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1. INTRODUCTION

SystemC [1] has gained considerable traction in the elec-
tronic design automation community as an entry language
for system-level modeling, simulation, and validation. It is
often used in the early stages of a product’s design cycle
for fast design space exploration. This means that an ample
amount of time is spent in simulating and validating the
system-level design. The standard procedure for validation
requires a designer to generate a set of input sequences
that exercise all the relevant and important properties of
the system. Randomized test generation and simulation are
almost always augmented with manual test sequences for
properties that are critical to the functionality of the system.
Manually coming up with the input sequences that validate
properties is an arduous and a difficult task that needs the
designer to know the complete details of the design. Let us
take a simple example such as a FIFO component ignoring
inputs when it is full. The input sequences for testing this
property must ensure that the design transitions into the
state whenthe FIFO is full. However, there are multiple paths
that can take the design into the state where the FIFO is

full. So, it is important to generate input sequences that
cover the trivial and nontrivial cases. Moreover, it is crucial
that the designer can direct the validation procedure for the
design. In our work, we focus on validating the design by
directing the generation of tests. It is not always simple to
come up with these input sequences. This is particularly true
for large and complex designs where it is difficult to identify
and describe the input sequences to reach a particular state
[2, 3]. Furthermore, there may be multiple paths (different
input sequences) that transition the system to the same state.
Authors in [2] provide input sequences by performing static
analysis on the SystemC source and then use supporting tools
for generating the sequences that serve as tests for the design.
This approach is limited by the strength of the static analysis
tools. In addition, it does not provide the flexibility for
describing the reachable state of interest. Also, static analysis
requires sophisticated syntactic analysis and the construction
of a semantic model, which for a language like SystemC built
on C++ is difficult due to the lack of a formal semantics for
it. In fact, [2, 3] do not precisely describe a semantics for
SystemC. It is also difficult to diagnose the exact transition
that causes a failed test-case execution. For this reason, it is
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important to provide designers with a methodology and set
of tools that ease the burden of validation and in particular
directed test-casegeneration and diagnosis.

SpecExplorer is a tool developed by Microsoft for model-
based specification with support for conformance testing.
The essence of SpecExplorer is in describing the system
under investigation as a model program either in AsmL
[4] or Spec# [5] and performing conformance tests on
an implementation model in the form of some software
implementation. The model program in AsmL serves as a
formal specification of the intended system because AsmL
employs the abstract state machine (ASM) [6, 7] formalism.
From here on, we use “specification” interchangeably with
“model program.” ASMs allow for specifying hardware
or software systems at the desired level of abstraction
by which the specification can focus on only the crucial
aspects of the intended system. The added quality of ASM
specifications being executable aids in verifying whether
the specification satisfies the requirements, whether the
implementation satisfies the specification, and transitively
whether the implementation satisfies the requirements. This
makes ASMs and SpecExplorer a suitable formalism and tool,
respectively, for semantic modeling, simulation and as we
show in this paper, for exploration, and test-case generation.

Previous works in [8–10] use SpecExplorer to put
forward a development and verification methodology for
SystemC. Except their focus is on the assertion-based
verification of SystemC designs using Property Specification
Language (PSL). Their work mentions test-case generation
as a possibility but this important aspect of validation was
largely ignored.

In this work, we present a model-driven methodology
not only specifying and developing, but also validating
system-level designs for SystemC [11]. Figure 1 shows a block
level schematic of the model-driven methodology. We create
an abstract model from a natural language specification and
this abstract model is what we call the semantic model.
It is specified using AsmL (an implementation language
for ASMs). Since SystemC follows the discrete-event (DE)
simulation semantics, we provide an AsmL specification
for the DE semantics such that designers can mimic the
modeling style of SystemC while using AsmL for their
intended design. The specification for the intended system
can then be executed with the DE specification. For testing
whether an implementation model satisfies the specification,
SpecExplorer provides tools for exploration and test-case
generation. Exploration results in an automaton from the
specification. This automaton is then used to generate tests.
However, SpecExplorer only allows bindings to C# and
Visual Basic implementation models, but for our purpose we
require bindings to the implementation model in SystemC.
To do this, we provide two wrappers that export functions
of the SystemC library and the implementation model to
libraries that are used in SpecExplorer. These functions
are used in a C# interface wrapper and then bound in
SpecExplorer. We use SpecExplorer’s exploration and test-
case generation to create tests that are directed to reach
interesting states of the design. While the input sequences
are executed on the semantic model, the same inputs are

exercised on the SystemC implementation model to validate
whether the SystemC implementation model conforms to
the AsmL specification.

1.1. Main contributions

This work presents a methodology for specification, model-
driven development, and validation of SystemC models. This
methodology is based on Microsoft SpecExplorer. In this
paper:

(i) we provide a formal semantics for the most recent
version of SystemC’s DE simulation using ASMs as
the semantic foundation,

(ii) we leverage Microsoft’s implementation of ASMs
operational semantics to provide a simulation and
debugging framework for the design specification
described in AsmL,

(iii) we again leverage Microsoft’s existing algorithms
for state space exploration in SpecExplorer to be
effectively used for SystemC test generation for
finding corner cases in the SystemC implementation,

(iv) we show how to generate wrappers for the Sys-
temC library and SystemC implementation model to
allow SpecExplorer to drive the SystemC simulation
through C#,

(v) we show how to do directed test generation and
diagnosis for bug finding such that oversights and
true errors in the implementation are found using
SpecExplorer’s test generation tool.

2. OUTLINE

The outline of this article is as follows: Section 3 discusses
the necessary background and related work in fully under-
standing the proposed methodology and Section 4 presents
the design flow. We present examples in Section 5 followed
by our experience in using this approach in Section 6, and
finally conclude in Section 7.

3. BACKGROUNDAND RELATEDWORK

3.1. Abstract statemachines

Abstract State Machines (ASMs) [6, 7] are finite sets of
transition rules. A transition rule consists of a guard
and an action. A transition rule looks like if Guard then
Updates where the “Guard” evaluates to a Boolean value
and “Updates”is a finite set of assignments. The set of
assignments update values of variables of the state. These
assignments are depicted as

f
(
t1, . . . , tn

)
:= t0, (1)

where t0 to tn are parameters and f denotes a function
or a variable (a 0-ary function). At each given state (also
referred to as a step), the parameters t0 to tn are evaluated
first to obtain their values denoted by vk for k = {0, . . . ,n},
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Figure 1: Methodology overview.

respectively. Upon the evaluation of vk, the functions in the
Updates set are evaluated. Hence, f (v1, . . . , vn) is updated to
v0. A run of an ASM simultaneously fires all transition rules
whose guard evaluates to true in that state.

There are several ASM variants whose basis is the
standard ASM as described above. Examples of the vari-
ants are Turbo-ASMs [6], synchronous ASMs, and dis-
tributed/asynchronous ASMs [6, 12]. Each of these variants
posses certain descriptive capabilities. For example, Turbo-
ASMs are ASMs appropriate for parallel and sequential
composition, and recursive submachine calls.

3.2. SpecExplorer

SpecExplorer is a specification exploration environment
developed by Microsoft [4, 13] that is used for model-based
specification and conformance testing of software systems.
The language used for specification can be either AsmL
[14, 15], a derivative of ASMs, or Spec# [5, 16].

Exploration in SpecExplorer generates automata from
the specification. This requires indicating the actions and
states of interest. The four types of actions supported are
controllable, observable, scenario, and probe. Controllable
actions are those that the specification invokes and the
observable are the ones invoked by the environment. A
scenario action brings the state elements to a particular
starting state and the probe action is invoked at every state in
efforts to look into the implementation. There are a number
of exploration techniques that can be used to prune the state
space. For example, state filters are Boolean expressions that
must be satisfied by all explored states. Similarly, the state
space can be limited to a set of representative state elements
as well as state groupings. Finally, there is support for
generating test cases from the automaton generated from the
exploration. SpecExplorer supports coverage, shortest path,
and random walk test suite generation. These are discussed

in further detail in the reference documents of SpecExplorer
[4].

3.3. Discrete-event semantics using ASMs

Our discrete-event semantics specification uses turbo ASMs
with object orientation and polymorphism capabilities
of AsmL. We specify the simulation semantics in the
discrete-event class shown in Figure 2. The num-
bers associated with each function shows the order in
which these are executed. For example, after the instan-
tiations of the variables in (1), the entry point is the
trigger discrete-event function marked with (2). Note
that we use AsmL’s parallel constructs such as the forall
in trigger behaviors to specify parallel execution of the
behaviors. This corresponds well to the unspecified execution
order of the processes in SystemC’s simulation semantics.
We have created additional classes that help the designer
in describing a semantic model in AsmL so that it follows
our discrete-event simulation semantics. Examples are the
denode class that represents the behavior of a specific process
and the degraph that represents the netlist of the entire
design. Anyhow, we do not present these here because the
focus here is test generation. We have made our entire
semantics and examples downloadable via the web at [17].

The simulation begins with a function start that is
not shown in Figure 2. This function updates the state
variables stopTime and designgraph that hold the duration
of the simulation and a structural graph of the system
being modeled, respectively. After the values of these two
variables are updated, the simulation begins by invoking
trigger discrete-event. This initializes the simulation
by triggering every behavior in the system that in turn
generates events. After this, the simulation iterates through
the evaluate, update, and proceedTime functions.
In AsmL until fixpoint only terminates when there are
no updates available or there is an inconsistency in which
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  initializeDiscreteEvent ()
forall b in behaviorSet

      let newEvents = b.trigger()
      if newEvents <> null

add (newEvents) to eventSet
        step foreach evn in newEvents
          addEvent(evn)

AsmL

  nextEvent( ) as eventDelta or Integer
   require Size(eventSet) <> 0
   let deltas =  {x | x in event Set  where x.e v = delta}
   if ( Size(deltas)<> 0 )
     let delta Ev = any x | x in deltas
     return deltaEv.ev 
   else
     let timeStamps = {x.ev | x in eventSet
   where x.e v > 0}
     let minTimeStamp = min x | x in timeStamps
     return minTimeStamp

AsmL

  var stopTime as Integer = 0
  var simClock as eventDelta or Integer  = 0
  var eventSet  as Set of <Event> = {}
  var behaviorSet as Set of <deNode> = {}
  var designGraph as deGraph = null
  var update Channels  as Set of <deEdge> = {}

AsmL   triggerDiscreteEvent()
    step initializeDiscreteEvent ()
    step while Size(eventSet) <> 0 and
             simClock <= stopTime
      step evaluate( )
      step update()
      step proceed Time()

AsmL

  evaluate()
    step until fixpoint
      processEvents()

AsmL

  update()
forall chn in updateChannels

      chn.update()

AsmL

  proceed Time()
    simClock := nextEven

AsmL

  processEvents()
    let events = {x | x in eventSet
 where x.e v = simClock}  

triggerBehaviors(events)

AsmL

  triggerBehaviors(fireSet as Set of <Event> )
    step removeEvents(fireSet )
    step foreach fireEvent in fireSet
      let triggerNodes = designGraph.get DestNodes
   (fireEvent.channel )
      forall trNode in triggerNodes
       let sensChns = trNode.getSensList()
       if (fireEvent.channel in sensChns)
         let newEvents = trNode .trigger()
         if newEvents <> null
           step foreach evn in newEvents
             addEvent(evn)

AsmL

1

6
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Figure 2: Discrete-event semantics using AsmL.

the simulation throws an exception. The processEvents
function retrieves a set of events that match simClock
and these events are triggered via triggerBehaviors. The
update function invokes an update on all specified channels
very much like SystemC and the proceedTime forwards
the simulation time by calling nextEvent. The nextEvent
returns an event from the event set. The semantics of this
enforce the processing of all delta events first before a timed
event.

3.4. Exploration in SpecExplorer

SpecExplorer provides methods for generating automata
based on the designer’s input for exploring the specification.
The designer specifies the actions of interest in the explo-
ration settings, for an FSM to be generated. These actions
are functions in the specification. They can be classified
into four types: controllable, observable, scenario, and probe
[4]. Controllable typed actions are the functions that are
invoked by SpecExplorer and observable are the actions that
SpecExplorer waits for a response from the implementation
model. Probe actions simply query for state information,
and scenario actions provide a way of reaching a starting
state for the exploration. Selectively exploring transitions of
the specification is possible via a variety of methods such
as parameter selection, method restriction, state filtering,
and state groupings. We direct the reader to [4, 18] for
further information regarding exploration techniques in
SpecExplorer.

Accepting states describe the states at which a test must
finish. These accepting states are defined using a state-based
expression. For example, a simple truesuggests that all states
are accepting states and FULL = true suggests that only the
states where the state variable FULL is true are accepting
states. The test case generator uses this state-based expression
and computes all possible paths from the initial state to
the accepting states given that all other constraints such as
state filters are satisfied. Our methodology uses the accepting

states and methods for selectively exploring transitions for
directing the test-case generation and diagnosis.

A work on functional verification of SystemC models
is proposed in [2]. In general, an FSM is generated by
performing static analysis on the source code very much
like [9] and this FSM is used to generate test sequences for
the system under investigation. Authors of [2] use an error
simulation to inject errors into a model that is compared
with an error-free model for detecting possible errors. The
biggest difference in the approach described in [2] is the lack
of control a designer has in directing the test-case generation.
For instance, the final states (accepting states for us) are not
defined by the designer. Full state space exploration is often
times not practical and it is essential to be able to better
direct the exploration. In addition, these authors use static
analysis to parse SystemC and generate extended FSMs, but
they do not provide formal semantics for SystemC. This is
important to check whether the abstract model in extended
FSMs is a correct representation of the SystemC design. Our
work on the other hand focuses on providing designers with
the capability of defining the exact states of interest and only
generating input sequences up to those states. This is done
by creating two independent models, first the semantic then
the implementation. Then the semantic model is used for
directing tests in the implementation model.

Recent work in design and verification methodologies for
SystemC using SpecExplorer are presented in [8–10]. In their
approach, the design begins with UML specifications for the
SystemC design and PSL properties. Both the SystemC and
PSL UML specification are translated into ASM descriptions
and simulated using SpecExplorer’s model simulator. Refer-
ence [9] also implements an AsmL specification of SystemC’s
simulation semantics [8], however, we were unable to obtain
an executable version for us to reuse. This simulation
provides a first stage of verification that ensures that the
PSL properties specified hold in the ASM specification of
the SystemC design. This SystemC ASM specification is
then translated into a SystemC design using C++ and the
PSL properties in C#. These two are then compiled and
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later executed together to verify whether the properties are
satisfied at the low-level implementation.

In summary, their work uses the modeling, simulation,
and automata generation capabilities of SpecExplorer but
not the test-case generation and execution tools. They only
hint towards the possibility of using it for test generation in
their overall design flow. In [9], the same authors present
algorithms for generating FSMs from SystemC source code.
They have translation tools to convert the extracted FSM into
AsmL specification. These algorithms for FSM generation
use similar concepts such as state grouping as the ones in
SpecExplorer, and once again the authors hint that this can
be used for conformance testing and equivalence checking,
but this is not presented. Their work attempts at providing a
top-down and bottom-up flow for verification of SystemC
designs mainly focusing on PSL assertion verification, but
not test-case generation and execution for validation pur-
poses. The main distinction of their work and our work is
that we do not convert ASMs to SystemC or SystemC to
ASMs. Instead, we promote a model-driven approach where
the semantic model is done first for the correctness of the
functionality and conformance to the natural specification.
This is followed by an implementation model in SystemC
developed independently. Then, the conformance between
the semantic and the implementation model is validated by
generating tests in SpecExplorer and executing them in both
the semantic and the implementation model. This is how
the work in this paper distinguishes itself from the works
mentioned in [8–10].

Authors of [3] propose labeled Kripke structure-based
semantics for SystemC and predicate abstraction techniques
from these structures for verification. They treat every thread
as a labeled Kripke structure and then define a parallel
composition operator to compose the threads. They also
provide formal semantics to SystemC. Our work differs from
this work in the same way that of [2] that we provide
a model-driven approach. The authors of [3] create their
abstract model from the implementation. Moreover, they
do not present any algorithms for traversing the parallely
composed Kripke structures for test generation.

The authors in [12] presented the ASM-based SystemC
semantics that was later augmented for the newer versions
of SystemC by [10]. However, the original ASM semantics in
[12] did not present any support for test-case generation and
validation from ASMs and was designed for an older version
of SystemC.

4. DESIGN FLOW

The necessary components in employing this design flow are
shown in Figure 3. We separate these components into four
phases. These phase separations also describe the steps that a
designer takes in using this methodology. Note that modular
development of the system is possible and recommended,
but in our description here, we assume the designer fully
describes the system in each phase before proceeding to the
next. This is done here to describe the methodology concisely
and transparently. We also annotate Figure 3 with functions
specific for a hardware FIFO component as our intended

system (and from here on referred to it as that). We describe
this example in detail in Section 5.

4.1. Semanticmodeling and simulation

A typical usage mode of this methodology starts in phase
A. In this phase, the designer creates the semantic model
using constructs introduced by our discrete-event simu-
lator in AsmL. For example, our semantic model of the
FIFO component contains class declarations for the FIFO
component, a test driver and a clock. The modeling is
fashioned to be similar to SystemC’s modeling style so that
there can be a direct mapping from the specification to the
implementation. We show two of the important functions
invoked by the driver that provide stimulus for the system.
They are WriteRequest and ReadRequest. These func-
tions also specify the contract between the specification and
the implementation model during test-case generation. Once
the semantic model is specified in AsmL, SpecExplorer’s
model simulator is used to validate the semantic model by
simulation. One can also use some of the model checking
links of SpecExplorer but we did not explore that possibility
for now.

4.2. SystemCmodeling, simulation, andwrappers

4.2.1. Modeling

The second phase B is where the designer implements
the FIFO component in SystemC, which we call the
implementation model. It also contains some of the same
functions that are listed in the semantic model in phase
A. This is a result of having a clear specification of the
system before moving to an implementation model. Thus,
the designer has already captured the responsibilities of the
members in the specification. These specification contracts
translate to the implementation model.

4.2.2. Simulation

The implementation model is simulated with the OSCI
SystemC [1] simulator and if required, any other supporting
tools may be used. This is standard practice when developing
systems in SystemC.

4.2.3. Wrapper generation

SystemCwrapper

From the SystemC library, the only function that has to
be exported is sc start(). This function is responsible for
executing the SystemC simulation. Note that this is done only
once and then can be reused, because this same exported
function is used for executing the simulation for different
implementation models. However, we require the SystemC
library to be a static library. This enables invocations of
exported functions from a C# program. This does not incur
any changes to the original source code but instead, we
declare the sc main() in an additional source code file to
allow for static compilation.
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Figure 3: Modeling, exploration, and validation design flow.

Implementationmodel wrapper

For the implementation model, the designer must be aware
of the functions that stimulate the system. This is because the
test cases generated in SpecExplorer will invoke these func-
tions to make transitions in the implementation model. For
the FIFO component, the designer may have implemented
a driver component during the modeling and simulation
to control the signals for write and read requests. These
inputs stimulate the FIFO component and should be the
signals that are toggled during the execution of the test cases.
Therefore, we first add global functions WriteRequest
and ReadRequest that change the value on the respective
write and read signals and then export these functions.
In addition, we export two functions necessary for setting
up and cleaning up the simulation denoted by FifoSetup
and FifoCleanUp. The setup function creates a global
instance of the FIFO component and its respective input
and output signals and the clean up releases any dynamically
allocated memory during the setup. Once these functions are
exported, a C# program can simulate the FIFO component
using the exported functions.

4.3. C# interface for SpecExplorer and SystemC

Phase C glues SpecExplorer with SystemC via C# such that
the execution of the test cases generated by SpecExplorer
symmetrically performs transitions in the implementation
model. This conveniently allows the test cases to traverse
the implementation model’s state space as it does in the
generated automaton in SpecExplorer.

The C# interface imports functions from the SystemC
and the implementation model wrappers. These imported
functions act as regular global functions in the C# program.
We create an abstract C# class with members for the setup,
cleanup, requesting a write, and requesting a read. Each of
these members invoke the imported functions. This allows
SpecExplorer to invoke the members in the abstract C# class
that in turn invoke the functions exported in the wrappers. It
is necessary for the C# class members to have the exact type
signatures as described in the specification. For example,
WriteRequest takes an input argument of integer type and

returns a void, so the C# class member must have this exact
same type signature. If this does not conform, then the
bindings from SpecExplorer are not possible. Furthermore,
the C# program must be compiled as a class library to load it
as a reference in SpecExplorer.

4.4. Validation, test-case generation, and execution

The final phase D is where the test-case generation and exe-
cution are done. This validation phase again requires some
setup but it is necessary to have the components described in
phases A to C completed before proceeding with this phase.
In this phase, the designer decides what properties of the
system are to be tested. Based on that decision, the designer
selects actions in the exploration settings and the accepting
states where the tests should terminate. Then an automaton
is generated. Before executing these test cases, bindings to
the actions selected for exploration must be made. These
actions are bound to members in the C# class library.
The execution of the test cases makes transitions in the
automaton generated in SpecExplorer and simultaneously
stimulates the inputs in the implementation model making
the respective state transitions. Inconsistencies and errors can
be detected in this validation phase. SpecExplorer also shows
a trace of the path taken on each test and the point at which a
failed test case throws an exception. This helps the diagnosis
of problems in the implementation.

5. RESULTS: VALIDATION OF FIFO, FIR, AND GCD

We present three examples of validating designs with varying
complexity. The first is the FIFO component that has
been used as a running example throughout the paper.
This example is discussed in detail whereas the other two
examples of the greatest common divisor (GCD) and the
finite impulse response (FIR) are only briefly presented.

5.1. FIFO

We elaborate on the FIFO component example in this section
by presenting a block diagram in Figure 4. This is a simple
FIFO component parameterized by n that represents the size
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n

RESET

WR

RD

DI

CLK
FULL

EMPTY

DV

DO

CLK: Clock input

WR: Write request

RD: Read request

DI: Data input

FULL: Full FIFO
EMPTY: Empty FIFO

DV: Data valid

DO: Data output

Figure 4: A FIFO component.

of the FIFO. Throughout our discussion we assume n = 3.
The inputs to the FIFO are WR, RD, DI, and CLK and the
outputs are FULL, EMPTY, DO, and DV. The WR requests a
write onto the FIFO. If the FIFO is not full, then the data
available at DI is stored in the FIFO. Otherwise, the data is
not inserted. The RD input requests a read on the FIFO. This
extracts the top data element and outputs it onto DO while
raising the signal on DV signifying that a data is valid. FULL
is raised high when the FIFO reaches its maximum size n
and EMPTY when the number of elements in the FIFO are
zero. This FIFO component is triggered on the rising edge of
the clock CLK and every request takes two clock cycles. The
RESET simply clears out the FIFO and again takes two clock
cycles.

5.1.1. AsmL specification and systemC implementation

The AsmL specification for the FIFO component employs
the DE semantics that is also described in AsmL. This
is shown in Figure 5. The two basic components are the
requestGenerator and the FIFOBlock. As the names sug-
gest, the former serves as a driver for the latter. The member
name of the respective classes are overlayed with a box in
Figure 5. In the class declaration of requestGenerator, we
start with the constructor that simply invokes a base class
constructor of the inherited class deNode, which is a class
available from the DE specification. The trigger member
is in terms of SystemC terminology, the entry function
of the component, or in other words, the member that
is invoked by the simulator. The remaining two members,
ReadRequest and WriteRequest, perform requests on the
FIFO component. For the FIFOBlock, we again present the
constructor followed by three members that perform the
Full, Empty, and Reset operations. The entry function
of the FIFOBlock component only invokes the internal
member FSM.

This FSM member presents the crux of the FIFO com-
ponent’s behavior as an FSM. The FSM has three states
INIT, REQUESTS, and WAIT. The initial state of the FSM
is INIT after which it enters the REQUESTS state. Upon
receiving a request of either read or write, the FULL and
EMPTY states are updated via the FULL and EMPTY functions.
If a write is requested, then the respective states and flags
are updated and the same is done if a read was requested.
The write request is given priority whenever both requests
are simultaneously made. After the requests are serviced, the
state of the FSM is changed to WAIT, which is when some of

the state variable values are reset and the state is returned
back to accepting requests at the next step. Note that the
WAIT state in the SystemC implementation model could use
SystemC’s wait if a SystemC SC THREAD process type is
used. In our implementation model, we use SC METHOD
SystemC processes, and hence the need for an internal WAIT
state. Also note that we do not present the AsmL code that
instantiates and connects the two components since that is
relatively straightforward. The lines marked with a � (star)
are either altered or added only during exploration to prune
the state space and only result in the states and transition that
are desired for a particular validation scenario. We explain
this in more detail in the exploration section.

5.1.2. Exploration and test cases for specific properties

Notice in Figure 6 the SystemC code that describes the FIFO’s
FSM implementation. We have intentionally commented out
code fragments in this figure such that it is possible to cause
an overflow and an underflow situation. This depicts possible
modeling errors and bugs in the implementation. Now, we
present test-case generation for validating whether these two
basic but essential properties of the FIFO hold. The overflow
situation occurs when a write is requested and when the
FIFO is full. An underflow occurs when a read is requested
and the FIFO is empty.

In order to generate test cases for either of the prop-
erties, we need to explore the specification. Exploration
using SpecExplorer requires the use of several abstraction
techniques since the semantic model may suffer from state
space explosion. During this procedure, it is important to
understand how the automaton is generated from ASM
specifications. We forward the readers to [19] for details
on the algorithms for generating automata from ASMs, but
we point out that the automaton generated is based on the
specified actions and states of interest. It is not generated via
the execution of the entire semantic model, but simply the
actions specified. The automata for the FIFO are shown in
Figure 7.

We present details on some of the necessary techniques
used in exploring the FIFO example. The techniques pre-
sented here are used for other properties and semantic
models. However, we only present detailed discussion for
the overflow property. We start by assuming that the �
statements in Figure 5 are not present in the semantic model.
So, for generating test cases for the overflow property, we
perform n + 1 number of successive writes without any read
requests.

For successful write requests, we make WriteRequest
and FSM controllable actions in the exploration configu-
rations. This is because WriteRequest is responsible for
issuing the request and FSM is the member that actually
updates the internal FIFO. Since we want to essentially test
for write requests until the FULL signal is true, our accepting
states are those in which FULL.read() = true. Therefore, in
the exploration settings we set the accepting states condition
with the expression for showing the FIFO is full. Notice that
the WriteRequest takes in an argument of type integer and
by default SpecExplorer assigns a set of possible integers for
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FSM()
 require (reqmode = PROCESS )
 reqmode := READWRITE
 if (mode = INIT)
    mode := REQUESTS  
  if (mode = REQUESTS)
   step 
      Full() // Update FULL status
      Empty() // Update EMPTY status
   step
    if ( WR.read() = true and FULL.read() = false )
      push(DI.read()) // Throws excep. overflow
      WR.write( false )
    else
     if ( RD.read() = true and EMPTY.read() = false )
      DO := pop() // Throws excep. overflow
      DV.write( true )
      RD.write( false )
    mode := WAIT
  if ( mode = WAIT)
    DV.write( false )
    mode := REQUESTS

AsmLAsmLclass                                 extends 
  requestGenerator( name as String )
    mybase(name)
  override trigger( ) as  Set of Event?
    step
      WriteRequest(1)
    return null
  ReadRequest()
   reqmode = READWRITE
   step 
    reqmode := PROCESS
   step                            
      RD.value := true
  WriteRequest(data as Integer)
    require reqmode = READWRITE
    step
      reqmode := PROCESS
    step
        WR.write( true )
        DI.write( data  )

AsmL deNoderequestGenerator  deNodeclass FIFOBlock extends 
  FIFOBlock( name as String )
    mybase( name )
  Full()
   if ( is_full() = true)
    FULL.write( true )
   else
    FULL.write(false)
  Empty()
   if ( is_empty() = true )
    EMPTY.write(true)
   else
    EMPTY.write(false)
  Reset()
   if (is_empty() = false)
    clear()   
  override trigger( ) as  Set of Event?
    step
     FSM()
    return null

Figure 5: FIFO specification in AsmL.

void FSM() {
    if ( mode == INIT ) 
      mode = REQUESTS;
    else if ( mode == REQUESTS ) {
      Full(); Empty();
      if ( (WR == true ) /*&& (FULL == false)*/ ) {
 q.push(DI); // Throw excep.  overflow
 WR = false;
 write_req.write( false );
      }
      else if ( (RD==true) /*&& (EMPTY==false)*/ ) {
 DO = q.front(); q.pop(); // Excep.  underflow
 DV = true;
 RD = false;
 read_req.write( false );
      }
      mode = WAIT;
    }
    else if ( mode == WAIT ) {
      DV = false;
      mode = REQUESTS;
    }   }

Possible overflow

SystemC

Possible underflow

Figure 6: SystemC FIFO FSM code snippet.

the integer type. This can be changed to whatever is desired.
For simplicity, we change this default value of type integer to
just 1 to avoid creating an automaton with all possible paths
with all integer inputs.

This above exploration configuration results in an invo-
cation of each action from every state. This may be the
correct automaton desired by the validation engineer, but
suppose that for our investigation, we want to explicitly
generate the automaton that first invokes WriteRequest
followed by FSM where each invocation of the action results
in a new state. This is where we bring in the statements that

are shown next to a � in Figure 5. To generate the desired
automaton that performs n + 1 write requests, we overlay
the WriteRequest and FSM with a simple but additional
state machine using reqmode that updates the reqmode state
element with every invocation of the actions. The � lines
are added to support this overlaying state machine. However,
notice that we use require that basically is an assertion
that unless the expression evaluates to true, the member
cannot be invoked. The loop transitions are removed by
introducing the require statement because the automaton
generation algorithm only explores the respective state when
the transition enabling the require evaluates to true. This
further refines the automaton yielding the corresponding
automaton with these additional changes in Figure 7(a). The
accepting states are shaded and every transition performs a
write request with a value 1. It is possible to vary the values
as well but the concept is easily understood by simplifying the
automaton with only one input value. These additions to the
semantic model result in the automaton that is desired. Also
remember that due to the internal state machine controlled
by mode, it takes two invocations of FSM for a successful write
on the FIFO.

Executing test cases generated from this automaton
raises an exception when the fourth successful write request
is made. SpecExplorer’s diagnosis indicates that the error
occurred when taking the transition from state s15 to s16. This
suggests that there is a discrepancy between the semantic and
the implementation models at the particular state when the
FIFO’s state is updated to full and there is a write request.
SpecExplorer provides an interface for viewing and following
the transitions taken in the test cases before the exception
was thrown. This is important because it makes it easier for
a designer to locate the transition at which a possible error
exists. Furthermore, backtracing to the initial state shows the
diagnosis or the input sequence that leads to this erroneous
state. This is advantageous for the designer because the
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s0

s5

s10

s15

s1

s6

s11

s16

s2

s7

s12

s17

s3

s8

s13

s18

s4

s9

s14

s19

WriteRequest(1)

FSM()

WriteRequest(1)

FSM()

FSM()

WriteRequest(1)

FSM()

WriteRequest(1)

WriteRequest(1)

FSM()

WriteRequest(1)

WriteRequest(1)

FSM()

WriteRequest(1)

FSM()

FSM()

FSM()

WriteRequest(1)

FSM()

WriteRequest(1)

(a)

r1

r0 r2

r3 r4

r5

r6

r7

ReadRequest() FSM() ReadRequest() FSM()

ReadRequest() FSM() ReadRequest()

FSM()

(b)

Figure 7: Automata used for validation of FIFO.

error can also be duplicated. Evidently, the code fragment
marked as a possible overflow situation in Figure 6 causes
this erroneous behavior. Removing this yields in successful
execution of the test cases.

Generating test cases for validating the underflow
property is done using a similar approach. The required
steps in checking for underflow require the following: (1)
adding ReadRequest and FSM as controllable actions in the
exploration settings and (2) making the accepting state to be
when the EMPTY state variable evaluates to true. The resulting
automaton is shown in Figure 7(b).

Executing the test cases for this automaton again show
that there is a violation in the implementation model. This
occurs at the first successful ReadRequest on the transition
from state r3 to state r4. This is expected because the EMPTY
state is updated to realize that the FIFO is empty and then the
first read request is serviced, but the FIFO has no elements
stored in it. Since our implementation model shown in
Figure 6 has the error marked as a possible underflow, the
implementation throws an exception at this first successful
read request. Once again, by uncommentingthe erroneous
fragments, the test cases all succeed.

5.1.3. Wrapper generation

An integral part to the design flow is the construction of
wrappers between SpecExplorer and SystemC. Figure 8(a)
shows the process of creating the wrappers and its associated
libraries. We describe the flow for generating wrappers and
exporting members from the implementation model such
that they can be used in the semantic model.

From the SystemC distribution it is necessary to export
the sc start, sc stop, and sc time stamp members
where the first drives the simulation, the second stops
the simulation, and the third simply serves for debugging
purposes. From the implementation model, the necessary
members that drive the simulation in that model must be
exported, which for the FIFO example are listed. These two
sets of exported members are combined into a dynamic C++
library and a snippet of the C++ code used for exporting and
importing it into C# is shown in Figure 8(b). The C# wrapper
interface imports the systemc.dll library for the specific
exported members. These are then used in the interface
definition in C#. For example in Figure 8(b), we show the
definition of the FSM member in C#. Note that the class that
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C# class library

Import Export

Fifo.dll

SpecExplorer C# interface
Import

C++ dynamic library

- sc start()
- sc stop()
- sc time stamp()

Export

-WriteRequest(. . . )
- ReadRequest()
- FifoSetup()
- FifoCleanUp()

SystemC.dll
Export

SystemC

Implementation
model

(a)

extern "C" _declspec(dllexport) 
 int hdp_sc_start(int duration);
int hdp_sc_start(int duration) {
 return sc_start(duration);
}

C++

Example of exporting SystemC function

[DllImport(@"C:\validationASM\systemc.dll", 
 ExactSpelling = false)]
public static extern 
 int hdp_sc_start(int duration);

   public abstract class SystemCFifoBlock     {
        public static void FSM()        {
            if (hdp_sc_start(1) != 0)        {
                // handle error
            }
        }
    };

C#

Example of importing C# abstract member

(b)

Figure 8: Wrapper construction and export code snippets.

this member is contained in is an abstract class and that
the types of the members must match those in the semantic
model. This C# interface is then compiled as a class library
that is called a reference in SpecExplorer. This reference is
loaded into SpecExplorer so that test action bindings can be
made.

5.2. GCD

The GCD example consists of two input generators and a
computation unit. The input generators provide input for
the GCD computation and keep changing the inputs. In our
case, the input generators simply write an integer value. The
GCD computation unit follows Euclid’s algorithm. Figure 9
describes the AsmL specification that uses the DE simulation

semantics also implemented in AsmL. The components
described by generator1 and generator2 are simply
writing to a channel arg1 and arg2, respectively. The real
computation happens in the computeGCD member of the
gcd component. We have a corresponding implementation
model for the GCD that is not shown here, but it is available
at our website [17].

5.2.1. Exploration and test-case generation

The exploration techniques used for generating the automa-
ton for the GCD example are similar to that explained in
the FIFO example. Therefore, without much discussion on
the exploration details, we list the two properties that we are
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class generator1 extends deNode 
  var i1 as Integer = 5
  inc1( input as Integer )
    require ( testMode = DEF or 
        testMode = GCD or 
 testMode = GCDERR)
    step 
      // Write arg1
      arg1.write(input)
      testMode := GEN1    
  override trigger( ) as  Set of Event?
    inc1(5)
    return null

class generator2 extends deNode 
  var i2 as Integer = 25
  inc2( input as Integer )
    require  ( testMode = GEN1)
    step 
      // Write arg2
      arg2.write(i2 + input)
      testMode := GEN2
  override trigger() as  Set of Event?          
    inc2(2)
    return null

class gcd extends deNode
  var      as Integer = 0
  var     as Integer = 0
  var result as Integer = 
  gcd(nm as String)
    mybase(nm) 
  override trigger( ) as  Set of Event?
    step 
              arg1.read()
              arg2.read()
    step
     computeGCD()     
    return null
computeGCD() as Integer
    require ( testMode = GEN2)
    step
     if (               or               )
        step
          
          
          result :=
          testMode := GCDERR
          return  
     else
      // continued ... 

// computeGCD() continued ...
      testMode := GCD
      step 
       while (            )
        step
         if (             )
          
          
        step 
          
      step 
        result :
      step
        return result

enum Mode
  DEF
  GEN1
  GEN2
  GCD
  GCDERR
                     
var testMode as Mode = DEF 

AsmL AsmL AsmL

−1

m :
n :

m <= 0 n <= 0

m
n

m := 0
n := 0

−1

−1

m > 0

n > m
n := m
m := n

m := m− n

= n

Figure 9: GCD AsmL specification.

interested in validating. They are as follows:

(i) the intended operation of the GCD computation
component when encountering invalid input data;

(ii) simply validating when the input sequence consists of
either 0 and 1.

To facilitate the exploration for validating the above
two properties, we overlay a state machine described by
the enumerated type Mode standing for request mode and
the variable testMode. This overlaying procedure is once
again similar to that of the FIFO example. Note that in the
computeGCD member, the result is assigned a−1 value when
there is an erroneous computation request. For this to occur,
either of the inputs must be zero or any nonnegative integer.
So, to validate the first property we do the following: (1) add
inc1, inc2, and computeGCD as controllable actions, (2) set
testMode = GCDERR as the accepting states condition, and
(3) change the default integer values for the parameter for
inc1 and inc2 to −1. The resulting automaton is shown in
Figure 11.

The transition from state s2 to s3 is computeGCD()/ − 1,
which is in the form of action/result. This means that
when the computeGCD action was invoked, the result of
that member was −1 and this should match with the
implementation model.

The validation of the second property requires slight
alteration to the exploration configuration. The default
values for the integers that are used as parameters
to inc1 and inc2, and the accepting states condition
are altered. We change the default values to allow for
0 and 1 and set the accepting states expression to
testMode = GCD or testMode = GCDERR. The accepting

states are all states where there is a computation that
results either in an erroneous or correct computation. The
automaton from this exploration configuration is relatively
large in size and shown in Figure 10.

5.3. FIR

The finite impulse response semantic model is based on
the FIR example from the SystemC distribution. The FIR
has a stimulus, computation, and display component. An
important property that must hold in order for the FIR to
correctly operate is to initiate the reset for a specified number
of cycles. The entire FIR requires four clock cycles for the
reset to propagate. This is an interesting example because the
validation requires exploration techniques that are different
from the FIFO and the GCD example. We present snippets of
the AsmL specification for the stimulus component used in
validating this property in Figure 12(a).

The two members of importance are the tick and
stimulusFIR that increment the cycle counter counter
and compute whether the reset has completed reset,
respectively. These are the members that are added as actions
in the exploration configuration. So, our exploration settings
have (1) tick and stimulusFIR as controllable actions
and (2) counter and reset as a representative examples
of a state grouping. However, note that we introduce a
new constrained type SmallInt for the counter variable.
This constrained type is a subset of the integer type with
the possible values it can take from 0 to 10. This cycle
counter is incremented in tick and used for checking the
cycle count in stimulusFIR. In our semantic model, we
had used the DE simulator’s internal clock for comparing
the cycle count, but we alter this for exploration purposes.
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s1 s18
s12

s2

s3

s14

s15

s4s5

s10

s17

s6

s7

s16

s13

s8

s9

s11

inc1(0)

inc2(1)

inc2(0)

computeGCD()/−1

inc2(1)

inc1(1)

inc1(1)
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inc1(1)
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inc1(1)
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inc2(1)
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inc2(1)

inc2(0)
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inc1(0)

computeGCD()/−1

inc2(0)

Figure 10: Automaton for validating GCD with 0 or 1 as inputs.

s0

s2

s1

s3

s4

inc1(−1)

inc2(−1)

computeGCD()/−1 inc1(−1)

inc2(−1)

Figure 11: Automaton for validating invalid inputs.

This is because simClock’s state is updated within a member
of the simulator, mainly proceedTime. Therefore, for the
automaton to reflect the change in state of simClock,
additional unnecessary simulation members have to be
added and to avoid this, we simply replace it with the
counter variable and add tick to increment the cycle
counter.

The automaton generated from the above exploration
configuration is shown in Figure 12(b). Executing the test
cases generated for this automaton show that the reset is
indeed held high for four cycles thus showing conformance
between the semantic and implementation models. The full
source for the semantic model, implementation model, and
the wrappers are available at [17] along with the other
examples.

6. OUR EXPERIENCE

The first phase of semantic modeling is intuitive and simple;
even for traditional hardware designers. This is because the
additional DE simulation semantics in ASM makes it simple
for designers already familiar with SystemC or any other DE
simulation environment to describe their semantic models.
More importantly, hardware designers do not need to know
the complete formal semantics of ASMs, but rather only
the same concepts that already exist in traditional hardware
description languages such as concurrent statements. The
modeling paradigm and extensibility of the DE semantics
allows for user-defined channels and modules. The semantics
also take into account the nondeterminism mentioned in

the SystemC IEEE 1666 standard. This is done by using
parallel constructs in AsmL such as the for all. However,
we do not model all constructs available in SystemC. For
example, the wait statements are not supported in our
version of the AsmL discrete-event semantics. The authors
of [12] describe how they incorporate wait semantics by
instantiating program counters for each thread and saving
the counter when switching out. However, any thread-based
behavior can be easily modeled as a method-based model
[20], and thus refrain from extending our semantics for the
sake of clarity. The simulation and debugging of the semantic
models are again quite similar to SystemC simulation and
debugging with the addition that SpecExplorer allows for
step-by-step debugging.

Our experience in creating the implementation models
was positive because of the similarity between the semantic
and implementation models. In fact, we experienced an easy
translation from the semantics to the implementation model.
The aspect of simulation and debugging is similar to that at
the semantic level.

The most challenging aspect of this methodology was the
exploration of the semantic model. This is because, similar
to other model-checking engines, the automata generation
can suffer from state space explosion. A user can specify
state count and transition count constraints in order to
time-out the automata generation engine indicating that
further tweaking of the semantic model is required. Tweaks
to the semantic model are called exploration techniques
[4] such as state grouping, state filtering, and parameter
selections. These techniques help in abstracting the semantic
model to focus on the states and transitions that interest
the designer, resulting in a reduction of the state space.
Therefore, large designs with a large state space can be
incrementally abstracted using these exploration techniques,
without having to change much of the semantic model.
We acknowledge that the effort in being able to generate
the automaton for large designs is more involved, which
requires the application of rigorous state space pruning tech-
niques. This however, requires a thorough understanding
of how automata are generated from AsmL specifications.
Our experience suggests that after exploring on a few
examples, the techniques and capabilities of SpecExplorer
can be understood clearly; thus making the exploration
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type SmallInt = Integer where 
  value in {0..10}
enum MODE 
  DEF
  STIM
  DONE 

var counter as SmallInt = 0
var reset as MODE = DEF

class stimulus extends deNode 
   // initialize members
  stimulus(nm as String, 
         _inputValid as channelType,
   _sample as channelType )
    // constructor calls 
  tick()           
   // increment counter 
  writeSample(data as Integer )
    // write a sample value

  

  stimulusFIR() as Boolean
   step
    if counter < 4 
    // if ( simDE.simClock < 4 )
      resetch.write( true )
      inputValid.write(0)
      reset := STIM
    elseif ( simDE.simClock mod 10 = 0 )
      resetch.write( false )
      reset := DONE
      writeSample( stim.sendValue ) 
    else
      inputValid.write ( 0 )
   step
     if reset = DONE
       return true
     else
       return false
  override trigger(  ) as Set of Event?
    tick()
    stimulusFIR()
    return null

AsmL AsmL

(a)

s0

s1 s2

s3 s4

s5

s6

s7

s8 s9

s10

s11

s12 s13

stimulusFIR()/false

stimulusFIR()/false

tick()

stimulusFIR()/false tick()tick()

stimulusFIR()/false

tick() stimulusFIR()/false tick()

stimulusFIR()/false

tick()

tick()

tick()

tick()

stimulusFIR()/false

stimulusFIR()/false

stimulusFIR()/true

tick()

tick()

stimulusFIR()/true stimulusFIR()/true

tick()

stimulusFIR()/true

tick()

tick()

(b)

Figure 12: FIR example.

much simpler for a designer. After successfully obtaining an
automaton, the test sequence generation is quick and simple.
In fact, generating the simulation sequences corresponds to
path traversals on the automaton. This step is automated
and takes little time when using the existing algorithms for
traversal in SpecExplorer.

Currently, the wrappers are generated manually. The
information that these wrappers require are the methods that
change the states of interest. Since these methods are already
specified in SpecExplorer, we can use this information to
automatically generate the C# wrapper with the action

binding members. We can do the same for exporting the
method functions of the implementation models. However,
the SystemC library wrapper only needs to be done once
and we provide that. The effort in creating the C# and the
SystemC wrappers can be significantly reduced when this
step is automated.

7. CONCLUSIONS

We present a model-driven methodology for validating
systems modeled in SystemC. Our approach uses the formal
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semantic foundation of ASMs via AsmL for semantic
modeling and simulation. This formal specification captures
the requirements of the intended system at a high abstraction
level and defines a contract with the implementation model.
The formal specification in AsmL helps in serving any
necessary proof obligations required for the designs as
well. The designer can then follow this specification when
creating the implementation model and since ASMs describe
state machines, the mapping to SystemC implementation is
intuitive and natural. After the wrapper generations, Spec-
Explorer’s test-case generation can be directed to generate
test cases for reaching interesting states in the system. A
diagnosis is also provided on these test case executions. Spec-
Explorer has previously been used for proposing verification
methodologies for SystemC designs, but not for test-case
generation and execution. This is an important addition to
the validation of SystemC designs. We also show examples
of directing the test-case generation for the hardware FIFO
component, GCD, and the FIR. The FIFO example discusses
in detail the exploration techniques and wrappers necessary
in employing this methodology. Even though we present
our methodology as a model-driven validation approach
from the semantic model to the implementation model, it is
possible to write semantic models from existing designs and
then the semantic model can be used for test-case generation
purposes. This is the case for the FIR example that we
present.

Our overall experience in using this methodology has
been positive in evaluating whether the semantic and
implementation models conform to each other. There
is an associated learning curve in knowing how to use
SpecExplorer and its methods for state space pruning and
exploration. However, this methodology scales effectively
due to the ease in raising the abstraction level using ASMs.
This makes it much easier to focus on only the essential
aspects of the system. Furthermore, after familiarizing with
the techniques of state space pruning and exploration, the
task of directing the test-case generation is routine. Our
semantic and implementation models and wrappers will be
available on our website.
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