
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2008, Article ID 516240, 9 pages
doi:10.1155/2008/516240

Research Article
Stream Execution on EmbeddedWide-Issue
Clustered VLIW Architectures

Shan Yan and Bill Lin

Electrical and Computer Engineering Department, University of California, San Diego, La Jolla,
CA 92093-0407, USA

Correspondence should be addressed to Shan Yan, shyan@ucsd.edu

Received 13 March 2008; Revised 11 July 2008; Accepted 9 November 2008

Recommended by Sri Parameswaran

Very long instruction word- (VLIW-) based processors have become widely adopted as a basic building block in modern System-
on-Chip designs. Advances in clustered VLIW architectures have extended the scalability of the VLIW architecture paradigm to
a large number of functional units and very-wide-issue widths. A central challenge with wide-issue clustered VLIW architecture
is the availability of programming and automated compiler methods that can fully utilize the available computational resources.
Existing compilation approaches for clustered-VLIW architectures are based on extensions of previously developed scheduling
algorithms that primarily focus on the maximization of instruction-level parallelism (ILP). However, many applications do
not have sufficient ILP to fully utilize a large number of functional units. On the other hand, many applications in digital
communications and multimedia processing exhibit enormous amounts of data-level parallelism (DLP). For these applications,
the streaming programming paradigm has been developed to explicitly expose coarse-grained data-level parallelism as well as
the locality of communication between coarse-grained computation kernels. In this paper, we investigate the mapping of stream
programs to wide-issue clustered VLIW processors. Our work enables designers to leverage their existing investments in VLIW-
based architecture platforms to harness the advantages of the stream programming paradigm.

Copyright © 2008 S. Yan and B. Lin. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Current and emerging applications in digital communi-
cations and multimedia processing, such as 3G cellular
communications, wireless LANs, video streaming, and image
analysis have extremely high processing demands. These
applications employ algorithms that can easily demand tens
of billions of operations per second. To achieve this rate
of processing, processor architectures with a large number
of functional units are required. Fortunately, the algorithms
used in current and emerging applications typically exhibit
an enormous amount of inherent parallelism, especially in
the form of instruction-level parallelism (ILP) and data-
level parallelism (DLP), that can be exploited to utilize a
large number of functional units, as required to achieve the
necessary processing rates.

In practice today in industry, the requirements of much
higher design productivity have encouraged the use of
embedded processors. In particular, embedded processors

based on a VLIW processor architecture have become widely
adopted as a basic building block in modern system-on-chip
(SoC) designs. In addition to much higher design productiv-
ity and greater ease of design reuse as compared with custom-
logic design flows, the programmability offered by pro-
grammable processors is often needed in many applications
to facilitate different functions and to facilitate late design
(or even postdesign) changes. Traditionally, conventional
VLIW architectures have been based on a central register
file organization. Sophisticated compilers that can effectively
identify and exploit instruction-level parallelism are readily
available for these conventional VLIW processors. However,
it is well known that conventional VLIW architectures can-
not scale to a large number of functional units. To facilitate
concurrent read and write accesses to a central register file
by all functional units simultaneously, every functional unit
must inherently have its own dedicated memory ports to the
central register file, which adds tremendous complexity to
the address decoding and data multiplexing logic. Therefore,



2 EURASIP Journal on Embedded Systems

it is not practical to scale a conventional VLIW architecture
beyond a handful of functional units (e.g., usually no more
than 4 to 6 functional units).

To extend the scalability of VLIW-based architectures,
considerable progress has been made over the years on
clustered VLIW processor architectures [1–5]. Clustered
VLIW architectures overcome the limitations of a central
register file by dividing the functional units into clusters,
each cluster with a small number of functional units, and
providing each cluster with its own simple local register
file. To access data that is located at another cluster’s
register file, the operands must be explicitly transferred
by copy operations between cluster register files across a
communication network. Depending on the number of
clusters and the communication network architecture, the
latency of the copy operation may be nonuniform to account
for the separation distance of clusters. With the clustering
of datapaths, wide-issue clustered VLIW architectures with
upwards of 32 functional units [4, 5] are possible, making
available an enormous amount of computational resources
for arithmetic intensive applications.

The central challenge with clustered-VLIW architecture
is the availability of programming and automated compiler
methods that can fully utilize the available computational
resources. Currently, most of the compiler research in the
literature has mainly focussed on extending conventional
scheduling methods to consider the impact of the spatial
assignment of operations to clusters in order to maximize
the available instruction-level parallelism [6–11]. Despite
the progress in these space-time ILP-based scheduling
techniques, it is well known that many applications do
not have sufficient amounts of inherent instruction-level
parallelism to effectively utilize a large number of functional
units. Fortunately, in many digital communications and
multimedia processing applications, the algorithms used
often exhibit an enormous amount of inherent data-level
parallelism that can be exploited to fully utilize a large
number of functional units to achieve high processing rates.
In particular, the available data-level parallelism is often
in the form of coarse-grain computations that operate on
streams of independent elements. However, conventional
sequential programming languages like C have difficulties
exposing this style of parallelism.

To exploit available DLP, vector-based SIMD exten-
sions to VLIW processors have been developed (see [12]
for citations), and autovectorization techniques have been
developed to identify vectorizable code in traditional C
programs (see [13] for citations). While effective, these SIMD
extensions usually involve dedicated vector units that cannot
be harnessed for nonvectorizable computations, and the
autovectorization methods that target these SIMD extensions
often require complex memory disambiguations and loop
transformations if the source program is not written in a
manner that directly exposes the available data parallelism.

To explicitly expose coarse-grained data parallelism,
researchers have developed stream programming models that
explicitly expose coarse-grain data-level parallelism as well
as locality between coarse-grain computations [14–18]. A
stream program consists of a collection of computation

kernels that consume and produce elements from streams of
data. The advantages of this decomposition are as follows:
first, stream programs separate communication (the gathers
and scatters of data to and from global memory) from the
actual computation. Hence, bulk memory transfers can be
scheduled ahead of the corresponding computation, thereby
hiding the cost of the large memory latency that is becoming
increasingly worse with the growing gap between DRAM
and logic speeds. Second, stream programs expose producer-
consumer locality by the intermediate streams that flow
between computational kernels. By appropriate sequencing
of kernels, the elements of an intermediate stream can be
kept local in fast local memories rather than incurring the
penalties associated with the writing and reading of the
global memory. Finally, stream programs explicitly expose
both data-level parallelism and instruction-level parallelism.
Since each element of each input stream can be processed
simultaneously and independently, multiple instantiations of
the computation kernels can be invoked to process multiple
elements simultaneously, thereby providing large amounts of
coarse-grained data parallelism. Further, within each kernel,
instruction-level parallelism is exposed since independent
operations within a kernel can be executed in parallel. In
contrast to vector programming styles where vector elements
are usually limited to the basic types, stream elements can
be arbitrarily complex user-defined record types with poten-
tially many fields. In addition, whereas vector operations are
usually limited to simple predefined operations-like vector
addition and subtraction, stream programs can specify data
parallel execution of arbitrarily complex user-defined kernels
that can embody hundreds of operations.

To facilitate implementation of stream programs,
researchers have also developed specialized stream proces-
sor architectures [19, 20] that explicitly provide hardware
mechanisms for coarse-grained data-parallel execution of
stream programs. However, unlike VLIW-based processors
that have already been widely adopted in SoC designs,
stream processor architectures as a general architecture
platform are still in their infancy, and it is not yet clear if
stream processor architectures will become widely adopted
in embedded SoC applications. Moreover, the available com-
putational resources in a stream processor architecture can
only be effectively harnessed if the application is inherently
coarse-grained data parallel through a hardwired SIMD-style
instruction control mechanism. On the other hand, in a
clustered VLIW architecture, all functional units are fully
under the control of wide-instruction words. Hence, the
parallel datapath clusters in a clustered VLIW architecture
can perform data-parallel execution by executing the code
that replicates the same operation over each datapath
cluster via wide-issue instructions. On the other hand, for
applications that have plenty of instruction-level parallelism,
but without data parallelism, the computational resources
can be harnessed through existing ILP-based programming
and compiler methods. Furthermore, clustered VLIW archi-
tectures can be made configurable at design time to different
issue widths, as appropriate for the processing demands
of the target application, using the same ISA. Therefore,
configurable clustered VLIW architectures can arguably



S. Yan and B. Lin 3

support a much broader base of applications, leveraging
existing and future investments in these architectures.

Although the suitability of VLIW-based architecture for
data-parallel applications has long been recognized [21–
23], automated compiler methods that target VLIW-based
processors have been lacking for exploiting coarse-grained
data parallelism effectively. This is in part because efficient
coarse-grained data-parallel execution requires the careful
orchestration of bulk memory transfers with large chunks of
computations to hide or avoid the long latencies of global
memory operations and to maintain a continuous feed of
data to keep the parallel datapath clusters utilized. Unlike the
stream programming paradigm where bulk memory trans-
fers, producer-consumer locality, and computational kernels
are exposed explicitly, extracting the same information from
a conventional C program, if possible, would require com-
plex program disambiguation. Other existing work relating
data-parallel applications to VLIW-based architectures have
focussed either on case studies [22, 23] or SIMD architecture
extensions [24] that are in the direction of mechanisms
found in stream processors.

In this paper, we attempt to enable the use of the
stream programming paradigm to effectively capture and
harness the available data parallelism found in many digital
communications and multimedia applications, while taking
advantage of the broad investments that have been made
or are being made in VLIW-based processor platforms
for embedded SoC designs. Our work attempts to address
this issue by providing effective compiler methods for
the efficient realization of stream programs on wide-issue
clustered VLIW processors. Using our approach, developers
can write applications with inherent DLP using a stream
programming paradigm. For applications without inherent
DLP, known space-time ILP-based schedulers can still be
used with conventional C programs.

The remainder of the paper is organized as fol-
lows. Section 2 outlines our underlying architecture target.
Section 3 presents the stream programming model. Section 4
describes our methodology for mapping stream programs
to wide-issue clustered VLIW processors. Section 5 presents
experimental results of the proposed methods. Section 6
summarizes related work. Finally, Section 7 presents con-
cluding remarks.

2. UNDERLYING ARCHITECTURE

Our target architecture is similar to the Lx processor
described in [4]. The Lx processor is a statically scheduled
clustered VLIW architecture jointly designed by HP and
STMicroelectronics. Each cluster in the Lx processor is a
4-issue VLIW core comprising four ALUs, two multipliers,
one load-store unit, and one branch unit. Each cluster also
includes 64 general registers. The first generation of the Lx
architecture spans from one to four clusters (with corre-
sponding 4-issue to 16-issue per instruction cycle). In our
target architecture, we further expand the number of clusters
to eight clusters by interconnecting the eight clusters over a
two-tier communication network, as depicted in Figure 1.
In particular, the eight clusters are organized into four

+/-+/- +/-

Local memories

Communication network

∗+/−

· · ·

· · ·

· · ·· · ·

∗+/−∗+/−

Figure 1: Target architecture.

quadrants, with two clusters per quadrant. Communication
between the two clusters in the same quadrant incurs a
communication delay of one cycle, whereas communication
between clusters in different quadrants incurs a commu-
nication delay of two cycles. Moreover, we expanded the
instruction word length to permit 7-issue per cluster, thus
enabling all four ALUs, both multipliers, and the load/store
unit to be used at the same time. Thus, our target architecture
permits a maximum of 56 issues, 48 simultaneous arithmetic
operations and 8 simultaneous load/store operations.

Besides having a larger number of clusters than the
first generation of the Lx processor, our target architecture
uses compiler-controlled fast local memories rather than
hardware-controlled data caches. Our target architecture
uses a separate direct-memory-access (DMA) engine for
transferring data between the global memory and the local
memories. This DMA engine can perform bulk memory
transfers asynchronously, under the control of our target
processor.

3. STREAM PROGRAMMING

The stream programming model promotes a gather-operate-
scatter style of programming for explicitly exposing coarse-
grained data parallelism by incorporating the concepts of
streams, stream gather and scatter operations, and kernels. A
stream is a finite set of elements that can be independently
operated upon in a data-parallel manner. Stream gather
operations are used to gather data from different memory
locations in the global memory into streams of independent
elements. Kernels specify groups of operations, often several
hundred operations in a kernel, that can operate in a data-
parallel manner over the independent elements of streams.
Streams can only be consumed and produced by kernels, and
intermediate streams can be kept local in fast local memory.
Coarse-grained data-parallel execution is achieved by execut-
ing multiple instances of a kernel in parallel by each instance
operating on a separate element. Finally, output streams
produced from a sequence of one or more kernels can be scat-
tered back to different memory locations in the global mem-
ory via stream scatter operations. Stream gather and scatter



4 EURASIP Journal on Embedded Systems

int x[300], y[300], z[100], t[100], f[400];
int i, m, p;

for (i = 0; i < 100; i + +) {
m = x[i + 200] ∗ y[i + 50];
t[i] = (m ∗ m)/2;

}
for (i = 0; i < 100; i + +) {

p = t[i] + z[i];
f[i + 300] = p;

}

Algorithm 1: Simple C code fragment.

operations essentially correspond to bulk memory transfers
that can be scheduled ahead of or after the corresponding
kernel computations, thereby hiding the long memory
latencies. Moreover, dependencies in the form of streams
flowing between kernels, or between stream gather-scatter
operations and kernels, are explicitly exposed in a stream
program. In essence, bulk memory transfers for streams and
kernel computations over streams are decoupled in a stream
program, thereby enabling their efficient orchestration. In
particular, bulk memory transfers can overlap with kernel
computations. For example, in the StreamC language [16],
streams, gather-scatter operations, and kernels are modeled
by means of a signal flow graph. In a stream programming
language like Brook [14], streams, gather-scatter operations,
and kernels are incorporated as language extensions to the
conventional C language. Streaming portions of Brook can
be easily extracted into signal flow graphs, for which stream
program analysis techniques can be applied.

To illustrate the difference between the conventional
programming paradigm and the stream programming
paradigm, consider the simple C code fragment shown in
Algorithm 1. There are two loops in this example. The first
loop processes data from arrays x and y and writes the results
into array t. The second loop processes data from arrays t
and z and writes the results into array f . In the conventional
programming model, the array reads and writes correspond
to memory load and store operations. In general, array
records need not be accessed in a particular order. In
the example shown, the access patterns of the different
arrays are different, in this case by different offsets. In
general, array access patterns may correspond to irregularly
accesses to the memory, which makes data-parallel execution
more challenging as data must be loaded from potentially
slow external memories and stored back to slow external
memories. Although conventional processors provide data
caches to mitigate the speed difference between external
memory access speeds and internal processor computational
speeds, caching often leads to unpredictable performance
results. Without predictable data access speeds, it is very
difficult to coordinate data-parallel execution of operations
that must operate on the data.

In contrast to the conventional programming model, the
stream programming model makes explicit the separation

(a) Kernel definitions

void kernel k1 (int sx〈〉, int sy〈〉, out int st〈〉)
{

int m;
m = sx ∗ sy;
st = (m ∗ m)/2;

}
void kernel k2 (int st〈〉, int sz〈〉, out int sf〈〉)
{

int p;
p = st + sz;
sf = p ∗ 10;

}

(b) Stream operations and kernel calls

int x[300], y[300], z[100], t[100], f[400];
int sx〈100〉, sy〈100〉, sz〈100〉, st〈100〉, sf〈100〉;
streamRead (sx, x, 200, 100);
streamRead (sy, y, 50, 100);
streamRead (sz, z, 0, 100);

k1 (sx, sy, st);
k2 (st, sz, sf);

streamWrite (sf, f, 300, 100);

Algorithm 2: Stream program fragments.

between memory operations and computational kernels.
Using the Brook language [14], the stream program version
of Algorithm 1 is shown in Algorithm 2. The correspond-
ing extracted signal flow graph is shown in Figure 2. In
Algorithm 2(b), the streamRead statements first copy data
from arrays into streams from external memory so that the
data-parallel records are readily available for the processor
to perform data-parallel computations on them. Once the
streams have been loaded, calls to kernels explicitly invoke
data-parallel execution over the records of the streams. The
intermediate streams produced, in this case st by the kernel
k1, are consumed locally by other kernels, in this case by the
kernel k2, without storing back to external memory. Final
results are then written back to external memory in bulk
via the streamWrite statement. As stated previously, stream
gather and scatter operations can be scheduled ahead of or
after the corresponding kernel computations, thereby hiding
the long memory latencies, and bulk memory transfers can
overlap with kernel computations.

4. WIDE-ISSUE CLUSTERED VLIWMAPPING

The focus of this work is on the mapping of a stream
processor abstraction on to a wide-issue clustered VLIW
architecture. In particular, Section 4.1 reviews a previously
proposed stream processor abstraction called a stream virtual
machine (SVM). The use of this virtual machine abstraction



S. Yan and B. Lin 5

streamRead

streamRead

streamRead

sx

sy

sz

k1 k2
st s f

streamWrite

Figure 2: Stream program as a signal flow graph.

enables us to leverage previously developed stream compiler
methods [16], which is described in Section 4.2. Section 4.3
then describes how the different components of the stream
virtual machine are implemented on a wide-issue clustered
VLIW architecture.

4.1. Stream executionmodel

To improve the portability of stream programs on to different
stream execution targets, a two-level compilation model
was proposed in [25]. In this two-level compilation model,
a stream program is first compiled to a Stream Virtual
Machine (SVM), which is an abstract machine model that
abstracts the detailed characteristics of the target processor.
The SVM is then compiled, using target-specific compiler
steps, to the target processor. The structure of the SVM
model is depicted in Figure 3. It consists of three virtual
execution engines and a two-level virtual hierarchy of
memories. The three virtual execution engines are the host
processor, the DMA engine, and the kernel processor, they
work in the following manner.

(i) The host processor is responsible for scheduling bulk
memory transfers on the DMA engine and schedul-
ing kernel computations on the kernel processor.
The DMA engine and the kernel processor are slave
processors to the host processor.

(ii) The DMA engine is responsible for reading (gath-
ering) stream data from global memory into local
memory before kernel executions and writing (scat-
tering) stream data from local memory to global
memory after kernel executions.

(iii) The kernel processor is responsible for executing
multiple instances of a kernel on independent stream
elements in a coarse-grained data-parallel manner.
The consumption and production of streams are via
the local memory. The kernel processor does not
access the global memory directly.

The two-level virtual hierarchy of memories provides a
distinction between a slow (typically off-chip DRAM) global
memory that can be randomly accessed and a fast (e.g., via
on-chip SRAM) local memory that can only be accessed
in a restricted manner. In particular, the local memory
abstraction in the SVM is used to implement the stream
register file (SRF), which is used to store input, intermediate,
and output streams for kernel computations. There is a
third level of memory hierarchy, not shown in the SVM
diagram in Figure 3, that corresponds to the internal local

Global
memory

DMA

Host
processor

Kernel
processor

Local
memory

Data path
Control path

Figure 3: SVM architectural model.

registers inside the kernel processor. When executing a kernel
in the kernel processor, intermediate values produced by
operations in the kernel are stored temporarily in these local
registers. Finally, the SVM is further characterized by the size
of the memories and by the bandwidth and latency of the
network links that interconnect the virtual execution engines
and memories.

4.2. Compilation process

As proposed in [16, 25], the two-level compilation process
consists of a high-level stream compiler step and a low-level
detailed compiler step. The high-level stream compiler is
responsible for extracting the signal flow graphs of streams,
gather-scatter operations, and kernels. The extracted sig-
nal flow graphs directly expose data-parallel dependencies
between gather-scatter operations and kernels. The high-
level stream compiler is also responsible for the space
allocation of the SRF and for the scheduling of the gather-
scatter bulk memory transfers and kernel computations. In
the SVM, the size of the local memory for implementing
the SRF is specified. Typically, the size of the SRF is not
large enough to store the input, intermediate, and output
streams in their entireties. In this case, the high-level stream
compiler is responsible for breaking down the streams into
strips to ensure that each working set of strips can fit into
the local memory and for scheduling the gather scattering of
these strips and the kernel computations on them, a process
referred to as strip mining.

In the second compilation phase, the low-level detailed
compiler is responsible for the target-specific mapping of
the three virtual execution engines and the two levels
of memory hierarchy to the architecture components of
the target architecture. In particular, the low-level detailed
compiler is responsible for the actual instruction scheduling
of the operations inside kernels and for the actual data-
parallel execution of kernel instructions over the available
computational resources. The low-level detailed compiler
is also responsible for the detailed memory layout of the
local memories for implementing the SRF, for the detailed
scheduling of the actual bulk memory transfers between
the global memory and the local memory, and for the



6 EURASIP Journal on Embedded Systems

actual detailed instructions for local memory access of
stream elements for kernel computations. This low-level
compilation phase is discussed next.

4.3. Target-specificmapping

Mapping the SVM to a wide-issue clustered VLIW processor
involves mapping both the three virtual execution engines
as well as the two-level virtual hierarchy of memories.
Using our target architecture, some of the mappings are
straightforward: the SVM global memory corresponds to
an actual global memory, the SVM stream register file is
mapped to the fast local memories, and the DMA engine
is mapped to an actual DMA engine. The mapping of the
host processor and the kernel processor is more challenging.
In particular, the host processor and the kernel processor
are combined into a single thread of control. This is possible
because the kernel processor acts as a slave processor to
the host processor. To combine the two virtual execution
engines into one thread of control, we define two modes to
represent the different statuses of the processor: control mode
and kernel mode. In control mode, the processor executes the
stream level control code. It initializes the DMA engine for
memory access, responds to the interruption of the DMA
engine when it finishes the data transfer, and executes all the
other operations in the stream program except the kernel
calls. All the clusters in the processor will work together as
a normal wide-issue VLIW processor in this mode.

When the processor reaches a stream gather or scatter
operation, it initializes the DMA engine by correctly setting
the starting address and transfer count and starts the DMA
engine. It also saves the state of the corresponding stream
data. While the DMA engine takes care of the moving data
between global memory and SRF, the processor can work
on other tasks such as kernels whose input stream(s) are
available in the SRF. After the completion of data transfer,
DMA engine interrupts the processor, the processor will
respond to the DMA after finishing the current cycle of
execution. It then updates the state of the corresponding
stream.

When the stream execution reaches a kernel call, it will
do a context switch and change to the kernel mode. A specific
portion of the local memory is reserved for saving the control
context. During the context switch, the processor saves all the
control registers as well as the current state information to
the reserved region of the local memory. Then it loads the
kernel code and switches to kernel mode.

In kernel mode, the processor works as the virtual kernel
processor. As a wide-issue clustered VLIW processor, a large
number of functional units (e.g., 48 functional units) are
available. So our problem becomes how to efficiently utilize
them to exploit the inherent parallelism inside the kernel.
For the VLIW machine, all the instructions are decided
at the compile time by the compiler. The clusters can be
orchestrated and configured to work as many small VLIW
machines to execute a separate instantiation of a kernel on
each cluster. Data parallel execution is achieved by running
k instantiations of a kernel on k separate stream elements
simultaneously, in a load-balanced manner. For example,

using a wide-issue VLIW processor with eight clusters, the
clusters can work as follows: cluster 1 executes a kernel
processing elements 1, 9, 17, and so forth, cluster 2 executes
the same kernel processing elements 2, 10, 18, and so forth,
cluster 3 executes processing elements 3, 11, 19, and so on.
Since the execution is totally controlled by the very long
instruction word, this way of data-parallel execution can be
achieved.

To generate the detailed instructions for this data-parallel
execution of the kernels, we first compile a kernel assuming
one cluster. Then, for data-parallel execution of the kernel
across all available clusters, the instructions generated for
one cluster are replicated to all clusters to form the wide
instruction words. The appropriate renaming is handled
to form the wide instructions. In effect, each cluster is
looping over every kth stream element, where k is the
number of clusters. Because the stream elements can be
independently processed, software-pipelining can be applied
when compiling a kernel. For example, for cluster i, it will
process elements i, i + k, i + 2k, and so forth. Software
pipelining can be exploited by processing the (i+k)th element
before the complete processing of the ith element, and so on.
In particular, we have implemented the modulo scheduling
technique in our kernel compiler [26, 27], extended with the
spatial assignment heuristics proposed in [28].

After the completion of kernel execution in kernel mode,
the processor returns back to the control mode by context
switch. The control registers are restored and the state of the
processor is updated.

5. EXPERIMENTAL RESULTS

We evaluate our mapping methodology on the target wide-
issue clustered VLIW architecture outlined in Section 2,
which contains 8 clusters, 6 FUs in each (4 ALUs, 2 multi-
pliers), for a total of 48 FUs. For our evaluation, we used four
popular applications in multimedia and communication,
including two versions of the discrete cosine transform
(DCT) algorithm, the AES encryption algorithm, and the
AES decryption algorithm, which are applications that are
inherently data parallel. The first version of DCT (pseudo-
DCT) is a simplified pseudocode version of DCT used in
[5]. It corresponds to a piece of DCT row. This version has
limited ILP. The second version (optimized DCT) is from
[29]. It uses an optimized 1D DCT as a kernel for the 2D
DCT. This kernel executes eight 8-point 1D DCT on eight
rows inputs and stores the outputs transposed. Each 8 ×
82D DCT is thus implemented by executing the kernel two
times, one on row inputs, the other on transposed column
inputs. This version has higher ILP. For the AES encryption
and decryption algorithms, we used an RC6-32/20/32 block
cipher [30], which encrypts and decrypts blocks of w =
32-bit words, using r = 20 rounds of iterations per
block. To make them suitable for the stream programming
paradigm and fair for comparison among different methods,
we rewrote them by unrolling the r = 20 rounds into a single
basic block. Then in the stream program, they are written
as a single kernel. The encryption/decryption keys are first



S. Yan and B. Lin 7

expanded in the stream program, and then they are passed to
the kernels as constant parameters.

For comparison, we implemented 4 methods: the first
two focussed on ILP exploitation; the last two based on the
stream execution model for DLP exploitation.

(1) List scheduling. The focus of this method is on
exploiting ILP. This method aims to find the max-
imum amount of ILP available within basic blocks
to effectively utilize as many FUs as possible. In
particular, we implemented a list scheduler that
takes into consideration the spatial impact of cluster
assignment. Our implementation is based on the
space-time list scheduler method described in [6].

(2) Modulo scheduling. The focus of this method is also
on exploiting ILP. This method aims to find the
maximum amount of ILP available by pipelining
across loop boundaries to effectively utilize as many
FUs as possible. Our implementation is based on the
space-time modulo scheduler method described in
[26], extended with the spatial assignment heuristic
described in [28].

(3) Stream scheduling. In this method, we used the
stream programming paradigm and the mapping
methodology described in Section 4. For compiling
kernels, we limited the scheduling to use just list
scheduling. DLP is achieved by executing multiple
parallel kernel instances across available clusters.

(4) Stream + modulo scheduling. In this method, we
again used the stream programming paradigm and
the mapping methodology described in Section 4,
but here we used modulo scheduling instead to iden-
tify more ILP within a kernel. DLP is again achieved
by executing multiple parallel kernel instances across
available clusters.

For the first two ILP-based methods, focused on ILP
exploitation, the benchmarks were converted from a C
program by hand to an internal control data flow graph
(CDFG) representation. Then our implementations of list
scheduling and modulo scheduling were applied. For the last
two stream mapping methods, based on stream execution,
the benchmarks were first written in Brook [14]. Then
they were hand converted to an internal signal flow graph
(SFG) representation. The kernels were further converted
into an internal CDFG representation. Our implementations
of stream scheduling of the SFG and the ILP scheduling of
the kernels were then applied.

For comparisons, we use the list scheduling method
as the baseline. Figure 4 compares the relative execution
times of the four methods on the four benchmarks, and
Figure 5 compares the FU utilization. For the applications
that have little inherent ILP, such as pseudo-DCT benchmark
and the AES encryption and decryption benchmarks, even
with the use of modulo scheduling, most of the functional
units cannot be efficiently utilized. The FU utilization
is very low, only 5% for list scheduling and 12.5% for
modulo scheduling for pseudo-DCT, and 4.34% for list

List
scheduling

Modulo
scheduling

Stream
scheduling
(8 clusters)

Stream+mod.
scheduling
(8 clusters)

Optimized DCT
Pseudo DCT

AES encryption
AES decryption

0

2

4

6

8

10

12

14

16

Sp
ee

du
p

Figure 4: Execution time speedup results for the four benchmarks.

List
scheduling

Modulo
scheduling

Stream
scheduling
(8 clusters)

Stream+mod.
scheduling
(8 clusters)

Optimized DCT
Pseudo DCT

AES encryption
AES decryption

0

10

20
30

40

50

60

70
80

90

100

FU
u

ti
liz

at
io

n
(%

)

Figure 5: FU utilization results for the four benchmarks.

scheduling and 12.36% for modulo scheduling for AES
encryption and decryption. However, by exploiting DLP
using the proposed mapping method, the degree of FU
utilization goes up substantially, especially when combined
with modulo scheduling for scheduling kernel operations.
The FU utilization goes up to 67% for pseudo-DCT and 76%
for the two AES benchmarks. Correspondingly, the execution
times relative to list scheduling are substantially better: a
13.3X speedup for pseudo-DCT and a 13.6X speedup for AES
benchmarks.

For the optimized DCT benchmark, there is more
available ILP. With the available ILP in optimized DCT,
our method of stream execution, combined with modulo
scheduling for kernels, can achieve an FU utilization factor
of 87.5%, versus under 10% for list scheduling alone. For this
benchmark, modulo scheduling is able to find considerable
ILP to effectively utilize the large number of FUs, nearly 45%
FU utilization, but stream execution can still achieve a much
higher rate of FU utilization. This is reflected in the relative
execution times. Relative to basic list scheduling, modulo
scheduling alone can achieve a 3X speedup. but stream
execution with modulo scheduling can achieve a 6X speedup.



8 EURASIP Journal on Embedded Systems

Note that we do not suggest by the above results that
stream programs perform better than hand-tuned traditional
programs. It is possible that existing autovectorization
techniques [13] can be adapted to pure clustered VLIW
processors without SIMD extensions so that a well-tuned
traditional program can achieve similar results as our stream
mapped programs. The above results mainly show that good
data parallel execution performance can be readily achieved
by mapping explicitly exposed data-parallel streamed pro-
grams on clustered VLIW platforms.

6. RELATEDWORK

There has been substantial research in the literature previ-
ously on the extension of previously developed ILP-based
scheduling algorithms to take into consideration the impact
of spatial assignment of operations on execution times for
clustered VLIW architectures [6–11]. In particular, in a clus-
tered VLIW architecture, explicit copy operations are needed
for moving values between clusters, the added nonzero
latencies of these copy operations may adversely lengthen the
critical execution path and degrade performance. Therefore,
a poor spatial assignment of operations to clusters may
result in a substantial degradation in processing rates. The
consideration of spatial assignment of operations during
scheduling has been referred to as the space-time scheduling
problem. Most approaches investigated in the literature
are based on extensions of commonly used scheduling
algorithms, namely, list scheduling and modulo schedul-
ing. However, these scheduling techniques are primarily
targeted toward the exploitation and the maximization of
the available instruction-level parallelism, which is often
insufficient to fully utilize a large number of functional units.
Our approach for the implementation of stream programs
on clustered VLIW processors, which exploits data-level
parallelism, provides a complementary solution to these ILP-
based techniques. Our proposed solution is based on the
two-level compilation and stream virtual machine model
proposed in [25]. Our work provides the low-level mapping
methodologies needed for efficient execution on a clustered
VLIW processor.

Gummaraju and Rosenblum [31] recently proposed a
low-level mapping solution for general-purpose CPUs like
a Hyperthreaded Pentium 4. Though their problem bears
similarity to our problem, their primary challenges are
different. In particular, data caches in the Pentium 4 are not
under compiler control. Therefore, a primary focus of their
work is on the pinning of the cache to ensure that the stream
register file will remain in the cache. In our problem, we
provide mapping methodologies for using on-chip SRAMs
that are embedded with the processor in an SoC design.
Also, Pentium 4 is a superscalar processor with runtime
dispatch of parallelizable instructions on a small number of
functional units. In contrast, our problem is to efficiently
exploit a large number of functional units (in the range of
32–48 functional units). To achieve high utilization, we must
carefully at compile-time orchestrate the clusters to perform
data parallel execution. In particular, we effectively execute
a separate instantiation of a kernel on each cluster. Data

parallel execution is achieved by running N instantiations of
a kernel on N separate stream elements simultaneously, in a
load-balanced manner. The mapping methodologies detailed
in Section 3 provide the details for this data parallel mapping
to parallel clusters. Finally, instead of using hyperthreading,
our mapping methodologies are based on combining the
control and kernel virtual processors into a single thread
of execution on the clustered VLIW processor. If a separate
DMA engine is not available, our mapping methodologies
are based on combining the control, DMA, and kernel virtual
processors into a single thread of execution.

Finally, although the suitability of VLIW-based architec-
ture for data-parallel applications has long been recognized
[21–23], automated compiler methods that target VLIW-
based processors have been lacking for exploiting coarse-
grained data parallelism effectively. This is in part because
efficient coarse-grained data-parallel execution requires the
careful orchestration of bulk memory transfers with large
chunks of computations to hide or avoid the long latencies
of global memory operations and to maintain a continuous
feed of data to keep the parallel datapath clusters utilized.
Unlike the stream programming paradigm where bulk
memory transfers, producer-consumer locality, and compu-
tational kernels are exposed explicitly, extracting the same
information from a conventional C program, if possible,
would require complex program disambiguation. Other
existing work relating data-parallel applications to VLIW-
based architectures have focussed either on case studies
[22, 23] or SIMD architecture extensions [24] that are in the
direction of mechanisms found in stream processors.

7. CONCLUSION

In this paper, we explored the mapping of stream programs
to wide-issue clustered VLIW processors. We showed how
the explicit coarse-grained data parallelism presented in
stream programs can be leveraged to harness the large num-
ber of functional units available in wide-issue processors.
This way, designers can take advantage of their existing
investments in VLIW-based architecture platforms to realize
the benefits of the stream programming paradigm.

ACKNOWLEDGMENTS

We would like to acknowledge Alan Gatherer and David
Hoyle from Texas Instruments, Inc. for a number of
stimulating discussions on both application and compiler
requirements for wide-issue clustered VLIW architectures.
This work was sponsored in part by a grant under UC
MICRO Program no. 2006-3139. Moreover, this work was
presented in part as a poster at the 2007 ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES ’07), San Diego, Calif,
June 13–15, 2007.

REFERENCES

[1] G. Slavenburg, S. Rathnam, and H. Dijksra, “The TriMedia
TM1 PC1 VLIW media processor,” in Proceedings of the
8th HotChips Conference, pp. 171–178, Stanford, Calif, USA,
August 1996.



S. Yan and B. Lin 9

[2] Texas Instruments Inc., “TMS320C6000: a high performance
DSP platform,” http://www.ti.com/.

[3] StarCore Alliance (Motorola Semiconductors and Lucent
Technologies). Leadership in DSP technology for communi-
cations applications, http://www.starcore-dsp.com/.

[4] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and F.
Homewood, “Lx: a technology platform for customizable
VLIW embedded processing,” in Proceedings of the 27th
Annual International Symposium on Computer Architecture
(ISCA ’00), pp. 203–213, Vancouver, BC, Canada, June 2000.

[5] O. Colavin and D. Rizzo, “A scalable wide-issue clustered
VLIW with a reconfigurable interconnect,” in Proceedings
of International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES ’03), pp. 148–158, San
Jose, Calif, USA, October-November 2003.

[6] V. S. Lapinskii, M. F. Jacome, and G. A. De Veciana, “Cluster
assignment for high-performance embedded VLIW proces-
sors,” ACM Transactions on Design Automation of Electronic
Systems, vol. 7, no. 3, pp. 430–454, 2002.

[7] C. Akturan and M. F. Jacome, “CALiBeR: a software pipelining
algorithm for clustered embedded VLIW processors,” in Pro-
ceedings of International Conference on Computer-Aided Design
(CAD ’01), pp. 112–118, San Jose, Calif, USA, November 2001.

[8] J. Sánchez and A. González, “Instruction scheduling for
clustered VLIW architectures,” in Proceedings of the 13th
International Symposium on System Synthesis, pp. 41–46,
Madrid, Spain, September 2000.

[9] W. Lee, R. Barua, M. Frank, et al., “Spacetime scheduling of
instruction-level parallelism on a raw machine,” in Proceedings
of the 8th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’98),
pp. 46–57, San Jose, Calif, USA, October 1998.

[10] G. Desoli, “Instruction assignment for clustered VLIW DSP
compilers: a new approach,” HP Technical Report HPL-98-13,
Hewlett-Packard Laboratories, Palo Alto, Calif, USA, February
1998.

[11] R. Leupers, “Instruction scheduling for clustered VLIWDSPs,”
in Proceedings of the Conference on Parallel Architectures and
Compilation Techniques (PACT ’00), pp. 291–300, Philadel-
phia, Pa, USA, October 2000.

[12] E. Salami and M. Valero, “A vector-μ SIMD-VLIW architecture
for multimedia applications,” in Proceedings of the IEEE
International Conference on Parallel Processing (ICPP ’05), pp.
69–77, Oslo, Norway, June 2005.

[13] D. Naishlos, “Autovectorization in GCC,” GCC Summit, June
2004.

[14] I. Buck, T. Foley, D. Horn, et al., “Brook for GPUs: stream
computing on graphics hardware,” in Proceedings of the 31st
Annual Conference on Computer Graphics and Interactive Tech-
niques (SIGGRAPH ’04), vol. 23, pp. 777–786, Los Angeles,
Calif, USA, August 2004.

[15] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt:
a language for streaming applications,” in Proceedings of the
International Conference on Compiler Construction, Lecture
Notes in Computer Science, pp. 179–196, Springer, Grenoble,
France, April 2002.

[16] P. Mattson, A programming system for the imagine media
processor, Ph.D. thesis, Department of Electrical Engineering,
Stanford University, Stanford, Calif, USA, 2001.

[17] U. J. Kapasi, P. Mattson, W. J. Dally, J. D. Owens, and B. Towles,
“Stream scheduling,” in Proceedings of the 3rd Workshop on
Media and Streaming Processors, pp. 101–106, Austin, Tex,
USA, December 2001.

[18] P. Mattson, W. J. Dally, S. Rixner, U. J. Kapasi, and J.
D. Ownens, “Communication scheduling,” in Proceedings of
the 9th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’00),
pp. 82–92, Cambridge, Mass, USA, November 2000.

[19] W. J. Dally, U. J. Kapasi, B. Khailany, J. H. Ahn, and A. Das,
“Stream processors: programmability with efficiency,” ACM
Queue, vol. 2, no. 1, pp. 52–62, 2004.

[20] J. H. Ahn, W. J. Dally, B. Khailany, U. J. Kapasi, and A. Das,
“Evaluating the imagine stream architecture,” in Proceedings
of the 31st Annual International Symposium on Computer
Architecture (ISCA ’04), pp. 14–25, Munich, Germany, June
2004.

[21] W. Wolf, “VLIW architectures for video signal processing,”
in Multimedia Hardware Architectures, S. Panchanathan, F.
Sijstermans, and S. I. Sudharsanan, Eds., vol. 3311 of Proceed-
ings of SPIE, pp. 52–57, San Jose, Calif, USA, January 1998.

[22] A. Freimann, T. Brune, and P. Pirsch, “Mapping of video
decoder software on a VLIW DSP multiprocessor,” in Mul-
timedia Hardware Architectures, S. Panchanathan, F. Sijster-
mans, and S. I. Sudharsanan, Eds., vol. 3311 of Proceedings of
SPIE, pp. 67–78, San Jose, Calif, USA, January 1998.

[23] M. G. Albanesi, M. Ferretti, and A. Dell’Olio, “Effectiveness
of a VLIW architecture in a data parallel image application,”
in Proceedings of the IEEE International Workshop on Com-
puter Architectures for Machine Perception, pp. 172–183, New
Orleans, La, USA, May 2003.

[24] D. Barretta, W. Fornaciari, M. Sami, and D. Pau, “SIMD
extension to VLIW multicluster processors for embedded
applications,” in Proceedings of the IEEE International Confer-
ence on Computer Design: VLSI in Computers and Processors
(ICCD ’02), pp. 523–526, Freiburg, Germany, September 2002.

[25] F. Labonte, P. Mattson, W. Thies, I. Buck, C. Kozyrakis, and
M. Horowitz, “The stream virtual machine,” in Proceedings
of the 13th International Conference on Parallel Architectures
and Compilation Techniques (PACT ’04), pp. 267–277, Antibes
Juan-les-Pins, France, September-October 2004.

[26] B. Ramakrishna Rau, “Iterative modulo scheduling,” HP
Technical Report HPL-94-115, Hewlett-Packard Laboratories,
Palo Alto, Calif, USA, November 1995.

[27] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero, “Swing mod-
ulo scheduling: a lifetime sensitive approach,” in Proceedings
of the Conference on Parallel Architectures and Compilation
Techniques (PACT ’96), pp. 80–87, Boston, Mass, USA,
October 1996.

[28] E. Nystrom and A. E. Eichenberger, “Effective cluster assign-
ment for modulo scheduling,” in Proceedings of the 31st Annual
ACM/IEEE International Symposium on Microarchitecture, pp.
103–114, Dallas, Tex USA, December 1998.

[29] B. Zwernemann, “An 8 × 8 DCT Implementation on the
Motorola DSP56800E,” http://www.freescale.com/.

[30] R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin, “The
RC6 Block Cipher,” Version 1.1; August 1998.

[31] J. Gummaraju and M. Rosenblum, “Stream programming
on general-purpose processors,” in Proceedings of the 38th
Annual ACM/IEEE International Symposium on Microarchitec-
ture (MICRO ’05), pp. 343–354, Barcelona, Spain, November
2005.


	1. INTRODUCTION
	2. UNDERLYING ARCHITECTURE
	3. STREAM PROGRAMMING
	4. WIDE-ISSUE CLUSTERED VLIW MAPPING
	4.1. Stream executionmodel
	4.2. Compilation process
	4.3. Target-specific mapping

	5. EXPERIMENTAL RESULTS
	6. RELATEDWORK
	7. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

