
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2008, Article ID 712329, 18 pages
doi:10.1155/2008/712329

Research Article
Combining UML2 Application and SystemC PlatformModelling
for Performance Evaluation of Real-Time Embedded Systems

Jari Kreku,1 Mika Hoppari,1 Tuomo Kestilä,1 Yang Qu,2 Juha-Pekka Soininen,1

Per Andersson,3 and Kari Tiensyrjä1

1Communication Platforms, Technical Research Centre of Finland (VTT), Kaitoväylä 1, FI-90571 Oulu, Finland
2Nokia Device R&D, Elektroniikkatie 13, FI-90571 Oulu, Finland
3Department of Computer Science, Faculty of Engineering, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden

Correspondence should be addressed to Jari Kreku, jari.kreku@vtt.fi

Received 1 October 2007; Revised 19 February 2008; Accepted 16 June 2008

Recommended by Eugenio Villar

Future mobile devices will be based on heterogeneous multiprocessing platforms accommodating several stand-alone applications.
The network-on-chip communication and device networking combine the design challenges of conventional distributed systems
and resource constrained real-time embedded systems. Interoperable design space exploration for both the application and
platform development is required. Application designer needs abstract platform models to rapidly check the feasibility of
a new feature or application. Platform designer needs abstract application models for defining platform computation and
communication capacities. We propose a layered UML application/workload and SystemC platform modelling approach that
allow application and platform to be modelled at several levels of abstraction, which enables early performance evaluation of the
resulting system. The overall approach has been experimented with a mobile video player case study, while different load extraction
methods have been validated by applying them to MPEG-4 encoder, Quake2 3D game, and MP3 decoder case studies previously.

Copyright © 2008 Jari Kreku et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Future handheld mobile multimedia terminals will merge
features of several currently independent mobile devices,
for example, phone, music player, television, movie player,
desktop, and Internet tablet. They accommodate a large
number of on-terminal and/or downloadable applications
that offer the user with services, whose contents may be
provided by servers anywhere on Earth. The sets and types of
applications running on the terminal are dependent on the
context of the user. To deliver requested services to the user,
some of the applications run sequentially and independently,
while many others execute concurrently and interact with
each others.

The digital processing architectures of terminals will
evolve from current system-on-chips (SoCs) and multi-
processor-SoCs with a few processor cores to massively
parallel computers that consist mostly of heterogeneous
subsystems, but may also contain homogeneous computing
subsystems. The network-on-chip (NoC) communication

paradigm will replace the bus-based communication to allow
scalability, but it will increase uncertainties due to latencies in
case large centralized or external memories are required.

The application and architecture development trends
will increase the overall complexity of system development
by orders of magnitude. The optimisation of performance,
energy, and cost of the battery-powered devices while
respecting the user expectations is of vital importance on one
hand. On the other, the costs, risks, and time of system devel-
opment require flexibility, which will be achieved through
programmable/adaptable computing resources, configurable
memory and communication architecture, and design
methodology approach; and tools that span from application
use cases until implementation design. Design methodol-
ogy approaches for mobile devices have evolved from the
application-specific integrated circuit (ASIC) style in 80’s to
platform-based design in late 90’s and model-based design
was introduced recently.

In the ASIC style, designers take a (architectural)
specification, create a microarchitecture description, and



2 EURASIP Journal on Embedded Systems

synthesise/optimise it for speed (clock frequency), area (gate
count), and power (e.g., modes and clock gating).

Platform-based design addresses the challenges of
increasing design complexity of SoCs that consist typically
of a few processor cores, hardware accelerators, memories,
and I/O peripherals communicating through a shared bus.
While the emphasis is on intellectual property (IP) design
and integration, the function-architecture codesign and
(micro-) architecture exploration already pave the way to
the model-based approach that is the research direction
today. To alleviate the scalability problems of the shared bus,
the NoC architecture paradigm proposes communication
centric approach for systems requiring multiple processors
or integration of multiple SoCs.

Model-based approaches extend the separation of the
application and execution platform modelling further.
Usually the specify-explore-refine paradigm following the
principles of the Y-chart model [1] is applied. In other
words, a model of application is mapped onto a model of
platform and the resulting allocated model is analysed. The
computation and communication modelling are separated
on both the application and platform sides. Recent trend
is service-orientation, where the end user interactions and
the associated applications are modelled in terms of services
required from the underlying execution platform [2]. An
obvious consequence is that the execution platform also
needs to be modelled in terms of services it provides for the
applications.

Both the application and platform designers are facing an
abundant number of design alternatives and need systematic
approaches for the exploration of the design space. For
example, an application designer has to know early whether
a new application or a feature is feasible on the target
platform. A platform designer must be able to analyse the
impacts of next generation applications on the platform even
before the applications are implemented. Efficient methods
and tools for early system-level performance analysis are
necessary to avoid wrong decisions at the critical stage of
system development.

The performance analysis models are required to capture
both the characteristics of the application functionality and
the architectural resources needed for the execution. Using
models at a too low level of abstraction, for example, register-
transfer-level (RTL) or instruction-set simulation (ISS) is
not feasible: although giving accurate results, due to the
vast amount of details needed the modelling effort is heavy
and simulation times are long. Some high-level abstraction
approaches like queuing networks (QNs) and its variants fail
to exhibit the characteristics of the execution platforms.

In this paper, we present VTT ABSOLUT2.2% (VTT
ABstract inStruction wOrkLoad & execUtion plaTform
UML2/SystemC2-based performance simulation)—it is a
model-based approach for system-level design that is capable
of performance evaluation of future real-time embedded
systems and provides early information for development
decisions. Applications are modelled in either unified mod-
elling language (UML) or SystemC [3] domain as workloads
consisting of load primitives. Platform models are cycle-
approximate transaction-level SystemC models. Mapping

Applications
& use case

Execution platform

VTT ABSINTH VTT COGNAC

Workload model Platform model

Mapping

Performance
simulation VTT BEER

Analysis of results VTT VODKA

Figure 1: Y-chart model of plain VTT ABSOLUT.

between UML application models and the SystemC platform
models is based on automatic generation of simulation
models for system-level performance evaluation. The work-
load models reflect accurately the control structures of
the applications, but the computing and communication
loads are abstractions derived either analytically from mea-
sured traces or using a source code-compilation approach
called VTT ABSINTH (VTT ABStract INstruction exTrac-
tion Helper) (Figure 1). The execution platform model is
configured from a library of performance models using
VTT COGNAC (VTT COnfiguration GeNerator for Absolut
performanCe simulation). The executable simulation model
is based on the open source open SystemC initiative (OSCI)
SystemC library, extended with configurable instrumen-
tation and called VTT BEER (VTT Binary pErformance
EvaluatoR). Finally, the simulation results can be selected
for analysis and viewed using VTT VODKA (VTT Viewer of
collecteD Key information for Analysis).

The tool support is based on a commercial UML2 tool,
Telelogic Tau G2, and an open source SystemC simulation
tool of OSCI.

The approach enables early performance evaluation,
exhibits light modelling effort, allows fast exploration iter-
ation, and reuses application and platform models. It also
provides performance results that are accurate enough for
system-level exploration.

2. RELATEDWORK

Performance evaluation has been approached in many
ways at different levels of refinement. Some other research
approaches aiming at similar goals to ours by different
modelling and simulation approaches are described briefly
in the sequel.

SPADE [4] implements a trace-driven, system-level
cosimulation of application and architecture. The applica-
tion is described by Kahn process networks using YAPI [5].



Jari Kreku et al. 3

Symbolic instruction traces generated by the application
are interpreted by architecture models to reveal timing
behaviour. Abstract, instruction-accurate performance mod-
els are used for describing architectures.

The Artemis work [6] extends the work described in
[4] by introducing the concept of virtual processors and
bounded buffers. One drawback of restricting the designer to
using Kahn process networks is the inability to model time-
dependent behaviour. In the developed Sesame modelling
methodology, a designer first selects candidate architectures
using analytical modelling and multiobjective optimiza-
tion. The system-level simulation environment allows for
architectural exploration at different levels of abstraction.
The high-level and architecture-independent application
specifications are maintained by applying dataflow graphs
in its intermediate mapping layer. These dataflow graphs
take care of the runtime transformation of coarse-grained
application-level events into finer grained architecture-level
events that drive the architecture model components.

The basic principle of the TAPES [7] performance eval-
uation approach is to abstract the involved functionalities
by processing latencies and to cover only the interaction of
the associated subfunctions on the architecture. These inter-
actions are represented as inter-SoC-module transactions,
without actually running the corresponding program code.
This abstraction enables higher simulation speed than an
annotated, fully-fledged functional model. Each subfunction
is captured as a sequence of transactions, also referred
to as trace. The binding decision for the subfunctions
is considered by storing the corresponding trace in the
respective architectural resource. A resource may contain
several traces, one per each subfunction that is bound to
it. The application is then simulated by forwarding packet
references through the system and triggering the traces that
are required for processing particular data packets in the
respective SoC modules.

MESH [8] looks at resources (hardware building blocks),
software, and schedulers/protocols as three abstraction levels
that are modelled by software threads on the evaluation host.
Hardware is represented by continuously activated, rate-
based threads, whereas threads for software and schedulers
have no guaranteed activation patterns. The software threads
contain annotations describing the hardware requirements,
so-called time budgets that are arbitrated by scheduler
threads. Software time budgets are derived beforehand by
estimation or profiling. The resolution of a time budget is a
design parameter and can vary from single compute cycles to
task-level periods. The advance of simulation time is driven
by the periodic hardware threads. The scheduler threads
synchronize the available time budgets with the requirements
of the software threads.

SpecC [9] defines a methodology for system design
including architecture exploration, communication synthe-
sis, validation, and implementation. SpecC can be considered
as a specification and modelling language that has a rich
support for many system design phases. Similar properties
can be found also in SystemC language that is more widely
adopted in high-level system modelling. Especially, the
transaction-level modelling using SystemC has been adopted

for performance modelling and simulation [10], and OSCI
is finalising the version 2.0 of its SystemC Transaction-level
Modelling Standard [11].

Posadas et al. in [12] present a POSIX-based SystemC
RTOS library for timing estimation at system level. The
library is based on a general and systematic methodology
that takes as input the original SystemC source code without
any modification and provides the estimation parameters by
simply including the library within a usual simulation. As a
consequence, the same models of computation used during
system design are preserved and all simulation conditions are
maintained. The method exploits the advantages of dynamic
analysis: easy management of unpredictable data-dependent
conditions, and computational efficiency compared with
other alternatives (ISS or RTL simulation, without the need
for software (SW) generation and compilation and hardware
(HW) synthesis).

Koski [13] is a UML-based automated SoC design
methodology focusing on abstract modelling of application
and architecture for early architecture exploration, methods
to generate the models from the original design entry,
system-level architecture exploration performing automat-
ically allocation and mapping, tool chain supporting the
defined methodology utilizing a graphical user interface,
well-defined tool interfaces, a common intermediate format,
and a simulation tool that combines abstract application and
architecture models for cosimulation.

Ptolemy II [14] is a Java-based software framework devel-
oped as part of the Ptolemy project [15], supporting hetero-
geneous, concurrent modelling and design. Metropolis is a
framework for platform-based design, which consists of an
internal representation mechanism, the design methodology,
and base tools for simulation and design imports [16].

MARTE [17] is a UML profile for model-driven devel-
opment of real-time and embedded systems, which provides
support for specification, design, and verification/validation.
It is intended to replace the earlier UML schedulability,
performance, and time (SPT) profile.

Our approach differs from the SPADE and Artemis
as to the way the application is modelled and abstracted.
The UML-based workload model mimics truly the control
structures of the applications, but the leaf level load data
is presented like traces. Also the execution platform is
modelled rather at transaction than instruction level. The
TAPES approach uses transaction-level SystemC simulation
like ours, but describes the application functionality as
traces that are stored in the architectural resources. The
layering approach of the MESH is somewhat similar to
ours, but the way of obtaining the timing information
differs; in MESH it is obtained by profiling on a host,
while the simulation gives the timing information in our
case. The SpecC approach estimates timing information for
the simulation, too. The Koski approach uses libraries and
compilation/synthesis on field programmable logic arrays
(FPGAs) to extract timing, although it allows setting timing
requirements during application modelling. The UML part
of our approach could have been based on the MARTE
profile; however, the profile was not publicly available at the
time of this work.



4 EURASIP Journal on Embedded Systems

3. UML2-SYSTEMC-BASED PERFORMANCE
MODELLING

3.1. Overview

The performance modelling and evaluation approach of
VTT ABSOLUT2.2% follows the Y-chart model as depicted
in Figure 1. The basic principle of our performance evalu-
ation approach is as follows [18]. The layered hierarchical
workload models represent the computation and commu-
nication loads the applications cause on the platform when
executed. The layered hierarchical platform models represent
the computation and communication capacities the platform
offers to the applications. The workload models are mapped
onto the platform models and the resulting system model is
simulated at transaction-level to obtain performance data.

The starting points for the performance modelling
are the end-user requirements of the system. These are
modelled as a service-oriented application model, which has
a layered hierarchy. The top layer consists of system level
services visible to the user that are composed of subservices
and divided further to primitive services. The functional
simulation of the model in Telelogic Tau UML2 tool provides
sequence diagrams which are needed for verification and for
building the workload model.

The purpose of workload modelling is to illustrate the
load an application causes to an execution platform when
executed. Workload models are nonfunctional in the sense
that they do not perform the calculations or operations
of the original application. Workload modelling enables
performance evaluation already in the early phases of the
design process, because the models do not require that the
applications are finalized. Workload modelling also enhances
simulation speed as the functionality is not simulated and
models can typically be easily modified to quickly evaluate
various use cases.

Platform modelling comprises the description of both
hardware and platform software (middleware) components
and interconnections that are needed for performance
simulation. Like workload modelling, platform modelling
considers hierarchical and repetitive structures to exploit
topology and parallelism. The resulting models provide
interfaces, through which the workload models use the
resources and services provided by the platform [19].

The workload models are created with UML or SystemC,
while the platform models are based on SystemC only. If
the workload modelling is done with a UML tool, the
models have to be transformed into SystemC. UML is a
standard language used in software development and thus
the possibility to use UML-based workload models enables
reuse of existing UML application models. This ultimately
reduces the effort required for workload modelling and
makes the performance simulation approach more accessible
in general. The use of UML is also beneficial because the
models are visual and easier to understand for others besides
the person who created them.

Figure 2 depicts the flow from UML2 application models
to generated SystemC workload models [20]. The entire
hierarchy of workload models—applications, processes,

functions, and so forth—are collected in a class or package
diagram, which presents the associations, dependences, and
compositions of the workloads. Control inside the applica-
tion, process and function workloads is described with state
machine diagrams. Composite structure diagrams are used
to connect the control implementation with the correspond-
ing workload model. Section 6 presents examples of how the
composite structure and state machine diagrams are used in
our approach for implementing the workload models. All
workload model layers, with the possible exception of the
load primitive layer, are implemented in the UML model.

A skeleton model of the platform is manually created
in the UML model. This facilitates mapping between the
workload models with service requirements and the platform
models with service provisions. The skeleton model describes
the components and services available in the platform and
thus enables the use of these services from the workloads.
In the mapping phase, each workload entity is linked to a
processor or other component, which is able to provide the
services required by that entity. This is realized in the UML
model using composite structure diagrams, for example.

Transformation to SystemC is triggered from the Telel-
ogic Tau tool and it is based on the approach developed by
Lund University, which is described in [21]. The generator
produces SystemC code files, which include SystemC mod-
ules of classes and channels required for communication, and
Makefiles for building the models. However, we build the
SystemC workloads together with the platform model and
thus do not use the generated Makefiles. The load primitive
layer, if not modelled in the UML domain, is implemented in
the SystemC workload refinement phase. This includes either
writing read(), write(), and execute() service calls manually
into the models or using a suitable automatic tool for the job.

The form of the UML workload models is quite flexible
and only the following criteria have to be met:

(i) the platform model provides its services via functions
and the SystemC workloads generated from the UML
workload models must be able to use them. This can
be achieved via signals in state machine diagrams, for
example,

(ii) only diagrams supported by Lund University ’s code
generator can be used [21].

After mapping the workloads to the platform, the models can
be combined for transaction-level performance simulation
in SystemC. Based on the simulation results, we can analyse,
for example, processor utilisation, bus or memory traffic, and
execution time.

3.2. Workloadmodel

Workload models are used for characterising the control flow
and the loads of the data processing and communication
of applications on the execution platform. Therefore the
models can be created and simulated before the applications
are finalized, enabling early performance evaluation. As
opposed to most of the performance simulation approaches,
the workload models do not contain timing information. It



Jari Kreku et al. 5

Use case & application
model in UML

Creation of a UML-
based workload model

Mapping to UML-based
skeleton model of the

platform

Transformation to
SystemC-based

workload model

Creation of a SystemC-
based platform model

Integration of the
workload and platform

models

Figure 2: Transformation from UML2 application model to
SystemC workload model.

is left to the platform model to find out how long it takes to
process the workloads. This arrangement results in enhanced
modelling and simulation speed. It is also easy to modify
the models, which facilitates easier evaluation of various
use cases with minor differences. For example, it is possible
to parameterise the models so that the execution order of
applications varies from one use case to another.

The workload models have a hierarchical structure,
where top-level workload model W divides into application
workloads Ai, 1 ≤ i ≤ n for different processing units of the
physical architecture model (Figure 3):

W = {Ca,A1,A2, . . . ,An
}

, (1)

where Ca denotes the common control between the work-
loads, which takes care of the concurrent execution of
loads mapped to different processors. n is the number of
application workloads under the top-level workload.

Each application workload Ai is constructed of one or
more processes Pi:

Ai =
{
Cp,P1,P2, . . . ,Pn

}
, (2)

where Cp corresponds to the control between the processes.
The structure of the main workload model and the

application workloads is depicted in the UML diagram of
Figure 4. The application and process control are shown as
classes in the diagram; however, they may be implemented
using, for example, standard C++ control structures in
SystemC-based workload models.

The processes are comprised of function workloads i:

Pi =
{
Cf ,F1,F2, . . . ,Fn

}
, (3)

where C f is control and describes the relations of the
functions, for example, branches and loops. The operating
system models of the platform handle workload scheduling
at the process level.

Function workload models are basically control flow
graphs

Fi = (V ,G), (4)

where nodes vi ∈ V are basic blocks and arcs gi ∈ G are
branches. Basic blocks are ordered sets of load primitives
used for load characterization. Load primitives are abstract
instructions read and write for modelling memory accesses
and execute for modelling data processing.

Process and function workload models can also be
statistical. In this case the model will describe the total
number of different types of load primitives and the control
is a statistical distribution for the primitives (Figure 5). This
is beneficial in case the chosen load extraction method is
not accurate enough so that functions and/or basic blocks
could be modelled in detail. Less important, for example,
background, workloads can also be modelled this way
for reducing the modelling effort. Workload models using
deterministic process models but statistical function models
are more accurate than those using statistical process models.
Models, which are deterministic down to basic block level,
are of course the most accurate.

3.3. Execution platformmodel

The platform model is an abstracted hierarchical represen-
tation of the actual platform architecture. It contains cycle-
approximate timing information along with structural and
behavioural aspects. The platform model is composed of
three layers: component layer, subsystem layer, and platform
architecture layer (Figure 6). Each layer has its own services,
which are abstraction views of the architecture models. They
describe the platform behaviours and related attributes, for
example, performance, but hide other details. Services in the
subsystem and platform architecture layers can be invoked by
workload models. High-level services are built on low-level
services, and they can also use the services at the same level.
Each service might have many different implementations.
This makes the design space exploration process easier,
because replacing components or platforms by others could
be easily done as long as they implement the same services.

3.3.1. Component layer

This layer consists of processing (e.g., processors, DSPs, dedi-
cated hardware, and reconfigurable logic), storage, and inter-
connection (e.g., bus and network structure) elements. An
element must implement one or more types of component-
layer services. For example, a network interface component
should implement both master and slave services. In addi-
tion, some elements need to implement services that are not
explicitly defined in component-layer services, for instance,
a bus will support arbitration and a network will support
routing.

The component-layer read, write, and execute services
are the primitive services, based on which higher-level
services are built. The processing elements in the compo-
nent layer realize the low-level workload-platform interface,
through which the load primitives are transferred from
the workload side. The processing element models will
then generate accesses to the interconnections and slaves as
appropriate.



6 EURASIP Journal on Embedded Systems

Top-level workload

Application
workload 1

Application
workload 2

Application
workload N

Application workload

Process
workload 1

Process
workload 2

Process
workload N

Process workload

Function
workload 1

Function
workload 2

Function
workload N

Function workload

Basic block 1

Basic block 2

Basic block N

if (some condition) {
process1 →execute() ;

}
else {

process2 →execute() ;
process3 →execute() ;

}

host→call service();

for (other condition)
funct1 →execute();

do {
// basic block
host→read() ;
host→execute() ;
host→write();

if (some condition)
host→call service() ;

// basic block
host→read() ;
host→write() ;
host→write() ;

} while (other condition);

Figure 3: Workload models have a hierarchical structure.

Main workload

<<meta>>
Application control Application workload

<<meta>>
Process control Process workload

1

1

1

1

1

1

∗

∗

Figure 4: The top-level and application workloads consist of one or
more lower level items and control.

All the component models contain cycle-approximate
or cycle-accurate timing information. Specifically, the data
path of processing units is not modelled in detail; instead
the processor models have a cycles-per-instruction (CPI)
value, which is used in estimating the execution time of
the workloads. For example, the execution time for data
processing instructions is the number of instructions to

execute times CPI (Figure 7). Furthermore, caches and
SDRAM page misses, for example, are modelled statistically
since the workload models typically do not include accurate
address information.

3.3.2. Subsystem layer

The subsystem layer is built on top of the component layer
and describes the components of the system and how they are
connected. The services used at this layer could include, for
example, video preprocessing, decoding, and postprocessing
for a video acceleration subsystem.

The model can be presented as a composition of
structure diagrams that instantiates the elements taken from
the library. The load of the application is executed on
processing elements. The communication network connects
the processing elements with each other. The processing
elements are connected to the communication network via
interfaces.

3.3.3. Platform architecture layer

The platform architecture layer is built on top of the
subsystem layer by incorporating platform software and
serves as the portals that link the workload models and the
platforms in the mapping process. Platform-layer services



Jari Kreku et al. 7

Process workload

Statistical process workload Deterministic process workload

Function distribution
<<meta>>

Function control Function workload

Abstract instruction count

numReads:int
numWrites:int
numExecutes:int

1

1 1 1 1
1

1

∗

Figure 5: The process workloads can be either statistical or deterministic.

Platform

Subsystem

Component

<<interface>>
Platform services

<<interface>>
Subsystem services

<<interface>>
Component services

1∗...

1∗...

Figure 6: The execution platform model consists of platform,
subsystem, and component layers.

consist of service declaration and instantiation information.
The service declaration describes the functionalities that the
platform can provide. Because a platform can provide the
same service with quite different manners, the instantiation
information describes how a service is instantiated in a
platform.

The platform-layer services are divided into several
categories with each category matching one application
domain, for example, video processing, audio processing,
and encryption/decryption. The OS system call services are
in an individual domain, and as mentioned earlier they can
also be invoked by other services at the same level. A number
of platform-layer services are defined for each domain, and
more could be added if necessary.

Application workloads typically call platform or subsys-
tem level services, process workloads call subsystem services,
and function workloads call component-level services. Ide-
ally, all services required by the application are provided by

Table 1: The low-level interface consists of functions intended
for transferring load primitives between workload and platform
models.

Interface function Description

Read(A,W ,B) Read W words of B bits from address A

Write(A,W ,B) Write W words of B bits to address A

Execute(N) Simulate N data processing instructions

the execution platform and there is a 1 : 1 mapping between
the requirements and provisions. However, often this is not
the case and the workloads need to use several lower-level
services in combination to produce the desired effect.

3.4. Interface betweenworkload and platformmodels

The platform model provides two interfaces for utilising its
resources from the workload models. The low-level interface
is intended for transferring load primitives and is depicted
in Table 1. The functions of the low-level interface are
blocking—in other words a load primitive level workload
model is not able to issue further primitives before the
previous primitives have been executed.

The high-level interface enables workload models to
request services from the platform model (Table 2). These
functions can be called from workload models between the
function and application layers. The use service() call is
used to request the given service and it is nonblocking so
that the workload model can continue while the service
is being processed. Use service() returns a unique service
identifier, which can be given as a parameter to the blocking
wait service() call to wait until the requested service has been
completed, if necessary.

In simple cases, the execution of workloads can be
scheduled manually by hard-coding it to the models. How-
ever, typically the platform model includes one or more



8 EURASIP Journal on Embedded Systems

void Gpp: :execute(unsigned count, const Process∗ owner)
{

m timer exec→start();

DEBUG N“executing” <<count<<“ instruction((s)”);

// calculate the number of cycles it takes to execute the instructions

double cycles = count∗ m props.cpi();
unsigned u cycles = (unsigned)std: :ceil(cycles + rounding error);

rounding error+ = (cycles-u cycles);

DEBUG N(“cycles = ” << u cycles<<“; error = ” << rounding error);

i fetch(count);

m status→set busy();
wait clk(u cycles);
m status→set idle();

m timer exec→set(false, count);
}

Figure 7: Code extract showing how processor models calculate the execution time for data processing instructions.

Table 2: The services of the platform model are exploited via the high-level interface.

Interface function Return value Description

Use service(name, attr) Service identifier id Request service name using attr as parameters

Wait service(id) N/A Wait until the completion of service id

operating system (OS) models, which control access to the
processing unit models of the platform by scheduling the
execution of process workload models (Figure 8). The OS
model provides both low-level and high-level interfaces to
the workloads and relays interface function calls to the
processor or other models which realize those interfaces.
The OS model will allow only these process workloads
which have been scheduled for execution to call the interface
functions. Rescheduling of process workloads is performed
periodically according to the scheduling policy implemented
in the model.

3.5. Transformation fromUML to SystemC

Though it is possible to define a set of mapping rules from
a pure UML model directly into SystemC code, it would
give the engineer little influence on the mapping and most
likely a less satisfactory result. Instead, we divide the mapping
into three steps. All models are available and editable. This
makes it possible for the engineer to have full control over
the relevant details for the system under development and
have the tool to manage all remaining details.

Step 1, vertical refinement transformation: In this step
an initial UML description is refined to a UML description,
which follows a UML profile for SystemC. This step will
partly be carried out manually. To minimise the design effort,

Lo
ad

pr
im

it
iv

es
,

se
rv

ic
e

ca
lls

ApplicationWL

ProcessWL 1

ProcessWL 2

ProcessWL 3

Subsystem

OS model

Processing unit
1

Processing unit
N

Figure 8: During simulation process workloads send load primi-
tives and service calls to the platform model.

it is not required to tag the whole model. This means that a
set of default values for the SystemC specific attributes of the
UML profile have been defined. The default values provide a
satisfactory mapping in the following transformation steps.

Step 2, vertical refinement transformation: in this step
the model is transformed into a new UML description that
only includes UML constructs with direct representations
in SystemC, that is, classes, attributes, inheritance, and so
on. Other constructs such as state machines are translated
to the target language. During this step each state machine



Jari Kreku et al. 9

is transformed to a class with methods that implement the
behaviour of the states and transitions. In the first version of
the tool, the resulting model is an untimed functional model.
The mapping rules for UML to SystemC are beyond the scope
of this paper and interested readers are referred to [21, 22].

In addition to removing UML only concepts, all relations
in the model are made explicit. When a class is made active
in UML it implies that the class will have its own thread of
execution. In SystemC this is realized using SC THREAD or
SC METHOD which implies that the class is an instance of
the SystemC class sc module. For example, a generalisation
relation to the SystemC class sc module is added from all
active UML classes.

Step 3, horizontal transformation: in this step the
UML model resulting from step 2 is transformed into a
corresponding SystemC code. This transformation is a one–
to-one correspondence between the UML model and the
resulting SystemC code. This step is implemented using the
existing C++ code generator from Telelogic and thus reuses
its support for scope rules, header-file inclusion and make
file generation without any modifications. If the generated
code is to be read by humans, it is desirable to use the
common SystemC macros when applicable. This requires
a slight customisation of the syntax of the generated code.
This is done using an agent, a mechanism which makes it
possible for third-party executables to interact with the C++
Code generator in Telelogic Tau G2. The agent generates
SystemC like module declarations, instead of a C++ class
declarations, SC MODULE(MyModule){· · ·} instead of
class MyModule:public sc module{· · · }.

4. LOAD EXTRACTION

The workload models capture the control behaviour of the
applications in the hierarchically layered structures. On the
other hand, they abstract the details of data processing and
communication as loads. To obtain the load information,
three different techniques are currently used: analytical,
measurement-based and source code-based. These can be
used separately or in combination depending on what kind
of descriptions of application algorithms are available.

The selection of which extraction method to use depends
on (i) what kind of information is available of the applica-
tion(s), (ii) how accurate the resulting models need be, and
(iii) how much effort one is willing to use. In general, you will
want to use as accurate method as possible for best results.
On the other hand, if you have only limited information
available of the applications, you may be forced to use the
analytical method. If you are modelling small background
load with a minor impact on the overall performance, it
makes sense to use one of the faster extraction methods
instead of the source code-based approach.

4.1. Analytical loadmodelling

Analytical load modelling method is currently the simplest
way to create workload models but also probably the least
accurate. As the name suggests it is based on analysis of

the number of operations from an algorithm description or
other suitable source.

Analytical modelling [23] consists of three phases. First,
the number of data processing instructions and amount of
memory traffic are analysed from the algorithm description.
In principle, after this point we could write a simple three
line workload model that would consist of one read(), one
write(), and one execute() call. However, the ordering and
block size of the operations usually affects the performance
notably. Therefore in the second phase the total operation
numbers are divided into smaller blocks. In the best case,
this can also be done based on the algorithm description.
In the worst case we can only create a number of uniformly
distributed blocks of read(); execute(); write().

Let us consider the case of an MPEG4 video colour con-
version algorithm as an example. Once the video resolution
and the amount of bits per pixel for input and output are
known it is possible to calculate the number of memory reads
and writes per frame. For VGA resolution, YUV422 input
and YUV420 output we get at least 640×480×16 bits of data
reads and 640 × 480 × 12 bits of writes. It is also possible to
estimate the efficiency of the implementation with a simple
factor n ≤ 1. The word length W (in bits) and burst length N
(in words) of the target processor should also be taken into
account so that the number of reads R and writes W for F
frames in this case are

R =
⌈

640·480·16·F
nWN

⌉

W =
⌈

640·480·12·F
nWN

⌉
,

(5)

respectively. Since the operations performed for each pixel
are known it is straightforward to estimate also the number
of data processing instructions E. In this case the algorithm
calculates an average of each two chrominance data points, so
we have 640 × 480/2 calculations per frame. One addition
and one division or shift by two, or two instructions in
total, are required per each average, resulting to the following
formula:

E =
⌈

640·480·F
n

⌉
. (6)

In this case, the algorithm must be executed so that data is
available for at least two pixels at any point. Thus we can
divide the model in the second phase so that firstly the data
for two pixels is read, then the two pixels are processed and,
finally, the new data is written out. This sequence is repeated
until all pixels of all frames are processed. In pseudocode, this
results to workload model shown in Algorithm 1.

However, it should be noted that this is not the only
feasible way to divide the algorithm into smaller blocks.

The analytical method typically produces the most
compact workload models with the least effort. However, the
quality of the workload models depends a great deal on the
use case (algorithm) being modelled. So far, the analytical
approach for load extraction has been partially used in the
modelling of Quake 2 3D game [23] and MPEG4 video
encoding and decoding on the OMAP2 platform.



10 EURASIP Journal on Embedded Systems

for(loop through all frames) {
for(loop until all pixels of a

single frame are processed) {
read(two pixels);
execute(two pixels);
write(two pixels);
}

}

Algorithm 1

0

0.4

0.8

1.2

1.6

2

500 1000 1500 2000 2500 3000 3500

Figure 9: An example of a concatenated and merged utilisation
curve.

4.2. Measurement-based load generation

The second method for creating the load models is to extract
data from partial measurements or traces made of the use
case [24]. This method can easily be automated, which allows
rapid modelling of complex use cases with minimal manual
work. It is also useful for performance analysis if the entire
use case cannot be executed and monitored for some reason.

A method has been developed for generation of complex
workload models from processor utilisation data. The com-
plex use case means in this context a workload that cannot be
measured with available system and that consists of several
programs that can be measured or estimated alone. The first
step of our approach is to measure processor utilisation data
of these individual programs. The second step is to merge
and concatenate the data according to the state sequence
model of a complex use case. An example of this merging
is shown in Figure 9. The merged utilisation curve is likely
to have data points where the utilisation is more than 100%.
This is not a problem because the value will only be used as
a basis for estimating the number of load primitives for the
workload model. The third step is to generate the workload
models of the primitive samples of monitoring tool.

The workload models consist of read, write, and execute
operations, whose amounts can be estimated for each sample
point of the input utilisation data in the following way:
let X(n) be the combined trace data, which was composed
by merging the measurement data, and N the number of
samples in the combined trace. Furthermore, let tsp be the
sampling interval, C the number of cycles per second (i.e.,
processor clock frequency), csp the number of cycles per
sample point, CR,W ,E

op the number of cycles per read, write,
or execute operation, ρR,W ,E the percentages of read, write,

and execute operations, and YR,W ,E(n) the amount of read,
write, or execute operations per sample point.

Now, the time, tR, spent for read operations during one
sample point can be calculated as

tR = tspρ
R. (7)

During this time, the processor clock counts tRC cycles. This
amount of cycles is sufficient to perform exactly (tRC)/cRop
read operations. When the combined trace data gives a
utilisation level of X for the given sample point, n, we can
assume that the number of read operations, YR(n), for that
sample point is (tRC)/cRopX , which can be rearranged as

YR(n) = C
ρR

cRop
tspX. (8)

In general terms, this can be expressed as

Y(n) =

⎡

⎢
⎢
⎣

YR(n)

YW (n)

YE(n)

⎤

⎥
⎥
⎦ = C

⌊
BtspX(n)

⌋
, n = 1, 2, 3, . . . ,N

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρR

cRop

ρW

cWop

ρE

cEop

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(9)

In a shorter form this can also be expressed as

YR,W ,E(n) =
⌊

csp

cR,W ,E
op

ρR,W ,EX(n)
⌋
| csp = Ctsp ,

n = 1, 2, 3, . . . ,N.
(10)

The execution of these operations is then spread uniformly
across the given sample point and, finally, workload models
containing the information for each sample point are
composed.

The measurement-based approach has been successfully
applied to complex use cases consisting of GPRS connec-
tion, Bluetooth download, SMS/MMS messaging, and video
capturing among others [24]. For comparison purposes
the same applications were executed in a mobile phone
prototype based on the same platform. The performance
of the platform was monitored and the average difference
between measured and simulated processor utilisation was
about 19%.

4.3. Source code-based load generation

Source code-based workload generation requires estimating
the amount of elementary operations by examining the
function source codes line by line. This approach results in
quite detailed and accurate workload models but requires a
significantly high amount of manual work.



Jari Kreku et al. 11

C source code of
application

Code compilation for
x86 w/ profiling flags

Code compilation for
ARM

Execution of
application with proper

dataset

Profiling with gcov for
branch analysis

Disassembly with
arm-objdump

Gcov output
(under development)

Perl-based WL
generation

Arm-objdump
output

Workload model

Figure 10: Semiautomatic method for C source code-based load
information extraction.

A semiautomatic tool has been developed for extract-
ing the load information from C language source code
(Figure 10). The use of this tool requires that the source code
is available and mature enough that it can be compiled and
executed.

Firstly, the source code is compiled for the ARM instruc-
tion set with a GNU GCC cross-compiler. The resulting
binary is disassembled with arm-objdump, which reveals
the instructions the program would execute on an ARM
processor. This arm-objdump output is then analysed by
a perl script, which produces abstract instructions for the
load primitive workload layer from the dump. Each load and
store instruction in the dump will result to a corresponding
read or write primitive and all the other instructions are
replaced with execute primitives. It should be noted that the
ARM compiler is used because it is easier to differentiate
between memory access and other instructions with the
ARM instruction set than with, for example, x86 instruction
set. The extraction method, however, is not limited to ARM.

Secondly, the application is compiled for the host
architecture—typically an x86-based PC-using the native
GCC tool chain. Profiling flags are enabled during the
build process and the resulting binary is executed with a

suitable dataset. The profiling information reveals branch
probabilities and the number of times loops have been
executed. The function layer of the workload models can
be constructed based on this information, if necessary. For
example, consider a situation where the profile reveals that
one code branch is executed with a 60% probability. We can
add a test based on the random number generator that results
in the corresponding load primitives being executed just as
often. However, combining the profiling information and
the load primitive information from the ARM disassembly
is done manually at the moment, though an automatic tool
is under development.

The source code-based approach has been used in the
modelling of a 3D game [23], MP3 player, [24] and MPEG4
video encoder [19]. It has also been used partially in a
case consisting of internet browsing over virtual network
computing (VNC) session on a handheld device. Apart from
the 3D game, these case examples have also been verified
by executing the same applications in a real platform. The
average difference between simulations and measurements
across all those cases was about 10%.

5. PERFORMANCE SIMULATION

The combined system model is built in a GNU/Linux
environment for performance simulation, using GNU com-
piler collection (GCC), CMake cross-platform build system,
and OSCI SystemC library. Currently manually created
CMakeFiles are used for configuring the build. The simulator
is a command line program, which is executed in a terminal
window. During the simulation it prints progress informa-
tion to standard output and after the simulation is complete
it displays the collected performance results.

A C++- and XML-based automatic configuration tool
called VTT COGNAC is being developed to simplify the
process. With this tool also the platform model is sketched
in the Tau UML2 tool from a component library (like the
skeleton model of the platform currently) and the parameters
of the components are set up in UML. The tool reads the
XML output from Tau and generates the system model by
combining the SystemC workload models generated from
UML and the SystemC component models in the component
library. The system simulator VTT BEER then executes the
simulation.

During the simulation of the system model the workloads
send load primitives and service calls to the platform model
(Figure 8). The platform model processes the primitives
and service calls, advancing the simulation time while
doing so. The simulation run will continue until the top-
level workload model stops it when the use case has been
completed.

The platform model is instrumented with counters,
timers, and probes, which record the status of the com-
ponents during the simulation. These performance probes
are manually inserted in the component models where
appropriate and are flexible so that they can be used to
gather information about platform performance as needed.



12 EURASIP Journal on Embedded Systems

Typically,

(i) status probes collect information about utilisation of
components and scheduling of processes performed
by the operating system models,

(ii) counters are used to calculate the number of load
primitives, service calls, requests, and responses
performed by the components,

(iii) timers keep track of the task switch times of the OS
models and processing times of services.

Once the simulation is complete, the performance probes
output the collected performance data to the standard out-
put. A C++-based tool VTT VODKA has been developed for
viewing the data, for example, processor utilisation curves,
graphically. The data can be analysed and feedback given to
application or platform design. For example, if the utilisation
of components is low, lowering the clock frequency can
be proposed to platform designers for decreasing power
consumption.

In a mobile video player case [20], the simulation speed
was one tenth of real time. In other words, simulating the
system for one second took about ten seconds in a Linux
PC with a dual-core Intel Xeon processor, although the
simulation was using only one of the cores. This is faster
than cycle-accurate instruction set simulation, even if the
models used in the case example were not optimised. It is
also fast enough for performing early-phase performance
evaluation and for simulating multiple, alternative use cases
for architecture exploration.

6. MOBILE VIDEO PLAYER CASE STUDY

The performance modelling approach has been applied to
the mobile video player case study. In this use case, a mobile
terminal user wants to view a movie on the device. He
selects a movie from a list of movies available on the mobile
terminal. The execution platform of the mobile terminal is
assumed to provide services for storing of movie files, for
playing and displaying the selected movie, and for running
the application. The use case does not focus on the human-
terminal interface, but on the modelling of functionalities,
services, communication, and so on that execute on the
platform in fulfilling the user request.

Figure 11 displays an overall view of the workload models
of the case study. PlayerApplication is the model of the
software application that provides a graphical interface to
the user. It responds to events coming from the user and
sends messages accordingly to the VideoPlayer, ObjectServer,
and DisplayServer. Since our method does not simulate
application functionality, the user events are either collected
to an input file or hard-coded to the model. The ObjectServer
manages stored video files, provides the list of video clips
available for viewing to the PlayerApplication, and streams
video data to the VideoPlayer when viewing files. The
VideoPlayer handles video preprocessing, decoding, and
postprocessing. Finally, the DisplayServer gets the uncom-
pressed video stream from the VideoPlayer and displays it on
a screen as requested by the PlayerApplication.

Figure 12 presents the application workload model of
the PlayerApplication as a composite structure diagram.
It consists of process control and several process work-
loads, namely ObjectServer, VideoPlayer, and DisplayServer
processes. The VideoPlayer process workload is further
decomposed in Figure 13. In a similar manner it is built of
function control and several function workloads.

Figure 14 shows the video decoding/displaying control
sequence inside the VideoPlayer process workload as a state
machine diagram. Firstly, a handle is obtained to the video
file which has been selected, then segments of the file are
requested in a loop until the last segment has been received.
Each segment is decoded once it has been received.

The UML-based workload models were transformed
to SystemC using the code generator developed at Lund
University [21]. The SystemC-based version of the transition
from wf decode cnf to wf postprocess cnf state in Figure 14
is presented in Figure 15 as an example.

The platform in the mobile video player case consists of
four subsystems depicted as a block diagram in Figure 16:

(i) general purpose (GP) subsystem, which is used for
executing an operating system and generic applica-
tions and services, for example,

(ii) image (IM) subsystem, which is intended for
hardware-accelerated image processing and video
playback and recording,

(iii) storage (ST) subsystem, which contains a repository
for video clips and services for loading and storing
them,

(iv) display (DP) subsystem, which takes care of dis-
playing framebuffer data on a screen, including the
viewed video files.

The subsystems are interconnected by a network using a ring
topology with best-effort (BE) and guaranteed throughput
(GT) routing approaches. GT is used for transferring stream-
ing data and BE is used for transferring control messages
between subsystems.

The general purpose subsystem has two ARM11 general
purpose processors for executing the operating system
and applications. There is also a subsystem-local SDRAM
memory controller and memory to be used by the two
processors. For communication with the other subsystems,
the GP subsystem—like all the other subsystems—has a
network interface.

Image subsystem is built around the video accelera-
tor, which provides hardware accelerated compression and
decompression, preprocessing and postprocessing services.
The services provided by the subsystem are controlled by
a simple ARM7 general purpose processor. There is also
some SRAM memory for the ARM, a video accelerator and
a DMA controller for offloading large data transfers between
subsystems.

Storage and display subsystems are mostly similar to the
image subsystem and they contain a simple ARM, a DMA
controller and a network interface. However, instead of the
video accelerator the storage subsystem has local memory for



Jari Kreku et al. 13

User

App:
PlayerApplication

Obs: ObjectServer Plr: VideoPlayer

Dis: DisplayServer

list, Play

filmList End of content

Get list Play

Speakers

Display
ViewVideo

GetHandle,
AccessContent
ReleaseHandle

viewEnd,
viewList,
viewVideo

Handle,
VideoSignal

Figure 11: Interaction of the mobile video player workload models.

storage and metadata. The display subsystem has a graphics
accelerator, local SRAM for graphics, and a display interface
for the screen.

The platform model was created using SystemC and
the communication interfaces were based on OCP TL3 on
the platform layer. OCP TL2 was used on the subsystem
and component layers. After the workload and platform
modelling phases the workload models were mapped to the
skeleton model of the platform (Figure 17). The flow of
operation after the mapping is the following:

(i) the PlayerApplication, executed in one of the ARM11
processors of the GP subsystem, is launched and
requests a list of movie files from the ObjectServer
in the ST subsystem,

(ii) one of the movie files is selected, after which the
PlayerApplication triggers the VideoPlayer in the IM
subsystem,

(iii) the VideoPlayer requests the movie file from the
ObjectServer, which initiates streaming of the file,

(iv) the VideoPlayer decodes the compressed stream and
transfers video frames to the DisplayServer in the DP
subsystem,

(v) the DisplayServer displays incoming video frames on
the screen.

The video player case was simulated in the SystemC
domain. The platform model was instrumented in order to
collect information of the platform’s performance during the
simulation run. For example, the processor models record
the time spent in idle, data processing, and memory accessing
states for the calculation of processor utilisation. Subsystem

Table 3: Utilisation of the display subsystem components in the
mobile video player use case.

Component Idle Busy

ARM7 microcontroller 98% 2%

SRAM controller 83% 17%

DMA controller 65% 35%

Display controller 74% 26%

Bus 66% 34%

Network interface 66% 34%

Table 4: Examples of average, minimum, and maximum processing
times of services.

Service Average Min Max

DMA (ST) 450 μs 1 μs 480 μs

Decoding (IM) 16 μs 14 μs 16 μs

DMA (DP) 1.4 ms 1 ms 1.6 ms

models measure the average, minimum and maximum
processing time for each service.

Table 3 presents the utilisation of each of the components
in the display subsystem, which was obtained from the
simulation. None of these components has been at the limit
of their capacity: the DMA controller has been the most
burdened of all and its average load has been only 35%.
Furthermore, the load of the simple ARM7 microcontroller
was under 3%. It is clearly possible to execute more
demanding applications on this platform—at least from the
display subsystem point of view. Another alternative is to
reduce the clock frequency of these components to decrease
the power consumption of the device.



14 EURASIP Journal on Embedded Systems

Composite structure diagram2 I MWL
I To MWL

I From MWL

Active class
VideoPlayerApplication Workload

{1/1}

I MWL
PCrl: Process Control1

I GWL I OSWL I VPWL I DSWL

I From PA I From OS I From VP I From DS

I To PA I To OS I To VP I To DS

I Crl I Crl I Crl I Crl

+GWL: GeneralControl +OSWL: ObjectServer +VPWL: VideoPlayer +DSWL: DisplayServer

USAP2 USAP USAP USAP

I From Subsystem2 I From Subsystem4

I From Subsystem1 I From Subsystem3

I To Subsystem1 I To Subsystem3

I To Subsystem2 I To Subsystem4

USAP1 USAP2 USAP3 USAP4

Figure 12: PlayerApplication application workload consists of process control and ObjectServer, VideoPlayer, and DisplayServer process
workloads.

Composite structure diagram1

I From VP I To VP

I From VP
I To VP

Active class VideoPlayer {1/1}I Crl

p1
FCrl3: Function Control3

I Ini I Pre I Dec I Post

FromIni FromPre FromDec FromPost

ToIni ToPre ToDec ToPost
I Control I Control I Control I Control

I From Subsystem3 I From Subsystem3 I From Subsystem3 I From Subsystem3

Subsystem3ServiceRequestA Subsystem3ServiceRequestB Subsystem3ServiceRequestC Subsystem3ServiceRequestD

USAP USAP USAP USAP

+aInit: Initialize
+aPost: MVP Workload::

Preprocess +aDec: Decode +aPre: PostProcess

SP3a SP3b SP3c SP3d

Repeater3: Repeater3

SSP
I From Subsystem3

I To Subsystem3
UASP

I From Subsystem3 I To Subsystem3

Figure 13: VideoPlayer process workload consists of function control and several functions workloads.

Another view on component utilisation is given in
Figure 18, which depicts how the utilisation changes during
the simulation with respect to time. The display subsystem
is constantly updating the screen while the device is powered
and those updates cause the lower, about 30% and 70% peaks
to the utilisation curves of bus and memory components. In

this simulation the video player application has been running
only for a short period of time, inflicting the higher peaks.

Table 5 visualises the data reads and writes initiated or
serviced by each component in the same subsystem. For
example, 1.0 million read requests were processed by the
bus resulting to about 4.2 million transferred 32-bit words.



Jari Kreku et al. 15

InitializeDecoder cnf(movieHandle)
/̂Preprocess req() via I Pre, HandleToDecodedVideo ind(movieHandle) via p1;

I To VP:: DecodeVideo req(movieHandle)

/̂InitializeDecoder req(movieHandle) via I Ini,
DecodeVideo cnf() via p1;

Postprocess cnf(succeed)

/̂DecodeVideoReady ind() via p1;

Preprocess cnf(succeed)

/̂Decode req() via I Dec;

Decode cnf(succeed)
/̂Postprocess req() via I Post;

IDLE

wf preproc cnf

wf postprocess cnf wf decode cnf

Figure 14: State machine example from the mobile video player UML model.

bool

MVP Workload: :Function Control3: : 11 trans 2
(UML signal ∗pMsg)

{
if (typeid(∗pMsg) ==

typeid(MVP workload:: FromDec:: Decode cnf signal))

{
FromDec: :Decode cnf signal ∗pSig =

dynamic cast<MVP workload:: FromDec::Decode cnf signal∗ > (pMsg);
succeed sm 11 = pSig→ par0;

{
I Post port→ Postprocess req();

}
delete nextState sm 11;
nextState sm 11 = new sm 11 wf postprocess cnf(this);
nextState sm 11→ enter action();
return true;

}
return false;

}

Figure 15: An extract from the SystemC workload generated from the state machine diagram of Figure 14.

Table 5: Data traffic initiated or serviced by the display subsystem components.

Component Reads Read words Writes Written words

ARM7 microcontroller 1400 1400 1250 1250

SRAM controller 312 k 1245 k 635 k 2536 k

DMA controller 634 k 2534 k 634 k 2534 k

Display controller 311 k 1244 k 0 0

Bus 946 k 3780 k 635 k 2536 k

Network interface 634 k 2535 k 0 0



16 EURASIP Journal on Embedded Systems

General purpose (GP) subsystem

ARM11 ARM11

Bus

SDRAM Network
IF

Image processing (IM) subsystem

ARM7 Video
Accel.

Bus DMA

Network
IF

SRAM

Router Router

Router Router

Context
memory

Network
IF

DMA Bus

Storage
memory ARM7

Storage (ST) subsystem

Network
IF

SRAM

Bus DMA

ARM7
Display
Contrlr

Display (DP) subsystem

Figure 16: The execution platform of the mobile video player case consists of four subsystems.

Composite structure diagram2 Active class SimulationModel {1/1}
// PSP = Platform Service Port

SSP1 = Subsystem Service Port 1
SSP2 = Subsystem Service Port 2
SSP3 = Subsystem Service Port 3
SSP4 = Subsystem Service Port 4

// PLSP = Platform Level Service
Port
S1SP = Subsystem1 Service Port
S2SP = Subsystem2 Service Port
S3SP = Subsystem3 Service Port
S4SP = Subsystem4 Service Port

SSP1 SSP2 SSP3 SSP4

+WLM: WorkloadModel

+PSM: PlatformSkeletonModel

S1SP S2SP S3SP S4SP

I From Subsystem2 I From Subsystem4
I From Subsystem1 I From Subsystem3

I To Subsystem1 I To Subsystem3

I To Subsystem2 I To Subsystem4

Figure 17: Mapping of the workload models to the platform skeleton model.



Jari Kreku et al. 17

Components utilization in mobile video player case

0

0.2

0.4

0.6

0.8

1

U
ti

liz
at

io
n

0

1e
+

08

2e
+

08

3e
+

08

4e
+

08

5e
+

08

6e
+

08

7e
+

08

8e
+

08

9e
+

08

1e
+

09

Time (ns)

Components

p.display.bus
p.display.mem

Figure 18: The red (upper) and green (lower) curves display
the utilisation of bus and memory components in the display
subsystem, respectively.

The same information as displayed in Tables 3 and 4 and
Figure 18 was also collected from all the other subsystems,
though they are not displayed here. Finally, Table 4 contains
the processing times of, for instance, DMA transfer services
from the subsystem layer.

The simulation results have not been validated with, for
example, measurements since the execution platform is an
invented platform intended to portray a future architecture.
As such, there are no cycle-accurate simulators for the plat-
form which could be used to obtain reference performance
data. However, we have modelled MPEG4 video processing
and the OMAP platform earlier and compared those sim-
ulation results to measurements from a real application in
a real architecture [19]. In that case the average difference
between simulations and measurements was about 12%.
Furthermore, the accuracy of the simulation approach has
been validated with other case examples in [23, 24].

7. CONCLUSIONS

A layered UML application/workload and SystemC plat-
form modelling approach for performance modelling and
evaluation was described. It allows application and plat-
form to be modelled at several levels of abstraction to
enable early performance evaluation of the resulting system.
The approach applies a Y-chart-like specify-explore-refine
paradigm. Applications are modelled in either UML or
SystemC domain as workloads consisting of load primitives.
Platform models are cycle-approximate transaction-level

SystemC models. Mapping between UML application mod-
els and the SystemC platform models is based on automatic
generation of simulation models for system-level perfor-
mance evaluation.

The workload models reflect accurately the control struc-
tures of the applications. The layered hierarchical structure
covers application, process, function, and basic block layers.
Computation and communication are abstracted as loads
that can be extracted using either analytical, measurement-
based or source code-based methods, and support tools.

The platform model is an abstracted hierarchical rep-
resentation of the actual platform architecture. It contains
cycle-approximate timing information along with structural
and behavioural aspects. The platform model is composed of
three layers: component layer, subsystem layer, and platform
architecture layer. Each layer has its own services, which are
abstraction views of the architecture models. Services in the
subsystem and platform architecture layers are invoked by
workload models.

The tool support is based on a commercial UML2
tool, Telelogic Tau G2, and an open source SystemC
simulation tool of OSCI. The overall performance mod-
elling and evaluation method with support tools is called
VTT ABSOLUT2.2%. The source code-compilation method
for load extraction is supported by VTT ABSINTH. The
execution platform model is configured from a library of
performance models using VTT COGNAC. The simulator is
based on the open source OSCI SystemC simulator extended
with configurable instrumentation and is called VTT BEER.
The simulation results can be selected for analysis and viewed
using VTT VODKA.

The overall approach has been experimented with a
mobile video player case study. Unfortunately comparisons
were not possible since no reference implementation was
available. Different load extraction methods have been
validated by applying them to MPEG-4 encoder, Quake2 3D
game, and MP3 decoder case studies previously, where the
average and maximum errors between simulated and moni-
tored results have been about 15% and 25%, respectively.

The approach enables early performance evaluation,
exhibits light modelling effort, allows fast exploration iter-
ation, and reuses application and platform models. Fur-
thermore, it provides performance results that are accurate
enough for system-level exploration.

In the future, the approach will be expanded, so that
power consumption or other criteria besides performance
can be evaluated. As mentioned earlier, further tool support
for automation of some steps of the approach is in progress.
Future work will also include a real-scale case study to further
validate the approach.

ACKNOWLEDGMENTS

This work is supported by Tekes (Finnish Funding Agency for
Technology and Innovation), VTT under the EUREKA/ITEA
contract 04006 MARTES, and partially by the European
Community under the Grant agreement 215244 MOSART.



18 EURASIP Journal on Embedded Systems

REFERENCES

[1] B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf,
“Approach for quantitative analysis of application-specific
dataflow architectures,” in Proceedings of the IEEE Interna-
tional Conference on Application-Specific Systems, Architectures
and Processors (ASAP ’97), pp. 338–349, Zurich, Switzerland,
July 1997.

[2] NoTA World Open Architecture Initiative, http://www
.notaworld.org/.

[3] Open SystemC Initiative, “IEEE Standard SystemC Language
Reference Manual,” IEEE Computer Society, 2006. IEEE Std
1666–2005.

[4] P. Lieverse, P. van der Wolf, K. Vissers, and E. Deprettere, “A
methodology for architecture exploration of heterogeneous
signal processing systems,” The Journal of VLSI Signal Process-
ing, vol. 29, no. 3, pp. 197–207, 2001.

[5] E. A. de Kock, G. Essink, W. J. M. Smits, et al., “YAPI: appli-
cation modeling for signal processing systems,” in Proceedings
of the 37th Design Automation Conference (DAC ’00), pp. 402–
405, Los Angeles, Calif, USA, June 2000.

[6] A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic
approach to exploring embedded system architectures at
multiple abstraction levels,” IEEE Transactions on Computers,
vol. 55, no. 2, pp. 99–111, 2006.

[7] T. Wild, A. Herkersdorf, and G.-Y. Lee, “TAPES—trace-based
architecture performance evaluation with SystemC,” Design
Automation for Embedded Systems, vol. 10, no. 2-3, pp. 157–
179, 2005.

[8] J. M. Paul, D. E. Thomas, and A. S. Cassidy, “High-
level modeling and simulation of single-chip programmable
heterogeneous multiprocessors,” ACM Transactions on Design
Automation of Electronic Systems, vol. 10, no. 3, pp. 431–461,
2005.

[9] D. Gajski, J. Zhu, R. Dömer, A. Gestlauer, and S. Zhao, SpecC:
Specification Language and Methodology, Kluwer Academic
Publishers, Dordrecht, The Netherlands, 2000.

[10] F. Ghenassia, Ed., Transaction-Level Modeling with Sys-
temC: TLM Concepts and Applications for Embedded Systems,
Springer, New York, NY, USA, 2005.

[11] TLM2 Whitepaper, http://www.systemc.org/members/down-
load files/check file?agreement=tlm2 whitepaper.

[12] H. Posadas, F. Herrera, P. Sánchez, E. Villar, and F. Blasco,
“System-level performance analysis in SystemC,” in Proceed-
ings of Design, Automation and Test in Europe Conference
and Exhibition (DATE ’04), vol. 1, pp. 378–383, Paris, France,
February 2004.

[13] T. Kangas, P. Kukkala, H. Orsila, et al., “UML-based mul-
tiprocessor SoC design framework,” ACM Transactions on
Embedded Computing Systems, vol. 5, no. 2, pp. 281–320, 2006.

[14] Ptolemy II—heterogeneous modelling and design, http://
ptolemy.berkeley.edu/ptolemyII.

[15] J. Eker, J. W. Janneck, E. A. Lee, et al., “Taming heterogeneity—
the ptolemy approach,” Proceedings of the IEEE, vol. 91, no. 1,
pp. 127–143, 2003.

[16] A. L. Sangiovanni-Vincentelli, “Quo vadis SLD: reasoning
about trends and challenges of system-level design,” Proceed-
ings of the IEEE, vol. 95, no. 3, pp. 467–506, 2007.

[17] UML Profile for MARTE Beta 1, http://www.omg.org/cgi-bin
/doc?ptc/2007-08-04.

[18] J. Kreku, Y. Qu, J.-P. Soininen, and K. Tiensyrjä, “Layered
UML workload and SystemC platform models for perfor-

mance simulation,” in Proceedings of the International Forum
on Specification and Design Languages (FDL ’06), pp. 223–228,
Darmstadt, Germany, September 2006.

[19] J. Kreku, M. Eteläperä, and J.-P. Soininen, “Exploitation
of UML 2.0-based platform service model and SystemC
workload simulation in MPEG-4 partitioning,” in Proceedings
of International Symposium on System-on-Chip (SoC ’05), pp.
167–170, Tampere, Finland, November 2005.

[20] J. Kreku, M. Hoppari, K. Tiensyrjä, and P. Andersson,
“SystemC workload model generation from UML for perfor-
mance simulation,” in Proceedings of the International Forum
on Specification and Design Languages (FDL ’07), Barcelona,
Spain, September 2007.

[21] P. Andersson and M. Höst, “UML and SystemC-comparison
and mapping rules for automatic code generation,” in Pro-
ceedings of the International Forum on Specification and Design
Languages (FDL ’07), Barcelona, Spain, September 2007.

[22] P. Andersson, M. Höst, and M. Bengtström, “UML to SystemC
transformation in the MARTES project,” in Proceedings of
the 32nd Euromicro Conference on Software Engineering and
Advanced Applications (SEAA ’06), Cavat/Dubrovnik, Croatia,
August-September 2006.

[23] J. Kreku, T. Kauppi, and J.-P. Soininen, “Evaluation of
platform architecture performance using abstract instruction-
level workload models,” in Proceedings of International Sym-
posium on System-on-Chip (SoC ’04), pp. 43–48, Tampere,
Finland, November 2004.

[24] J. Kreku, J. Penttilä, J.-P. Soininen, and J. Kangas, “Workload
simulation method for evaluation of application feasibility
in a mobile multiprocessor platform,” in Proceedings of the
Euromicro Symposium on Digital System Design (DSD ’04), pp.
532–539, Rennes, France, August-September 2004.


	1. INTRODUCTION
	2. RELATEDWORK
	3. UML2-SYSTEMC-BASED PERFORMANCE MODELLING
	3.1. Overview
	3.2. Workload model
	3.3. Execution platform model
	3.3.1. Component layer
	3.3.2. Subsystem layer
	3.3.3. Platform architecture layer

	3.4. Interface between workload and platform models
	3.5. Transformation from UML to SystemC

	4. LOAD EXTRACTION
	4.1. Analytical load modelling
	4.2. Measurement-based load generation
	4.3. Source code-based load generation

	5. PERFORMANCE SIMULATION
	6. MOBILE VIDEO PLAYER CASE STUDY
	7. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

