assumed a great importance at different levels within the
system so in this case each MM is able to implement a
CAN bus node. Such a serial link reduces considerably the
hardware design and consequently cost, although increasing
software engineering complexity. Both, the microcontroller
and CAN controller, share a single 20 MHz oscillator. A CAN
transceiver was employed to physically interface the CAN
bus.

Monitoring modules were provided with 3 different
sources of signal input: digital, analogue, and pulse. In
order to combine simple hardware design and improved
system capabilities, each MM allows up to 3 digital cards
(with 8 inputs each) to be attached, all sharing one of the
microcontroller’s input ports. Each MM is therefore able
to interface with up to 24 digital inputs. A 3 bit port was
used to implement the card selection logic the operation of
which was implemented in software. Each digital input was
provided with an optocoupler, in order to interface to the
process signals and ensure equipment protection.

Four analogue inputs were implemented to support spe-
cial monitoring purposes. The hardware design supported
the use of transducers with an output range of 0 to 10
volts. No further conditioning or signal filtering method
was employed. Two-pulse inputs were connected to two of
the microcontroller’s port B pins and configured as external
interrupts. Each pulse input was again interfaced using an
optocoupler. In order to support the “transition output”
implementation one of the microcontroller’s pins (port A,
bit 6) was configured as an output. Further interfacing to
adapt the electrical levels or latching mechanisms to an

EURASIP Journal on Embedded Systems

external alarm-signalling device was provided, depending on
the application specifics.

The MM software development to support the imple-
mentation of the Petri-net monitoring approach was under-
taken within the microcontroller’s development environ-
ment. Although mainly concerned in executing the process
Petri-net, a number of other tasks, such as data acquisition,
communication, and timing were required. The flow dia-
gram shown in Figure 7 illustrates the main software tasks.
The microcontroller’s interrupt capability was explored in
order to reduce software complexity and increase efficiency.
The initialisation process sets variables, buffers, and config-
ures hardware devices. The microcontroller’s memory was
divided between the system’s variables and stack pointer,
communication buffers, and the Petri-net implementation
area as detailed in Table 3. Interrupts were deployed to syn-
chronise the serial peripheral interface (SPI) interface data
transmission/reception. A similar technique was employed
in order to enable the CAN controller to notify CAN related
events, such as transmission/reception and error indications.

Each MM was configured to support 254 transitions, 254
places, and 255 subnet IDs. The implementation considered
the application’s Petri-net description to be based on three
attached text formatted files. The first of such files represents
the Petri-net main structure (event descriptions), MM
identification, and the identification of the places required
to provide time-out events.

The second file identifies the Petri-net’s places rep-
resenting the process states required to have their active
status watched (and reported). This was defined as a 32-
byte structure, in which 1bit is used to represent each
possible place. The last attached file correlates places with
analogue or pulse inputs. It contains a table with 254 inputs,
sequentially representing the Petri-net’s places and indicating
an input source, analogue or pulse (“0” meaning no source
associated), used to trigger the data acquisition of process
specific parameters.

Places were defined in the microcontroller’s data memory
as a continuous set of 256 bytes (only 254 effectively used).
The place identification indexes the place location within this
data structure. Each place location will hold its respective
number of tokens, being updated by the Petri-net execution.
The MM makes public a subnet event by broadcasting
its identification (subnet ID). Internally, subnets will be
assigned in a bit-mapped data structure (32 bits), with one
bit representing each subnet ID. The Petri-net execution,
when required, searches for subnet events and updates this
bit-mapped structure.

One of the microcontroller’s timers (TMRO) was config-
ured to generate a 1 ms time base that was used to update the
monitoring module date/time record. The microcontroller’s
interrupt functionality was employed in order to generate a
precise and reliable timing method. The same time base was
used in other tasks that require time measurement. Digital
input updating was synchronised with the 1 ms time base
generated by TMRO. Since there are a possible 3 digital cards,
all using the same microcontroller’s port (D), switching time
had to be considered. The employed procedure reads the 8
digital inputs of the selected card and then identifies and

EURASIP Journal on Embedded Systems

TABLE 2: Monitoring messages definitions.

Monitoring record Purpose description

Process event . .
can issue this sort of message.

Message issued in response to a process event (fired transition). Only ordinary and analogue transitions

Beginning of a process state

Enabled places issue such message when receiving the first token, indicating the “beginning” of the
associated process state (state became active).

Ending of a process state

Enabled places issue such message when becoming empty (last token removed), indicating the “ending”
of the associated process state (became inactive).

Process state timeout

Messages issued by selected places to indicate that a process state has lasted longer than expected.

Message issued at the end of a selected process state containing a record with a feature extracted from a

Special record

process analogue signal. The signal is acquired as long as the process state remains active (e.g., a DC

motor current mean value, to indicate the motor’s operating condition).

TaBLE 3: Monitoring module data memory distribution.

Buffer description Buffer size (bytes)

System variable 256
Software stack 32
SPI transmit buffer 96
SPI receive buffer 32
Transmit message buffer (built) 16
Receive message buffer (rebuilt) 16
Event record buffer 64
Petri-net places buffer 256
Petri-net places timeout control buffer 512
Petri-net subnet buffer 32
Timeout devices buffer 150
Active places mapping buffer 32

moves on to the following one, which will be read in the next
acquisition cycle, thus ensuring enough time to make the bus
stable when the next update is carried out. By using such
an approach, digital inputs are updated every 3 ms (333.33
updates/second).

The pulse inputs were configured to automatically gener-
ate interrupts whenever such an event is matched. Counters
(one for each input) were incremented during the interrupt
service. The counters are read and reset by the system’s
application every second providing a monitoring parameter
in terms of pulses/second (P,). Such a parameter might
be further used by an analogue transition and as the basis
for a special record as defined in Table 2. Analogue inputs
were configured for 10bit resolution. They are updated
periodically, by polling the A/D converter in the system’s
application execution main loop shown in Figure 7. Based
on the microcontroller’s analogue channels specifications
and software implementations, the sampling rate is approxi-
mately 2.5 K sample/s. Small variations occur due to different
tasks being performed in different execution loops. The
sampled analogue input data can be integrated over a period
equivalent to 256 samples, resulting in an average value
that may be used as an input parameter into an analogue
transition.

Following the approach described above Petri-net places
can be used to trigger the acquisition of process specific

parameters, resulting in a “special record.” In this implemen-
tation, such a parameter was defined as the mean value of
the observed analogue or pulse inputs, based on observation
time. Such values will be continuously added, as long as the
process state remains active.

The monitoring Petri-net will run by executing the
transitions defined in the Petri-net table (text format file).
The data retrieved from this table is verified in the transition
structure context, thus checking whether or not the transi-
tion is enabled. Transition firing actions include updating
input and output places, requesting a subnet broadcast
and event messaging. Transitions execute sequentially in
the order in which they are defined in the Petri-net table,
through handling one transition each time, per cycle. For
those fired transitions that require a message, a record
will be stored in the “event record buffer” Whenever
places are updated (following a Petri-net execution), further
verification is carried out to identify the “beginning” or
“end” of an active state of selected places or to trigger the
“mean value calculation” of an analogue or pulse input.
When required, a message transmission will be requested
by inserting a record in the application event record
buffer.

Places enabled to have a time-out control and whose
active state lasted longer than has been previously recorded
will produce a time-out record. The default approach com-
pares the actual cycle with previous one. However, such com-
parison parameters can be fixed by supplying a command,
received through the data communication interface (CAN).
Using this property fault isolation was implemented by
identifying the place that provided the symptom (timeout)
through the data communication interface. The Petri-net
can be searched in order to find the transition(s) having
the provided place as an input. In this way, verification
can be made to detect whether the fault relates to the
transition input signals or to other places that failed to
enable this transition. Successive iterations will be carried
out until a result is obtained or the entire set of transitions
is investigated. Loops are avoided by marking places that
have already been verified. Records are then placed in the
“event record buffer,” identifying the transition and the
signal(s) that failed to enable the transition. Subnet, digital
and analogue/pulse inputs are considered as possible sources
of faults.

10

Hardware
initialisation

[

Software
initialisation

EURASIP Journal on Embedded Systems

V

Petri-net
initialisation

—)l

Execute
Petri-net

Fired

€ Build
transition? message
N J
oJ
Check status
Yes sores
acquisition

updated?

build message

Timeout Update T out
updated? control
No ¢ I
Timeout Build
event? message
|
MCP2510 Set SPI
request? buffer

Data Set SPI
transmission? buffer
J
Data Set SPI
reception? buffer
J
SPI buffer Start
loaded? transmission
No \l/ I
Received Validate
data? and set
No \l/ I
Message Release
buffer
No \L I
Yes Reafl ixtlputst &
igital i 2 select nex
digital inputs? card
J
Update Yes Convert A/D
- 2 select next
an. iputs¢ input
J
Execute
diagil(l)lstti os? diagnostics &
build message

No

Reset
Petri-net?

FIGURE 7: Monitoring module application flow diagram.

Finally, to support the implementation of this approach
to real applications, data communication aspects were
considered. In order to improve system’s efficiency and ease
software development, data buffers were set to hold a number
of monitoring events recorded by the system. Each of these
records is converted into a system’s message, then assembled
and stored in the transmit message buffer. This buffer is
capable of handling only one message each time. At the
next stage, the system’s messages are handled by the “CAN
application layer,” before being stored in the “SPI transmit
buffer” At this application layer, messages will be sized

accordingly to the CAN protocol, and split when required.
A sequencing method was developed, to enabled messages to
be reassembled at the destination end. A transmission time-
out feature was implemented to control message delivery.
Transmitted messages that were not acknowledged by the
recipient in a predefined time will be retransmitted. The
CAN controller’s commands are required to be appended
to the application layer message, in order to properly set
up the required task. Messages received from the CAN bus,
such as subnet broadcast and system commands, will be
transferred to and reassembled in the receive message buffer.

EURASIP Journal on Embedded Systems

(From initialisation)
1

U
- Po01 DSo01
DC motor

(switch on)
T001

P002
T002 Delay = 500 ms
? P003

T003
P005

DC motor Motor

P004 (switch off) current
DSO01 DSo01 ANO1
300 mA
T004 |, T005 P007 T006
P006 ? >
T007

FIGURE 8: Petri-net monitoring approach example.

Once validated, commands will be executed or will result in
flags requesting further actions (i.e., fault diagnostics).

The monitoring module application required 8,426 bytes
of program memory. Considering that the data tables rep-
resenting the process states to be monitored and those that
trigger analogue/pulse acquisition require a fixed amount of
288 bytes (32 + 256), the representation of a process Petri-
net can access 24,054 bytes. Assuming as a general example
an ordinary transition with 2 input and 2 output places,
a Petri-net with a maximum of 254 of such transitions
would require 5,588 bytes of program memory, which is
much less than the typical total available. If needs be the
architecture can integrate any number of MMs to allow for
more complicated monitoring tasks.

5.1. Example Application. The Petri-net, shown in Figure 8,
represents a Subnet designed to monitor the operation of a
DC motor. It is part of a larger monitoring task deployed
in the IPMM Centre to monitor a scale model of a hydro-
forming press process.

The net is enabled to follow the motor operation by
receiving a token from the system’s initialisation. This token
is placed in P001. The motor command is detected by the
digital signal DSO1 switching on. Place P001 and DSO01
represent the condition required to fire T001, therefore
indicating this event and resulting in a token in P002.
Transition T002 is a “delay transition,” introduced to retain
the token for 500 ms. This is for practical reasons, avoiding
any further monitoring system interpretation before the
signal has stabilised (e.g., switching current peaks). After
this delay the token follows through P003/T003, reaching
places P004 and P005. Here a special feature is modeled.

11

Place P004 holds its’ token as long as the motor runs.
The end of this state is detected by DS01 switching off (a
condition indicated by a small circle at the sensor symbol
connection near to the transition bar), therefore firing T004
and introducing a token into P006. Transition T006 was
placed in the diagram to monitor an over-current condition
while the motor is operated. This is achieved by employing
an “analogue transition” element (T006), which has as input
conditions P005 and “analogue signal 1,” the motor current,
with threshold defined as “above to” 300 mA. Transition
T005 is required in order to remove the token from P005
in case the over-current event was not matched (normal
condition) before the end of the “motor operating” state.
After this, places P006 and P007 will enable transition T007,
reestablishing the Petri-net initial marking with a token in
P001 and consequently enabling the next operating cycle to
be monitored.

In making an extended use of the Petri-net places as
defined in this approach, additional information could be
retrieved from the monitoring task. For example, by enabling
P004 to issue “beginning state” and “ending state” records,
it becomes possible to monitor how long the motor has
been in use. In monitoring terms an increase in the time to
perform such a cycle would potentially help in assessing the
degradation of the entire moving system. A severe increase
in the cycle time would be detected by a time-out record
associated to this same place (P004). Furthermore, place
P004 might be used to trigger the acquisition of an analogue
channel, for instance to extract additional motor current
information, apart from the over-current record provide
by means of T006. This approach allows critical signals to
be monitored during the enactment of an operation and
offers the ability of capturing any unusual variations whilst
allowing “normal” signals to be assessed, summarised, and
discarded.

The intelligent application of this feature means that all
deviations from normal can be captured at source without
the need for the continuous streaming of data. In the system
implementation employed in this investigation this infor-
mation relates to the calculation of the mean value of the
current required by the DC motor during the operating cycle.
The actual signal can be captured, analysed, and if indicated
retained for future interrogation. Thus, if a sudden overload
appears due a “hard” fault such as a trapped workpiece or
faulty cycle, the signal can be retained, even if the process
ultimately continues. If needs be any unrecognised signal
variation may be referred to more sophisticated condition
monitoring software off-line, making the diagnosis of “soft”
faults possible. These parameters enable operatives to assess
the condition of the process and specific devices during
the time of any fault like occurrences and therefore enable
maintenance interventions based on real knowledge.

6. Conclusions

Any sequential process can be modelled in terms of a Petri-
net, based on its states and the events that characterise the
transitions between them. To facilitate the engineering of

12

a Petri-net process monitoring tool several extensions to
conventional Petri-net representation have been specified
and developed in order to interface and handle real-life
process signals. The most important of these is the use of
analogue signals aligned with the powerful microcontroller-
based analysis tools now available. These allow enhanced
monitoring functions, including data capture for subsequent
analysis by more powerful systems. This is critical to the
subsequent evolution of low-cost monitoring systems.

In defining a Petri-net model that describes each event as
a self-contained data structure, a method has been proposed
which, although being primarily developed to exploit the
ever increasing potential of microcontroller devices, has no
hardware dependency. The Petri-net functionality was fur-
ther extended by enabling elements to be deployed to trigger
the acquisition of processes’ specific parameters to monitor
the “beginning” and “ending” of processes active states. This
extended functionality was supported by a set of messages
that enable database records to be produced and supported
fault diagnosis by comparing actual measurements to those
previously established as representing “normal” behaviour..

This research has provided the framework for the con-
tinued development and enhancement of the tools required
for the implementation of a monitoring system. The benefits
of deploying the monitoring system on a microcontroller
relate to the practicality of embedding such devices within
the process being monitored as part of a layered archi-
tecture that, supported by the Petri-net approach, enables
the development of a distributed structure which offers
great potential in the area of low-cost process monitoring
systems.

References

[1] J. L. Peterson, Petri-net Theory and the Modeling of Systems,
Prentice-Hall, Englewood Cliffs, NJ, USA, 1981.

[2] E DiCesare, G. Harhalakis, J. M. Proth, M. Silva, and E. B.
Vernadat, Practice of Petri-nets in Manufacturing, Chapman &
Hall/CRC, London, UK, 1993.

[3] C. Girault and R. Valk, Petri-nets for Systems Engineering,
Springer, Berlin, Germany, 2003.

[4] R. David and H. Alla, Discrete, Continuous and Hybrid Petri-
nets, Springer, Berlin, Germany, 2005.

[5] L. Jiao, “A note on regular Petri-nets,” Information Processing
Letters, vol. 108, no. 3, pp. 110-114, 2008.

[6] H. Alla and R. David, “A modelling and analysis tool for
discrete events systems: continuous Petri-net,” Performance
Evaluation, vol. 33, no. 3, pp. 175-199, 1998.

[7] A.Zimmermann and G. Hommel, “Modelling and evaluation
of manufacturing systems using dedicated Petri-nets,” Interna-
tional Journal of Advanced Manufacturing Technology, vol. 15,
no. 2, pp. 132-138, 1999.

[8] M. Dotoli, M. P. Fanti, A. Giua, and C. Seatzu, “First-order
hybrid Petri-nets. An application to distributed manufactur-
ing systems,” Nonlinear Analysis: Hybrid Systems, vol. 2, no. 2,
pp. 408-430, 2008.

[9] S.K. Yang and T. S. Liu, “A Petri-net approach to early failure
detection and isolation for preventive maintenance,” Quality
and Reliability Engineering International, vol. 14, no. 5, pp.
319-330, 1998.

EURASIP Journal on Embedded Systems

[10] P.Prickett, “A Petri-net based machine tool maintenance man-
agement system,” Industrial Management and Data Systems,
vol. 97, no. 4, pp. 143-149, 1997.

[11] G. Frey and M. Minas, “Internet-based development of logic

controllers using signal interpreted Petri-nets and IEC 61131,”

in Proceedings of the 5th World Multi-Conference on Systemics,

Cybernetics and Informatics (SCI 01), pp. 297-302, Orlando,

Fla, USA, July 2001.

S. Peng and M. Zhou, “Sensor-based stage Petri-net modelling

of PLC logic programs for discrete-event control design,”

International Journal of Production Research, vol. 41, no. 3, pp.

629—-644, 2003.

[13] K. J. Hintz, “Microcontroller software design using Petri
tables,” Journal of Microcomputer Applications, vol. 15, no. 4,
pp. 313-325, 1992.

[14] K. J. Hintz and D. Tabak, Microcontrollers: Architecture,
Implementation, and Programming, McGraw-Hill, New York,
NY, USA, 1992.

[15] M. R. Frankowiak, R. I. Grosvenor, and P. W. Prickett, “A
Petri-net based distributed monitoring system using PIC
microcontrollers,” Microprocessors and Microsystems, vol. 29,
no. 5, pp. 189-196, 2005.

[16] P. Prickett and R. Grosvenor, “A Petri-net-based machine tool
failure diagnosis system,” Journal of Quality in Maintenance
Engineering, vol. 1, no. 3, pp. 47-57, 1995.

[17] M. Bolic, V. Drndarevic, and B. Samardzic, “Distributed
measurement and control system based on microcontrollers
with automatic program generation,” Sensors and Actuators A,
vol. 90, no. 3, pp. 215-221, 2001.

[18] E.-J. Manders, L. A. Barford, and G. Biswas, “An approach
for fault detection and isolation in dynamic systems from
distributed measurements,” IEEE Transactions on Instrumen-
tation and Measurement, vol. 51, no. 2, pp. 235-240, 2002.

[19] D. K. Baek, T. J. Ko, and H. S. Kim, “Real time monitoring
of tool breakage in a milling operation using a digital signal
processor,” Journal of Materials Processing Technology, vol. 100,
no. 1-3, pp. 266-272, 2000.

[20] W. Amer, R. I. Grosvenor, and P. W. Prickett, “Sweeping filters
and tooth rotation energy estimation (TREE) techniques for
machine tool condition monitoring,” International Journal of
Machine Tools and Manufacture, vol. 46, no. 9, pp. 1045-1052,
2006.

[21] R. A. Siddiqui, W. Amer, Q. Ahsan, R. I. Grosvenor, and P. W.
Prickett, “Multi-band infinite impulse response filtering using
microcontrollers for e-Monitoring applications,” Microproces-
sors and Microsystems, vol. 31, no. 6, pp. 370380, 2007.

[12

	1. Introduction
	2. Petri-Net Representation
	3. TheModelling Approach
	4. TheModelling Elements
	5. Implementations Aspects
	6. Conclusions
	References

