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1. INTRODUCTION

Embedded systems are increasingly complex to design, vali-
date, and implement [1]. System composition of embedded
processors and hardware accelerators leads to the HW/SW
codesign methodologies. Traditional codesign methodolo-
gies require that hardware and software are specified and
designed independently. Hardware and software validations
are thus done separately without interface validations. The
partitioning is therefore decided in advance and as changes
to the partition can necessitate extensive redesign elsewhere
in the system, this decision is adhered as much as possible.
It can lead to suboptimal designs as partitioning techniques
often rely on the designer’s experience. This lack of a unified
hardware-software representation can lead to difficulties in
verification of the entire system, and hence to incompatibil-
ities across the hardware/software boundary. Using a single
language for both simplifies the migration task and ensures
an entire system verification. Important uses of a unified
design language in addition to synthesis are validation and
algorithm exploration (including an efficient partitioning).
C-like languages are much more compelling for these tasks,

and one, in particular SystemC [2], is now widely used
for system-level design [3–5], as are many ad hoc variants.
Rapid C synthesis allows also fast emulation techniques of
hardware and software used for architecture exploration. C-
based synthesis fundamentals emerged from these HW/SW
codesign methodologies with the objective of reducing
the design productivity challenge [1]. However, although
raising the system design level of abstraction contributes to
reduce the design complexity, reliable and predictable silicon
implementation remains mandatory which supports high-
level design handoff [1]. The question is then on the impact
of C-based behavioral synthesis on C-based specification and
modeling framework for embedded systems.

This work evaluates through a case study the per-
formance and efficiency of several high-level description
languages (SystemC, Handel-C) for FPGA-based embedded
systems. The rest of the paper is organized as follows:
Section 2 presents the related work while Section 3 reviews
main issues regarding C-based synthesis system design
methodology. Design case studies along with performance
evaluation studies and results are fully described in Section 4.
Finally, Section 5 presents the conclusions.



2 EURASIP Journal on Embedded Systems

2. RELATEDWORK

Intensive research has been conducted on C-based behav-
ioral synthesis. With the evolution of system-level design
languages, the interest in efficient hardware synthesis based
on behavioral description of a hardware module has also
been visible. For a system designer, the behavioral synthesis is
very attractive for hardware modeling as it leads to significant
productivity improvements. Important work has been done
in academia on behavioral synthesis with C/SystemC [6–
14]. For example, the work in [6] has presented a synthesis
environment and the corresponding synthesis methodology.
It is based on traditional compiler generation techniques,
which incorporate SystemC, VHDL, and Verilog to trans-
form existing algorithmic software models into hardware
system implementations. In [12], the authors address the
problem of deriving exact finite state machines (FSMs) from
SystemC descriptions which is the first part of behavioral
synthesis methodologies. In an effort to extend synthesis to
object-oriented constructs of C++ language, [10] presents
an approach to object-oriented hardware design and syn-
thesis based on SystemC. Behavior synthesis problem is
multiobjective in nature where synthesis tools allow the
hardware designers to customize the behavioral synthesis
process through various options which constitute a huge
design space. In this situation, solution exists of a set of
optimized results represented in the form of Pareto curves
and Pareto surfaces. In [14], a methodology that allows
the designers to generate and analyze the best synthesis
results based on area, performance, and power consumption
estimation through an automatic exploration of synthesis
results is presented. ROCCC [15] and Spark [11] are C-to-
VHDL high-level synthesis academic frameworks.

Some tools for behavioral SystemC/C synthesis are
available in the market. Synopsys SystemC compiler [16] was
perhaps the first commercial effort to synthesize behavioral
code written in ESL languages. Celoxica’s agility [17] and
Forte Design [18] can synthesize a SystemC behavioral
description of hardware modules. They also give the area
estimation requirements for various ASIC and FPGA-
based architectures. Orinoco Dale [19], ImpulseC [20], and
CatapultC [21] estimate the area and the energy for a C
description of an application.

C-based behavioral synthesis can be used at system-level
design in order to guide system partitioning. Reference
[4] presents a framework for the generation of embedded
hardware/software from SystemC. In [5], area and energy
are estimated for various IP components in the system
before actually modeling the system in TLM. The area and
energy estimation information is fed into the TLM model of
the system where we partition the system by automatically
exploring the system design space based on the given
information. This design flow uses the TLM modeling for
system design space exploration. It includes area and energy
estimation information during the partitioning process. This
work represents a good layout foundation for addressing
the impact of implementation on embedded systems.To the
best of our knowledge, our study is the first attempt to the
contribution of benchmarking these tools for performance

comparison purposes and to analyze the interaction with
place and route tools options.

3. C-BASED SYNTHESIS

3.1. C-language fundamentals

Some C-language characteristics are troubling when syn-
thesizing hardware from C. Edwards listed in [22] the key
challenges of a successful hardware specification language:
concurrency model, types, timing specification, memory
and communication patterns, hints, and constraints. The C-
language has no support for parallelism. Either the synthesis
tool is responsible for finding it or the designer must
modify the algorithm by inserting explicit parallelism. C-
hardware language designers adopted different parallelism
strategies. Communication patterns depend on the parallel
programing model provided by the C-hardware languages.
These communication patterns do not exist in C-language.
The C-language is also mute on the subject of time. It
guarantees causality among most sequences of statements
but says nothing about the amount of time it takes to
execute each. It is essential to find reasonable techniques for
specifying hardware needs and mechanisms for specifying
and achieving timing constraints. Data types are another
major difference between hardware and software languages.
The most fundamental type in hardware is a single bit
traveling through a memoryless wire. Variable width integer
is natural in hardware yet C does not support variable
width. C’s memory model is a large undifferentiated array of
bytes, yet many small varied memories are most effective in
hardware. All these characteristics must be considered when
designing C-like hardware languages. All characteristics
related to the considered tools are analyzed in the rest of the
paper.

3.2. HLS approaches and tools

Various C-based hardware description languages have been
proposed over the past decade. These tools use differ-
ent approaches for timing, parallelism, data types, and
communication modeling. These approaches can be either
automatic or manual.

(i) Concurrency model. Coarse grain and fine grain
parallelism are available for most of the approaches.
The communication between tasks is the coarse grain
parallelism. The fine grain parallelism is the operator
parallelism and pipeline. This parallelism is either
explicit or implicit. Constructs dedicated to the par-
allelism are added to the C-language for the explicit
parallelism programing. Additional constructs are
not required for the implicit parallelism. The level
of parallelism can be handled with constraints and
compile options.

(ii) Types. All approaches ensure hardware bit-true data
type manipulation and declaration with additional
data types. The size of the data can be precisely
controlled for each operating stage.
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Table 1: Approaches used for C-based hardware description languages.

Features Approaches Language Tools

Concurrency model
Implicit C Spark, Impulse CoDeveloper, CatapultC, ROCCC,

Explicit Handel-C, SystemC DK Design Suite, Forte Cynthesizer, and agility

Types Explicit All languages All tools

Timing specification
Implicit C Spark, Impulse CoDeveloper, CapatultC, ROCCC,

Explicit Handel-C, SystemC DK Design Suite, Forte Cynthesizer, and agility

Memory
Implicit C Impulse CoDeveloper

Explicit Handel-C, C DK Design Suite

Communication patterns
Implicit C Spark

Explicit Handel-C DK Design Suite, Impulse CoDeveloper, and agility

Table 2: Case study selected C-based environments.

Tool Language Company

Impulse CoDeveloper ImpulseC
Impulse Accelerated

Technologies

DK suite Handel-C Celoxica

Agility SystemC
SystemC Celoxica

compiler

(iii) Timing specification. All approaches take the latency
and the throughput into account. The approaches
are either explicit or implicit. Each clock cycle is
precisely described for the explicit approach. The
timing constraint only concerns the clock period.
Tools with an implicit timing approach generate the
scheduling and the parallelism of operators to meet
the latency and the throughput timing constraints.

(iv) Memory. Internal memories are either RAM or
registers. They can be either implicitly selected or
explicitly specified.

(v) Communication patterns. Predefined communica-
tion and memory protocols are used for the implicit
approach. For the explicit approach, the protocols
are described in details in the code with dedicated
instructions.

The chosen approach can lead to substantial code modifica-
tions.

Each tool uses specific approaches for concurrency
model, types, timing specification, and memory and com-
munication pattern. Several tools cannot be studied in this
paper but they can be classified in the following table (see
Table 1).

Several tools can be evaluated with the presented
approaches. Three selected tools given in Table 2 are selected
on the basis of our own design experience and the used
approaches. It is indeed of importance that a significant
amount of design experience is needed in order to compare
the design approaches with the design. Each tool has
different approaches for concurrency, data types, timing
specifications, memory and communication.

3.2.1. ImpulseC

Impulse CoDeveloper is an ANSI C synthesizer [20] based
on the ImpulseC language with function libraries support-
ing embedded processors and abstract software/hardware
communication methods including streams, signals, and
shared memories. This allows software programmers to
make use of available hardware resources for coprocessing
without writing low-level hardware descriptions. Software
programmers can create a complete embedded system that
takes advantage of the high-level features provided by an
operating system while allowing the C programing of custom
hardware accelerators. The ImpulseC tools automate the
creation of required hardware-to-software interfaces, using
available on-chip bus interconnections.

(i) Concurrency model. The main concurrency feature is
pipelining. As pipelining is only available in inner
loops, loop unrolling becomes the solution to obtain
large pipelines. The parallelism is automatically
extracted. Explicit multiprocess is also possible to
manually describe the parallelism.

(ii) Types. ANSI C-type operators are available like “int”
and float as well as hardware types like “int2,” “int4,”
and “int8.” The float to fixed point translation is also
available.

(iii) Timing specification. The only way to control the
pipeline timings is through a constraint on the size
of each stage of the pipeline. The number of stages
of the pipeline and thus the throughput/latency are
tightly controlled.

(iv) Memory. All arrays are stored either in RAM or in a
set of registers according to a compilation option.

(v) Communication patterns. Streams (FIFO) with differ-
ent formats are available as well as signals and shared
memories interface.

3.2.2. DK design suite tool

DK Design Suite is a complete Electronic System Level (ESL)
environment supporting the Handel-C language [23]. It
provides the user with a complete flow: from specification
to implementation such as architecture-optimized EDIF
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Netlist for FPGA’s RTL Verilog or VHDL used for alternative
synthesis flows and other hardware targets including ASIC
designs.

Celoxica’s Handel-C is a language for digital logic
design that has many similarities to ANSI-C. Handel-C is a
variant that extends the language with constructs for parallel
statements and OCCAM-like rendez-vous communication.

Handel-C language and the IDE tool introduced by
Celoxica provide both simulation and synthesis capabilities.

(i) Concurrency model. The application is written with
sequential programs in Handel-C. Programs written
in Handel-C are implicitly sequential: writing one
command after another indicates that those instruc-
tions should be executed in that exact order. Parallel
constructs are possible with the par keyword to gain
maximum benefit in performance from the target
hardware.

(ii) Types. This language adopts the manual customiza-
tion of numerous representations. Handel-C types
are not limited to specific widths. Any defined
Handel-C variable can be specified with the mini-
mum width required to minimize hardware usage.

(iii) Timing specification. DK Design Suite includes a cycle
accurate multithread symbolic debugger. Handel-C
timing model is uniquely simple: any assignments or
delay take one clock cycle.

(iv) Memory. Each data storage is explicitly specified in a
RAM or a set of registers by the programmer.

(v) Communication patterns. Any external specification
with any type of communication protocol can be
described. Handel-C allows you to target compo-
nents such as memory, ports, buses, and wires.

3.2.3. Agility compiler

The agility compiler from Celoxica is described below
[17]. The agility compiler provides a behavioral design and
synthesis for SystemC. It is a single solution for FPGA design
and ASIC/SoC prototyping. Early SystemC models can be
quickly realized in working silicon yielding accurate design
metrics and RTL for physical design.

(i) Concurrency model. Explicit multiprocess is possible
to manually manage parallelism. Each stage of the
pipeline can be manually described with the use of
wait() instructions in an RTL-like style.

(ii) Types. ANSI C types and operators such as “int”
and “char” can be used. Agility compiler also accepts
hardware types such as sc uint〈8〉, sc int〈20〉, and
fixed point sc fix〈〉.

(iii) Timing specification. The SystemC timing model is
uniquely simple: all assignments between two wait()
take one clock cycle. This modeling style is similar to
the VHDL “wait until rising edge(clk)” style.

(iv) Memory. SystemC provides supports for interfacing
to on-chip RAMs and ROMs using dedicated array

keywords. If not used, arrays are stored in a set of
registers.

(v) Communication patterns. Any external specification
with any type of communication protocol can be
described.

4. DESIGN CASE STUDIES

In order to evaluate the synthesis efficiency of the previously
described tools, the use of commonly accepted benchmarks
for C-based synthesis would have been useful. However,
so far no benchmarks have been released from the OSCI
synthesis working group which defined the synthesizable
subset of neither SystemC nor by any other body. Therefore,
we decided to compose our own case studies which are basic
and simple functions to ensure reproducibility.

4.1. Designs examples

Evaluation consists in studying the efficiency of the synthesis
from C-based hardware descriptions. Common benchmarks
are used for the evaluation of the previously described tools.

Our own case studies consist in a set of short and simple
functions to allow reproducibility. The selected cases are two
3 × 3 image filters [24], the FFT, and an octree traversal
algorithm (ray casting in projective geometry RCPG) [25].

4.1.1. Linear filter

A linear filter and a nonlinear filter are chosen. The two
filtering benchmarks are based on a 3∗3 window core
processing. The linear filter is the mean filter [24]. The
mean filter is the simplest type of low-pass filter. The mean
or average filter is used to soften an image by averaging
surrounding pixel values in a 3×3 window. This filter is often
used to smooth images prior to processing. It can be used to
reduce pixel flicker due to overhead fluorescent lights.

4.1.2. Median filter

The second filter is the median filter based on the bubble sort
of the 3∗3 neighboring pixels [24]. The median filter is a
nonlinear digital filter which is able to preserve sharp signal
changes and is very effective in removing impulse noise.
This filter is widely used in digital signal and image/video
processing applications. For the median filter, pixels are first
sorted based on intensity. The center pixel would be the
middle value of the sorted list of pixels. We present an
example of ImpulseC code for the mean filter in Figure 1.

The filters are implemented by sliding a window of
odd size (a 3∗3 window) over an N∗M image. At each
window position, the sampled values are sorted and the
resulting value of the sample replaces the sample in the
center of the window. Three 32-bit streaming inputs provide
four pixels for each line for each clock cycle. The size of
the internal storage is 6∗3 pixels. Three internal storage
solutions are implemented and evaluated. The first one
is a sequential one with RAM as internal storage. The
second one is a parallel/pipeline solution with RAM as
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void FIL MEAN(unsigned char image[][n],
unsigned char vimage[][vn])
{short x, y;
unsigned int sum;

for (x = 1; x < vn − 1; x++)
for (y = 1; y < vn − 1; y++)
{

sum = vimage[x][y];
sum += vimage[x−1][y];
sum += vimage[x + 1][y];
sum += vimage[x − 1][y − 1];
sum += vimage[x][y − 1];
sum += vimage[x + 1][y − 1];
sum += vimage[x − 1][y + 1];
sum += vimage[x][y + 1];
sum += vimage[x + 1][y + 1];
image[x − 1][y − 1]= sum/9;
}

(a) OriginalC code

while (co stream read(r0, & p0, sizeof (int32))
== co err none){
#pragma CO PIPELINE
#pragma CO set stageDelay 32
#pragma CO nonrecursive image0
#pragma CO nonrecursive image1
#pragma CO nonrecursive image2
co stream read (r1, & p1, sizeof (int32));
co stream read (r2, & p2, sizeof (int32));
for (k = 2; k < 6; k++){
#pragma CO UNROLL
image0[k]= p0 & 255; p0 = p0� 8; image1[k]= p1 & 255;
p1 = p1� 8;
image2[k]= p2 & 255;
p2 = p2� 8; }

res = 0;

for (k = 1; k < 5; k++){
#pragma CO UNROLL
res =((image0[k − 1]+ image0[k]+ image0[k + 1]
+ image1[k − 1]+ image1[k]+ image1[k + 1]
+ image2[k − 1]+ image2[k]+ image2[k + 1])� 3)
+(res� 8);
}

for (k = 0; k < 2; k++){
#pragma CO UNROLL
temp = image0[k + 4];
image0[k]= temp;
temp = image1[k + 4];
image1[k]= temp;
temp = image2[k + 4];
image2[k]= temp; }
co stream write (output stream, & res, sizeof (int32));

(b) ImpulseC code

Figure 1: The C and ImpulseC codes for a 3∗3 mean filter.

Figure 2: 2D recursive octree grid traversal principle.

internal storage. Three separate RAMs are used to allow
parallelism between the three inputs. The third solution is
a parallel/pipeline solution that uses registers as internal
storage. Figure 2 represents the structure of external signals
for both filters. Three streaming inputs are used to pro-
vide 4 pixels. Each input corresponds to one line of the
image.

4.1.3. FFT

The third benchmark is the radix-4 FFT on 256 complex
values (16-bit).

4.1.4. Ray casting in projective geometry (RCPG)

The ray casting in projective geometry (RCPG) is an iterative
octree traversal algorithm (see Figure 2) [25]. In a regular
grid, from a current cell crossed by the ray, the next cell
is defined by a minimization of a cost function which is
iteratively updated. At each step, the ray is propagated in
3D along the directions x, y, and z. The direction depends
on the face where the ray and the current cell intersect (see
Figure 2). The parameters of the intersection between the
ray and each face are progressively stored and updated. The
data structure is an octree structure: a cell can contain a
data pointer to a higher resolution grid. Thus at each cell,
the algorithm continues to the next one or descents in the
subgrid. When it reaches a subgrid border, it mounts to the
upper level of the grid.

For this design case, the sequential and pipeline algo-
rithms are described.

The chosen cases are described in Table 3.

4.2. Target platform

The previously described case studies are intended to be
synthesized, placed, and routed on a target technology in
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Table 3: Core case studies.

Benchmark Description No IP

Linear digital filter (mean)
Pipeline using registers IP1

Pipeline using memory IP2

Sequential IP3

Nonlinear digital filter (median)
Pipeline using registers IP4

Pipeline using memory IP5

Sequential IP6

FFT
Sequential IP7

Pipeline IP8

RCPG
Sequential IP9

Pipeline IP10

order to evaluate how the selected C-based design environ-
ment outputs as inputs to a same synthesis, place, and route
tool will be processed. The metrics to be considered will be
performance and area.

4.2.1. Target technology

We selected the FPGA Xilinx Virtex-4 technology [26] as
the target technology in this case study. The main reason
for the choice of an FPGA technology was to allow a
quick implementation and verification of all the IPs through
actual execution on chip. The Virtex-4 technology based
on a 90 nm copper CMOS process has a fixed number of
hardcores resources such as DSP, embedded RAM, and fixed
interconnections. The Xilinx Virtex-4 can be described as
a matrix of CLB each of them being composed of several
slices (see Figure 3). The Xilinx Virtex-4 proposes memory-
oriented slices SLICEM and logic-oriented slices SLICEL (see
Figure 4). Also the embedded memory BRAM is a dual port
18 kb memory array. Hard cores in the FX family include
embedded processors—IBM PowerPC—and 18 × 18 two’s
complement signed multipliers (DSP blocs).

The FPGA structure represents an additional challenge
for C- and SystemC- based synthesis tools due to the
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higher granularity and heterogeneity of FPGA compared to
ASIC. The variety of FPGA resources makes the resource
selection more difficult for the compiler tools to synthesize
high-level C constructs. Several similar resources can be
good candidates for one C-construct. The compiler tool
has to select the most appropriate resource among all these
candidate resources.

4.2.2. Tools and options combinations

Physical synthesis has been conducted using Xilinx tools ISE
XST [27]. We conducted an intensive and wide automatic
exploration of physical synthesis options (synthesis, place,
and route). These range from area to speed oriented
optimizations with in addition an exploration of the device
density factor. All configurations have been executed on an
FPGA board. This physical level design space exploration
comes as a complement to high-level optimization tech-
niques used by C-based synthesis such as for example, spec-
ulative execution (pipeline). The mutual effects—potentially
inhibitory—of C-based synthesis followed by a VHDL phys-
ical synthesis are unspecified in any of the tool documen-
tations. Different combinations of synthesis and place/route
options on the different cases are explored in order to eval-
uate the possible interactions. The options used for VHDL
synthesis and place and route are the global optimization
options for area and speed with the level of optimization:

(1) XST VHDL synthesis option: -opt mode speed or
area,

(2) mapping option: -cm balanced or speed or area,

(3) place and route option: -ol std or med or high or -ol
high -xe n.

This results in 24 combinations of synthesis, place and route
options for each IP.

4.3. Timing results

Timing results are presented in Figure 5. The timing results
are obtained for each IP with the use of the previously
presented tools. The timing metrics are the clock frequency,
the latency, and the number of cycles per result.

The variability of results between the tools comes from
different reasons. Firstly, the RAM implementation is a
direct implementation with no multiplexing of resources.
The three RAMs of the filters are accessed with one access
per clock cycle. It results in a limitation of the pipeline rate of
twelve cycles per data produced. Secondly, the analysis of the
results can be divided in two points. The first point concerns
the different approaches of the used tools. For SystemC and
Handel-C tools, pipeline needs to be explicitly described.
The C-code is functional with no specific programing with
the ImpulseC tool. The number of stages of the pipeline
is not precisely controlled with ImpulseC but indirectly
through timing constraints. The automatic exploration
of different options and constraints is the only solution
to obtain the best compromise between the different
constraints as the impact of the throughput/latency of the
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Figure 5: Timing results for throughput, latency, and clock period.

pipeline on the area/frequency is not straightforward. The
difference of throughput between a pure sequential solution
and a fully pipeline solution can be more than two orders
of magnitude. This is the main source of performance/area
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Figure 6: Area results for logic elements.

tradeoff at this level. This difference is increased with the
implementation variability.

4.4. Area results

The area results have been obtained through VHDL gener-
ation of the various case studies followed by synthesis and
place and route using Xilinx XST tool. They are presented in
Figures 6 and 7. Our area metrics contain various resources
present in the Xilinx Virtex-4 that are slices, flip flop, look-up
table, and RAM. The synthesis and place and route options
used are here the default options.

A first observation is that behavioral C-based approach
with ImpulseC produces not always but often more logic
and storage elements and a higher clock period than the
other approaches. On the other side, ImpulseC brings the
advantage of abstraction and genericity. This difference is not
critical as throughput and latencies are similar.

4.5. Variability of results with compilation options

The results presented in Figures 8 to 12 show a variability
of timing and area results according to the options used for
synthesis and place and route. This variability depends on
the front-end tool used (agility, DKDesign, and ImpulseC
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Figure 7: Area results for storage elements. (a) Number of LUT
BRAM (the number is zero for IP 7 to IP 10) and (b) number of
flip flop.

Codeveloper). The results presented in Figures 5 to 7 should
be revisited for each option. These important clock period
variations up to 150% are obtained with a variation of area
cost between 100 and 200 slices, that is, 10 to 20% of area
variation. The impact of tool options has a significant impact
on timings compared to the impact on the size. Another
major observation is the variability of results between
options. This variability can be more significant than the
variability between front-end tools. For instance the clock
period variation is about 10 nanoseconds for the pipeline
example (Figures 9 and 11). Thus ImpulseC gives better
results with one option, for example, option 11 but not
with another option. Agility gives better results with option
1 (Figure 9). In fact the best tradeoff is found by a careful
analyze of the area/timing results. The area and timing results
are not always linked as we can see with configurations
19 and 11 in Figure 8. For both configurations, the clock
period is small but configuration 11 provides a higher area
result compared to configuration 19. These variations also
exist with placement constraints. The timing results can be
either better or even worst when constraining area place-
ment. Figure 12 compares the 24 configurations exploration
with (left) and without (right) placement constraints. The
improvement here is at most 0.15 nanosecond on the clock
period which is not significant. Results were even worst
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Figure 8: Sequential mean filter with impulseC. XST VHDL
synthesis tool variation (a) period (b) slices.

for the FFT. Thus a manual floorplanning becomes really
difficult for heterogeneous hardware architectures such as
FPGA. It should be reminded that obviously synthesis and
place and route can incur large variations if no constraints
are imposed and if large chips are selected. With large chips,
the design can be spread without constraints conducting
to higher delays. In our case, first the synthesis and place
and route stages are done without constraints. Then a con-
strained place and route is used for the other configurations
tested. The results are better with constraints.

The last point concerns the impact on place and route
described on several examples in Figures 13 to 16 from best
to worst. Best solutions are less spread and thus have reduced
delays and higher operating frequencies.

The variations in terms of area and resources are obvious
from the above figures. This points out that C-based syn-
thesis may generate very different implementations resulting
from C-based high-level modeling and the strong impact of
backend tools. It should be noted that with heterogeneous
devices such as Virtex-4 where hard cores are embedded the
place and route tools may decide to implement a function in
the vicinity of such embedded cores even if no interaction
exists. This can be easily observed in Figures 13 and 14 (right
part). This affects the quality of the implementation as the
logic is spread out on the circuit. This clearly shows that
there is a missing link between the system modeling level and
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Figure 9: Pipeline mean filter with impulseC. XST VHDL synthesis
tool variation (a) period (b) slices.

the physical implementation. A feedback is necessary to help
joint optimization.

4.6. Discussion

The C-to-hardware compilers considered here take two
approaches to concurrency. The first approach chosen by
Handel-C and agility compiler adds parallel constructs to
the language. It forces the programmer to expose most
concurrency that is not a difficult task in major cases.
Handel-C provides specific constructs that dispatch collec-
tions of instructions in parallel. These additional statement
constructs can be used by any programmer. The compilers
considered here use a variety of techniques for inserting clock
cycle boundaries. Handel-C and agility use fixed implicit
rules for inserting clocks and are very simple. Assignments
and delay statements each takes one cycle in Handel-C and
instructions between two wait() statements take one cycle
in agility SystemC. All the instructions inserted in a par
statement are executed in one clock cycle in Handel-C. For
all the implemented filters, adding manually parallelism is
an easy task that can be achieved by any programmer. On
the other hand, pipeline extraction can become a tricky
task as algorithm must be written in that way. An example
was the FFT algorithm implementation: adding pipeline
from a sequential code can take a long time and changes
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Figure 10: Sequential mean filter with agility. XST VHDL synthesis
tool variation (a) period (b) slices.
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Figure 11: Pipeline mean filter with agility. XST VHDL synthesis
tool variation (a) period (b) slices.
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Figure 12: Pipeline median filter with agility. XST VHDL timing
variation with and without placement constraints.

are important to make. It is even more difficult to express
pipeline with Handel-C than SystemC as dependencies
between instructions impose the use of different cycles. The
precise control of logic/operators per clock cycle is difficult
with Handel-C: either all the instructions in one stage are
independent and the pipeline clock can be of one clock cycle
per result or reuse is possible that makes the number of clocks
per result proportional to the reuse rate. Another solution
is to use a higher frequency and divide the processing in
elementary cycles (one per code line). SystemC agility com-
piler representation becomes therefore almost an RTL level
representation allowing optimization at the clock cycle level.

The second approach lets the compiler identifies paral-
lelism helped with pragmas in the source code. ImpulseC
compiler allows automatic pipelining through pragmas but
only for inner loops. Loop unrolling is used to obtain full
pipelining. Precise control of the number of stages is difficult
with such pragmas. These simple rules can make it difficult
to achieve a particular timing constraint. It is difficult to
predict in advance when a second input data can be inserted,
that is the throughput. Several synthesis cycles must be
operated to converge to the best solution. The tool helps this
exploration by automating the use of VHDL synthesis tool
in the loop. Pipeline exploration is conducted automatically
with VHDL synthesis on different solutions providing a
frequency graph function of the latency/rate of the pipeline.
This helps to obtain the higher rate/latency pipeline but with
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Figure 13: Sequential mean filter. Place and route variations from best (a) to worst (b).
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Figure 14: Pipeline mean filter. Place and route variations from best (a) to worst (b).
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Figure 15: Pipeline FFT. Place and route variations from best (left) to worst (right).
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Figure 16: Pipeline median filter. Place and route variations from best (left) to worst (right).

no considerations of the area. It is thus difficult to make a
compromise between timing and area constraints.

The IP interfaces provided by ImpulseC are FIFO or
memory which is better adapted to stream processing.

In fact, it is difficult to design specific protocols at RTL
level. Also considering local memory storage, RAM/register
inference selection is only obtained through a compilation
option of ImpulseC, that is for all the design and not



12 EURASIP Journal on Embedded Systems

separately for each array, which is really limiting as registers
are a limited resource in FPGA. The two other tools provide
pragmas to define precisely which way to store arrays of data,
with registers or RAM.

According to the data types, C-based design tools
considered several approaches. The first approach neither
modifies nor augments C’s types but allows the compiler to
adjust the width of the integer types outside the language.
The second approach is to add hardware types to the C-
language. Handel-C and ImpulseC compilers chose the data
customization. The programmer cannot cast a variable or
expression to a type with a different width, that makes the
code more difficult to write. For the filter implementation,
arrays are of several sizes and the indexes’ sizes are different.
The programmer must often use the concatenation operator
to zero pad or sign extend a variable to a given width that
makes the programing time longer.

Most of the Handel-C debugging time was spent in
adjusting the size of data and manually programing the
pipeline optimization. The programmers must carefully
analyze the code to specify all the widths and it can quickly
be tiresome. A parser for automatic adjusting of the size of
any used variable according to the type of the operators used
can be considered.

One main argument to choose an approach to use is the
level of description needed at the interface level of the design.
If FIFO or memory-like protocols are sufficient, behavioral
C-based HLS is now a mature solution with equivalent
performances and area results than a more precise almost
RTL level C-based solution like agility compiler or Handel-C.
Furthermore, behavioral C-based HLS provides abstraction
and genericity of the pipeline allowing easy retargeting
of hardware in different timing/area constraints without
redesigning. This criterion is fundamental in streaming
applications where throughput is the key performance
parameter.

5. CONCLUSIONS AND FUTUREWORK

We have conducted a case study on the evaluation of C-
based high-level synthesis systems. The objective was to
assess a potential higher use of this in-area constrained high-
level system multiobjective partitioning and how system
decisions could be impacted. Indeed, although growing
system complexity calls for high-level abstract modeling, it is
still mandatory to take into account precise implementation
feedback to improve performances. This puts into question
the capacity of C-based tools to meet this challenge. Evi-
dences on case studies of significant result variations among
the high-level synthesis tools and their emphasis through
physical synthesis options exploration challenge the use of
C-based multiobjective modeling methodologies for system
design. In a multiobjective approach, area-performance
system design tradeoffs should be based on as accurate
as possible data otherwise inappropriate design decisions
could be made. We argue that implementation issues (area,
frequency, and floorplan) for large scale complex systems
should be taken into account when using C-based high-level
modeling since currently the tools do not guarantee that

high-level concurrency semantics properties are preserved.
Indeed, extracted concurrency at high level is challenged
through code and representation transformation as well as
resources constraints.

Solution to this comes through an integrated flow with
concurrency properties propagated as constraints as well as
concurrency feedback to the highest level.

Future work will extend the size of the case studies and
automate the evaluation process.
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