
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2008, Article ID 390106, 13 pages
doi:10.1155/2008/390106

Research Article
A Real-Time Embedded Kernel for Nonvisual Robotic Sensors

EnzoMumolo,1 Massimiliano Nolich,1 and Kristijan Lenac1, 2

1DEEI, Università degli Studi di Trieste, 34127 Trieste, Italy
2AIBS-Lab S.r.l., Via del Follatoio 12, 34148 Trieste, Italy

Correspondence should be addressed to Enzo Mumolo, mumolo@units.it

Received 5 April 2007; Revised 4 December 2007; Accepted 11 January 2008

Recommended by Alfons Crespo

We describe a novel and flexible real-time kernel, called Yartek, with low overhead and low footprint suitable for embedded systems.
The motivation of this development was due to the difficulty to find a free and stable real-time kernel suitable for our necessities.
Yartek has been developed on a Coldfire microcontroller. The real-time periodic tasks are scheduled using nonpreemptive EDF,
while the non-real-time tasks are scheduled in background. It uses a deferred interrupt mechanism, and memory is managed using
contiguous allocation. Also, a design methodology was devised for the nonpreemptive EDF scheduling, based on the computation
of bounds on the periodic task durations. Finally, we describe a case study, namely, an embedded system developed with Yartek
for the implementation of nonvisual perception for mobile robots. This application has been designed using the proposed design
methodology.

Copyright © 2008 Enzo Mumolo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Embedded systems are hardware and software devices de-
signed to perform a dedicated function, therefore, generally
not allowing users to build and execute their own programs.
Moreover, since embedded devices goal is to control a
physical system, such as a robot, time factor is important, as
are the size and cost. As a matter of fact, generally embedded
systems require to be operated under the control of a real
time operating system running on processors or controllers
with limited computational power.

In this paper, we present a novel, flexible, real time
kernel with low overhead and low footprint for embedded
applications and describe an embedded application devel-
oped with it. The reason behind this development is the
unavailability of an open source real-time operating system
with the requested features. In fact, our objective was to
realize small autonomous embedded systems for imple-
menting real-time algorithms for nonvisual robotic sensors,
such as infrared, tactile/force, inertial devices, or ultrasonic
proximity sensors, as described for example in [1, 2]. Our
requirements are: real-time operation with nonpreemptive
scheduling, deferred interrupt mechanism, low footprint,
and low overhead. Nonpreemptive scheduling is suitable to
process nonvisual sensors, because most of these sensors

use time of flight measurements which are cheaper to
perform using polling rather than interrupt management.
Furthermore, nonpreemption leads to a lower overhead, as
requested by low performance microcontrollers. In addition
to nonpreemption, also nonreal-time preemptive tasks are
needed, especially for the communication with external
devices. As a matter of fact, we interact with external devices
through a serial port which is managed using interrupts and
served by non-real-time tasks.

The kernel is called Yartek (yet another real time embed-
ded kernel) and its source code is freely available online
[3]. Yartek has been developed by modifying the scheduling
module of another tiny operating system described in [4],
and it is suitable for running on microcontrollers, since
it uses a small amount of resources. In general, preemp-
tive scheduling should be preferred over nonpreemptive
policies in term of utilization factor. However, there are
many applications where properties of hardware devices
and software configurations make preemption impossible or
expensive. In the application described in this paper, in fact,
nonpreemptive management of the sensors leads to a cheaper
utilization of computing resources. Moreover, the advantages
of nonpreemptive scheduling are: an accurate response anal-
ysis, ease of implementation, no synchronization overhead,
and reduced stack memory requirements. Finally, in general

2 EURASIP Journal on Embedded Systems

Figure 1: The Coldfire microcontroller.

nonpreemptive scheduling comes with lower-context switch
overhead, since there are less interruptions.

In order to operate in unstructured environments, au-
tonomous robots are equipped with a wide range of
sensors—visual, like video cameras, and nonvisual, like
ultrasonic or inertial sensors—and actuators. The raw sen-
sorial data gathered from the sensors are processed in order
to obtain a representation of the perceived environment.
However, the robot is controlled by a processor with limited
computational power due to the limited power supply of the
mobile system. The motivation behind the development of
Yartek was the need to build small, autonomous embedded
systems which provide the processing requested by nonvisual
sensors without imposing a computation burden on the
main processor of the robot. In particular, the embedded
system described in this paper provides the robot with the
environmental map acquired with the ultrasonic sensors.

Yartek allows the creation and running of threads for
fast context switch and it is based on a contiguous memory;
moreover, it offers a dynamic memory management using
a first-fit criterion. The threads can be real-time periodic
scheduled with nonpreemptive EDF [5], or nonreal-time. In
order to improve the usability of the system, a RAM-disk is
included: it is actually an array defined in the main memory
and managed using pointers, therefore its operation is very
fast. The RAM-disk offers a file system structure for storing
temporary data and executable code to enrich the amount of
real-time applications which the kernel can run.

Yartek has been developed on a Coldfire microcontroller,
in particular on the board having a MCF5282 microcon-
troller shown in Figure 1.

The main contributions of this paper are the following.
The Yartek embedded kernel is introduced, and its perfor-
mances and comparisons to a different real-time operating
system are reported. A simple design methodology for
nonpreemptive EDF scheduling is also described, based on
bounds on the duration of nonpreemptive tasks. Finally, a
real-time application is described, in the field of nonvisual
sensor perception in robotics.

This paper is structured as follows. Section 2 summarizes
the scheduling policies used in our kernel and proposes
a design methodology useful for nonpreemptive tasks.
Section 3 describes some technical aspects in the Yartek
architecture. Section 4 deals with the performances of this

implementation. Section 5 reports a case study where the
nonpreemptive design methodology has been applied. Final
remarks are discussed in Section 6. Some pieces of source
code are reported in Appendices A, B, and C.

2. NONPREEMPTIVE REAL-TIME SCHEDULING

Real-time scheduling of a set of tasks with deadlines means
that each task is executed within its deadline. This is a
typical requirement of real time kernels for embedded
systems, where missing a deadline may lead to an actuator
misfunction or missing data during acquisition. We consider
a periodic task as a set of instructions periodically invoked:
the duration of the ith task is denoted Ci, and its period is
denoted pi.

Remark 1. We assume that time is discrete, and it is indexed
by natural numbers because it is measured in clock ticks.

When possible, preemptive EDF is preferred over other
strategies because it allows scheduling with high-utilization
factors. However, there are many practical situations where
nonpreemption of tasks is highly desirable. For exam-
ple, there are cases where I/O devices make preemption
impossible or expensive. Also, nonpreemptive real-time
scheduling requires less overhead than preemptive because
both synchronization primitives and deadline sorting at each
task release are not necessary.

Remark 2. A fundamental parameter in real-time scheduling
of n tasks is the utilization factor U : U =∑n

i=1(Ci/pi).

There are several authors who have presented some
results on nonpreemptive scheduling [6]. The main difficulty
with nonpreemptive scheduling is that it is, in general, a NP-
complete problem [7] for every processor load [8]. In certain
constrained cases, the NP-completeness can be broken, as
shown by Jeffay et al. in [5] and Georges in [8] for EDF
scheduling. In particular, Jeffay et al. show that necessary and
sufficient scheduling conditions for a set of n nondecreasing
periodic tasks, that is, p1 ≤ p2 ≤ · · · ≤ pn, are the following:

n∑

i=1

Ci

pi
≤ 1, (1)

t ≥ Ci +
i−1∑

j=1

⌊
t − 1
pj

⌋

Cj ∀1 < i ≤ n, ∀t, p1 < t < pi. (2)

In other words, informally, the EDF scheduling of the set
of n periodic tasks is feasible if, according to the first
condition, there is enough computational capacity to execute
all tasks while, according to the second condition, the total
computational demand in a temporal interval t is lower than
the length of the interval itself.

2.1. Nonpreemptive designmethodology

This section describes a design methodology which is based
on the assignment of the computation times Ci of the

Enzo Mumolo et al. 3

nonpreemptive tasks according to the physical requirements
and subjected to suitable bounds. In other words, we seek the
values of the bounds Bi so that if Ci < Bi, for all i = 1, . . . ,n,
the set of periodic tasks is schedulable.

Starting from the Jeffay conditions (1) and (2), we
now derive the bounds for the periodic tasks executions
which bring the task set to be schedulable using the EDF
nonpreemptive policy.

To this purpose, we can easily prove the following
proposition which states a sufficient condition for a set of
tasks to be schedulable.

Proposition 1. If the computation times of a set of n nonpre-
emptive periodic tasks are bounded by Bi:

Bi = p1

(

1−
i−1∑

j=1

Cj

pj

)

, (3)

for i = 1, . . . ,n, then the set of tasks is schedulable using non-
preemptive EDF.

Proof. The bounds are a direct consequence of the condition
reported in (2), which can be put in the following form:

Ci≤ t−
i−1∑

j=1

⌊
t − 1
pj

⌋

Cj , ∀i=2, . . . ,n, ∀t : p1<t< pi.

(4)

If there is only one periodic task, then we can set B1 = p1.
On the other hand, if there are two tasks (n = 2), then
the condition reported in (4) becomes C2 ≤ t − �(t − 1)/
p1�C1, for all t : p1 < t < p2 or, in other words, B2 =
minp1<t<p2 (t − �(t − 1)/p1�C1). Since the possible values for
t are: p1 + 1, . . . , p2 − 1, we have B2 = p1 + 1− C1. Consider
now the situation with i tasks. As before, we have

Ui = min
p1<t<pi

(

t −
i−1∑

j=1

⌊
t − 1
pj

⌋

Cj

)

. (5)

By considering the quantity

Ui = min
p1<t<pi

(

t −
i−1∑

j=1

t − 1
pj

Cj

)

, (6)

which is the same as (5) without the floor operator, then Ui ≤
Ui. This means that if Ci ≤ Ui, the condition expressed in (2)
surely holds. Now, we can easily find out that

Ui = min
p1<t<pi

(

t −
i−1∑

j=1

t − 1
pj

Cj

)

= min
p1<t<pi

(

t

(

1−
i−1∑

j=1

Cj

pj

)

+
i−1∑

j=1

Cj

pj

)

= (p1 + 1
)
(

1−
i−1∑

j=1

Cj

pj

)

+
i−1∑

j=1

Cj

pj

= p1

(

1−
i−1∑

j=1

Cj

pj

)

+ 1.

(7)

P1

160001200080004000

(a)

P2

18000120006000

(b)

P3

21000140007000

(c)

Figure 2: Scheduling example.

On the other hand, the first Jeffay condition, expressed in (1),
can be stated as

Ci ≤ Vi =
(

1−
i−1∑

j=1

Cj

pj

)

pi. (8)

In conclusion, we can state that if Ci ≤ Bi, where Bi =
min(Ui,Vi) = Ui as the pi ’s are in nondecreasing order
and so Ui ≤ Vi, both the Jeffay conditions are satisfied, and
the task set is EDF schedulable. It is worth noting that the
opposite is not true, namely the condition is only sufficient.

This derivation completes the proof.

From the proposition, we can immediately plan a design
methodology for nonpreemptive real-time scheduling, con-
sisting in finding the bounds of each tasks which guarantee
scheduling of the task set, and setting the duration of the
tasks within the bounds and according to the physical con-
straints. In other words, the physical system to be controlled
through the real time kernel must have time constants less
than the computed bounds. Otherwise, the architecture of
the real time solution must be formulated in a different way.

To show how the above conditions can be used in
practice, we have worked out the following example.

Example 1. Let us consider three tasks, with p1 = 4000, p2 =
6000, and p3 = 7000. Then, B1 = 4000, and assume that
C1 = 1500. Then, the bounds, which guarantee the tasks to
be schedulable, are: B2 = 4000(1 − C1/p1) = 2500. Assume
then that C2 = 1500. In the same way, B3 = 4000(1−C1/p1−
C2/p2) = 1500. Assume then that C3 = 1500.

This scheduling is outlined in Figure 2.

Remark 3. The algorithm has a complexity of O(n2) divi-
sions, where n is the number of tasks.

In fact, for i = 2, we have to compute one division, for
i = 3, we have two divisions, and for the generic i = n, we
have one product and n− 1 divisions. It is worth noting that
complexity is not a critical problem, because the scheduling
is statically designed.

4 EURASIP Journal on Embedded Systems

MainLoop() {
while(true){

if (InterruptTable is not empty)
ServiceInterruptTable();

else
ServicetaskQueue();

}
}

Pseudocode 1

Q
u

eu
e

Fipt

0

1

2

3

Ready

Waiting for execution instant

Nonreal-time tasks

Lipt

R
ea

lt
im

e
Fr

ee N
on

re
al

ti
m

e

Figure 3: Yartek queues used for scheduling.

3. YARTEK ARCHITECTURE

Yartek has been designed according to the following charac-
teristics:

(i) running on the Freescale MCF5282 Coldfire micro-
controller [9];

(ii) nonpreemptive EDF scheduling of periodic real-time
threads;

(iii) background scheduling of nonreal-time threads;
(iv) sensor data acquisition with a polling mechanism;
(v) deferred interrupt mechanism;

(vi) contiguous stack and data memory management using
first-fit policy;

(vii) RAM-disk management;
(viii) system call primitives for thread, memory, and file

management;
(ix) general purpose I/O management;
(x) communication with the external world via serial port.

3.1. Task scheduling

Task scheduling is one of the main activities of the operating
system. All the scheduling operations are performed on
the basis of a real-time clock, called RTClock, which is
generated by an internal timer. Each task is represented using
a data structure called thread control block (TCB), which is
reported in Appendix A. TCB contains the name, type, and
priority of the process, its allocated memory, and fields used
to store the processor’s state during task execution. For real-
time processes, the TCB also contains Start, Dline, and Period
fields to store the time when the process starts, its deadline,
and its period. Scheduling is managed with a linked list of
TCBs with 3 priority levels, as shown in Figure 3. There is
one more queue used for storing free TCBs.

Ready

Created System run

Waiting
to be

activated

Figure 4: State diagram of a real-time thread in Yartek.

The periodic real-time threads are managed using non-
preemptive EDF scheduling. The TCB queues 0 and 1
are used as follows: queue 0 contains the TCBs of active
threads, that is, ready to be scheduled and is ordered by
nondecreasing deadline; hence these TCBs are executed
according to the EDF policy. The periodic threads awaiting
to be activated are inserted in queue 1 ordered by start
time. As time lasts, some tasks can become active and
the corresponding TCBs will be removed from queue 1
and inserted into queue 0. This operation is performed by
the ServiceTaskQueue routine, which analyzes the TCBs on
queue 1 to seek start times less than or equal to RTClock, that
is, threads to be activated. Moreover, in queue 2 are stored the
TCBs of nonreal-time threads. The queue 2 is managed using
a FIFO policy.

The entry point of the kernel is an infinite loop where the
interrupt table and the task queue are examined, as described
in Pseudocode 1.

Interrupts are served using a deferred mechanism: each
interrupt raises a flag on an interrupt table, reported in the
Appendix A, and the ServiceInterruptTable routine checks
the interrupt table to verify if a pending interrupt flag is
set. In this case, it activates the suitable nonreal-time thread
for serving that interrupt. In Appendix B, we report more
detailed code.

The movement of a TCB from a queue to another at
a given priority level is performed with a procedure which
inserts the task in the task queue.

3.2. Process states

When a real-time thread is created (see Figure 4), it is in
Ready state when start time > RTClock (TCB inside queue
0), it is in Waiting to be activated state when start time >
RTClock (TCB inside queue 1). The first Ready thread will
then be selected for execution and will go into System run
state. When the execution stops, the process will become
Waiting to be activated as it is periodic, and the scheduler
updates its start time and its deadline adding them the thread
period.

Enzo Mumolo et al. 5

Created
Non

real-time
System

run
Exit

Figure 5: State diagram of a non-real-time thread in Yartek.

Interrupt handler:
set the flag in the operating system table;
return from interrupt;

Pseudocode 2

The states of a nonreal-time thread are similar and are
reported in Figure 5. The main difference is that a nonreal-
time thread is preemptive, and it can be interrupted by real-
time threads.

To create a process, a TCB is taken with GetTCB() func-
tion and filled with process information. The QueueTCB
function then inserts the TCB in the requested queue. For
queue 0, the TCB is inserted in ascending order according
to deadlines, while for the queue 1 the TCB is inserted in
ascending order according to activation time. For the other
two queues, it is simply enqueued at the end.

3.3. Memorymanagement

An amount of stack and data memory, containing thread-
related information such as a local file table and informa-
tion needed for thread management and user variables, is
assigned to each process; furthermore, dynamic memory is
also available when requested by system calls. Stack, data, and
heap memory are organized in a sequence of blocks managed
with first-fit policy.

3.4. System calls

A number of system calls have been implemented using
the exception mechanism based on the trap instruction.
The system calls are divided into file system management
(open, read, write, close, unlink, rewind, chname), process
management (exec, kill, exit), heap management (alloc, free),
and thread management functions (suspend, resume).

3.5. Timer and interrupts

The microcontroller MCF5282 [9] has 4 programmable
timers: one is used as the system’s time reference, and it
is used as RTClock, and the other timers are used for the
measurement of time intervals. The timer is composed of
a 16-bit register and a frequency divider. The first timer is
used as the system’s time reference, and it is used as RTClock.
Since four interrupts are used for the timers, there are three
interrupt levels for application code. The routines activated
by interrupts set a single flag in the interrupt table. Later, the
scheduler activates a process to actually manage the request,
that is, in deferred mode. The pseudocode of an interrupt
service routine is illustrated in Pseudocode 2.

4. PERFORMANCE EVALUATION

Generally speaking, as noted in [10], measuring real-time
operating system performance and comparing a real time
system to other real-time operating systems are difficult
tasks. The first problem is the fact that different systems
can have different functionalities, and the second concern
is the method used to perform the actual measurements.
Many features are worth to be measured: for example,
Sacha [10] measures the speed of inter-task communication,
speed of context switch, and speed of interrupt handling,
while Garcia-Martinez et al. [11] reported measurements of
responses to external events, inter-task synchronization and
resource sharing, and inter-task data transferring. Finally,
Baynes et al. [12] considered what happens when a real-
time operating system is pushed beyond its limits; they
also report real-time operating system power consumption
measurements.

This section reports some measures used to describe
the performance of Yartek, namely context switch time,
jitter time, interrupt latency time, kernel stability, and
kernel overhead. Yartek has been implemented on the
Avnet board [13] part number ADS-MOT-5282-EVL, based
on the Freescale MCF5282 ColdFire Processor running at
33 MHz. It is equipped with BDM/JTAG interface and has
16 MB SDRAM and 8 MB Flash. The communications are
based on general purpose I/O (GPIO) on AvBus expansion
connector, two RS-232 serial ports, 10/100 Ethernet. The
performances obtained with Yartek have been compared to
the performance of RTAI operating system, ported to this
board.

4.1. RTAI

The RTAI project [14–16] began at the Dipartimento di
Ingegneria Aerospaziale del Politecnico di Milano (DIAPM)
as a plug-in which permits Linux to fulfil some real-time
constraints. RTAI allows real-time tasks to run concurrently
with Linux processes and offers some services related
to hardware management layer dealing with peripherals,
scheduling, and communication means among tasks and
Linux processes. In particular, RTAI port for Coldfire
microcontroller is a uCLinux [17] kernel extension that
allows to preempt the kernel at any time to perform real-
time operations. Unlike the implementations of RTAI for
x86, PPC, and MIPS, the Coldfire version is not based on the
“deferred interrupt mechanism” but uses the capability of the
MC68000 architecture to priorities interrupts in hardware
by the interrupt controller. In the current implementation,
Linux interrupts are assigned lower-priority interrupt levels
than RTAI interrupts. However, RTAI presents drawbacks
which restrict the fields of integration:

(1) the preemptive scheduler works with static priorities
and there is no built-in nonpreemptive EDF scheduler,

(2) both aperiodic and periodic tasks can be used but
the priority of a periodic task bears no relation to its
period,

(3) deadlines are not used,
(4) it is a hybrid system with high footprint.

6 EURASIP Journal on Embedded Systems

void test context switch() {
int i;
CreateRTtask(thread, thread code);
ActivateTask(thread);
t0 = StartTimer();
for (i = 0, i < LOOPS; + + i){
Resume(thread);
}
t1 = StopTimer();
}

void thread code() {
while (1) {
Suspend();
}

Pseudocode 3: Pseudocode of the context-switch test.

4.2. Performancemeasures and comparisons

Experimental results with respect to kernel performances are
based on the following parameters.

Context switch time

It is the time spent during the execution of the context switch
routine of the scheduler.

Jitter time

It is the time delay between the activation time of a periodic
real-time process and the actual time in which the process
starts.

Deferred interrupt latency

It is the time delay between an interrupt event and the exe-
cution of the first instruction of the deferred task scheduling
its service routine.

Kernel stability

It establishes the robustness of the kernel.

Kernel overhead

It represents the time the kernel spends for its functioning.

4.2.1. Test for context switch time

The test program used for measuring the context switch time
is shown in Pseudocode 3.

The test program creates one thread and measures the
time which lasts from the thread execution to subsequent
suspension repeating the process LOOPS times. More pre-
cisely, in Yartek the only thing the thread does is to suspend
itself, that is to put its TCB on the queue 1 while the loop
calls the resume LOOPS times. Resume() moves the TCB on

void test jitter time() {
CreateRTtask(thread, thread code);
ActivateTask(thread);
}

void thread code() {
int loops=LOOPS;
while (loops–) {
t1[loops] = RTClock();
t2[loops] = CurrentTCB->StartTime;
}
}

Pseudocode 4: Pseudocode of the jitter time test.

the queue 0 so it will be immediately scheduled. It is worth
noting that Resume() is a blocking primitives, that is, it exits
only when the TCB is put indeed in queue 0.

In RTAI, rt task suspend() suspends the execution of
the task given as the argument, rt task resume() resumes
execution of the task indicated as argument previously
suspended by rt task suspend().

In Yartek, the average context switch time is 130 μs, while
in RTAI is 124 μs.

4.2.2. Test for jitter time

It is worth recalling the detailed operation of Yartek to
manage periodic real-time tasks. The TCB queue 1 contains
the periodic threads, ordered by activation time, whose
activation time is in the future. The starting time of the
periodic tasks that lie on queue 1 is tested to detect the
scheduling condition, that is, the starting time in TCB is
greater than current time. In this case, the TCB is moved to
the queue 0 which is sorted by deadline.

The test program used for measuring jitter time is shown
in Pseudocode 4.

In Yartek, TCB is the data structure containing the data
related to threads, and CurrentTCB is the pointer to the
current thread. The system call RTClock() returns the value
of the real-time clock used by Yartek for scheduling real-
time tasks. However, in Yartek, real-time threads are activated
by the ServiceTaskQueue routine, and therefore the exact
starting time does not necessarily correspond to the start
time written in the TCB. The delay can vary depending on
the state of the routine. As a consequence, the uncertainty of
activation time can be quite high. In fact, results of our tests
show that Yartek has an average jitter time of 750 μs, while
RTAI has an average jitter time of 182 μs.

4.2.3. Test for deferred interrupt latency

Yartek serves the interrupt using a deferred mechanism, that
is, only a flag is raised immediately. A nonreal-time thread
is activated only when the scheduler processes the Interrupt
table.

Enzo Mumolo et al. 7

void test deferred interrupt latency() {
CreateRTtask(thread1, thread code1);
ActivateTask(thread1);
}

void thread code1() {
CreateRTtask(Thread2, thread code2);
t1 = StartTimer();
ActivateTask(thread2);
}

void thread code2() {
t2 = StopTimer();
}

Pseudocode 5: Pseudocode of the deferred interrupt latency test.

As RTAI does not implement on the Coldfire porting
any interrupt service, we have estimated the time needed
to schedule a task, thus implementing a deferred interrupt
service.

So, the test program used for measuring deferred inter-
rupt latency is schematically presented in Pseudocode 5.
There are no periodic real-time threads in execution during
the tests.

By using Yartek, an average deferred interrupt latency
of 780 μs is obtained, while using RTAI a latency of 17
microseconds is obtained.

4.2.4. Kernel stability and overhead

Although we did not make a specific stability test, Yartek
has shown a good robustness since it run for several hours
both for performing applications and for evaluating the
performance tests.

The time the kernel spends for itself and not for the
application is mainly divided in scheduling time, context
switch time, and memory management time. The essential
code of scheduling is reported in the Appendix B.

In summary, the worst case complexity for interrupt
management is about 110 assembler instructions to deferred
schedule a nonreal-time thread for serving one interrupt.
The management of the real-time task queues, under the
hypothesis of one real-time TCB to be activated, requires
about 150 assembler instructions. Regarding memory man-
agement, the alloc system call requires about 300 assembler
instructions for allocating one block of contiguous memory
using first fit and the free system call about 270 assembler
instructions. These overheads express in time depend on the
actual CPU frequency and for this reason have been left in
number of instructions.

As previously computed, the overhead for context switch
is 130 μs.

4.3. Discussion

The first important difference between RTAI and Yartek is
the operating system footprint. The footprint of an operating

system concerns the usage of RAM and flash memory
resources. As noted in Section 4.1, the RTAI plug-in works
with a Linux kernel. In our tests, we used uCLinux which
has a minimum kernel size of 829 kbytes. The RTAI mod-
ules have a size of 97 kbytes, so the whole image is of
about 900 kbytes. Instead, the footprint of Yartek is about
120 kbytes. This big difference in size is due to the fact that
Linux plus RTAI brings some of the powerful tools and
features of Unix. However, these tools are not necessary for
an embedded system. The second difference between RTAI
and Yartek is the nonpreemptive scheduling. It is worth
remarking the adequacy of nonpreemptive scheduling in
real-time embedded systems on low-power microcontrollers.
RTAI does not offer nonpreemptive scheduling. Of course,
it could be introduced by coding a new scheduler and
integrating it in RTAI, but we instead decided to modify our
previous kernel [4] for footprint reasons.

In conclusion, we decided to use Yartek for developing
embedded solutions. The performance evaluation tests show
that the time performances of Yartek are similar to RTAI for
the context switch time and that the time for task creation
is much lower for Yartek than RTAI. However, the jitter
time for Yartek is much worst than RTAI, due to the Yartek
architecture. It has to be noted, however, that the embedded
systems for nonvisual sensors is not critical with respect to
the jitter time, due to the time constants of such sensors.
Yartek allows to manage task allocation that will be much
more complex on a nonreal time or a sequential system
providing periodic threads scheduled with a nonpreemptive
EDF policy; the schedulability can be tested using the simple
methodology presented in Section 2.

5. APPLICATION: EMBEDDEDMAP BUILDING
SYSTEM FORMOBILE ROBOTS

In mobile robotics, several tasks require the strict satisfaction
of time constraints, so real-time systems are needed. The
sensors generally used for mobile robot navigation, such as
inertial navigation systems, sonar sensor array, and GPS,
laser beacons, should be processed considering real-time
constraints. As map building is a fundamental task in mobile
robotics, we considered an application of this type. Its design
is described, and its implementation using Yartek is outlined
in the following.

5.1. Previous work inmap building for
robot navigation

The problem of robotic map building is that of acquiring
a spatial model of a robot’s environment; this model is
used for robot navigation and localization [18]. To acquire
a map, a robot must be equipped with sensors that enable
it to perceive the outside environment. Commonly used
sensors include cameras, range finders using sonar, laser,
and infrared technology, tactile sensors, compasses, and GPS.
However, none of these sensors can furnish a complete view
of the environment. For example, light and sound cannot
penetrate walls. This makes it necessary for a robot to build a
map of the environment while navigating in it.

8 EURASIP Journal on Embedded Systems

Working in fusing multiple sensor readings for map
building falls into two broad categories: target tracking
models and occupancy grid models. In target tracking, one
or more geometric features of the environment are modeled
and tracked, that is, their location is estimated at each new
sensor reading [19, 20].

Target-tracking methods are appropriate when there is
a small number of targets, such as a few landmarks, and
their interaction with the sensor is well known. A key
issue in the target-tracking paradigm is the data-association
problem: how to identify the target that a given sensor
reading is associated with. While target-tracking is a good
method for navigation using landmarks, in many situations
it may be important to determine not just the position of
a few landmarks, but the complete surface geometry of the
environment.

The occupancy grid method [21–23] provides a proba-
bilistic framework for target detection, that is, determining
whether a region of space is occupied or not.

Elfes [21, 22] reformulated the problem as a probabilistic
Bayesian updating problem using gaussian noise with a very
large variance to account for the gross errors entailed by mul-
tiple reflections. He also addressed the problem of geometric
uncertainty associated with sensor beam width by consider-
ing target detection under all possible configurations of the
environment. In practice, given the overwhelming combina-
torics of keeping track of data associations for each reading,
independence and other simplifying assumptions are made
to reduce the computational complexity of Bayesian update.
That is, each cell of space is treated as an independent target
in the presence of the geometric uncertainties induced by
the beam width. This leads to unrealistic estimates for target
map updates, for example, all the cells at the leading edge of
the beam have their probabilities raised, when in fact usually
only one cell is responsible for the echo.

Borenstein and Koren [24, 25] introduced the vector field
histogram (VFH) method. They use a spatial histogram of
sonar points, along the axis of the sonar beam, to identify
areas that are likely to contain obstacles. The histogram is
updated rapidly as new returns come in, and older ones
are abandoned. The VFH method has the advantage that it
can deal with dynamic and noisy environments. Since it is
based on a continuous update of the map, this method is
particularly suitable for mobile robots. The updating of the
map can in fact be performed during the robot movement.

5.2. Implementation

Yartek has been installed on an embedded system composed
by the Coldfire microcontroller board connected to an array
of 6 sonar sensors placed in front of a mobile robot, and a
PC-104 board on top of the robot, as shown in Figure 6.

The embedded system controls the ultrasonic sensors,
calculates the robot position from the odometry readings,
and updates the internal map. The last Nc sensor readings
are stored internally in a circular list and used for updating
the map with Nc set according to the odometry error model.
The map is a histogram grid [24, 25] which is quite simple
for a computational point of view. It is suitable for rapid in-

Figure 6: Mobile robot, type PIONEER 3-AT, equipped with the
embedded system.

motion sampling of onboard range sensors and modeling
of inaccurate and noisy range-sensor data, such as that
produced by ultrasonic sensors. The system provides the
internal map through a serial port and receives commands
such as clear the map, compute the map, and send the map.

The application is designed as follows.

Sensor acquisition tasks

There are 6 real-time periodic tasks that perform the acqui-
sition of the data from the sonar sensor and 2 real-time
periodic tasks that read the odometers.

Map updating tasks

There is a real-time periodic task that updates the map
according to the acquired sensorial data provided by the
sensor acquisition task and antisensor real-time periodic task
with larger period for filtering erroneous readings.

Map requests

These are aperiodic tasks scheduled upon requests. There is
an aperiodic task that allows to obtain the complete map
from the embedded system using serial line connection.
There is also a task for clearing the map and resetting the
robot’s position.

There is one real-time task for each ultrasonic sensor that
controls the firing of the sensor and waits for the reflected
ultrasonic burst. This is compatible with the sonar array
operation since only one sensor fires the ultrasonic burst at
a time in order to avoid crosstalk. Crosstalk is a common
problem occurring with arrays of multiple ultrasonic sensors
when echo emitted from one sensor is received by another
sensor leading to erroneous reading. In order to avoid
crosstalk only one sensor emits the ultrasonic burst and
listens for the echo. Only after the echo has been received
or a maximum allowed time has elapsed in the case there is
no obstacle in front of the sensor, the process can be repeated
for the next sensor, and so on.

The range distance of the sensor is 3 m which is equiva-
lent to a time of flight (TOF) of 17 milliseconds. We assume
that the set of sensors is read every 500 milliseconds. This
fact poses a physical limit on the maximum robot speed

Enzo Mumolo et al. 9

P1
4000350030002500200015001000500

P2
4000350030002500200015001000500

P3
4000350030002500200015001000500

P4
4000350030002500200015001000500

P5
4000350030002500200015001000500

P6
4000350030002500200015001000500

P7
4000350030002500200015001000500

P8
4000350030002500200015001000500

P9
4000350030002500200015001000500

P10
4000350030002500200015001000500Aperiodic

task

Figure 7: Time diagram of real-time scheduling for the map
building application.

to approximately 0.5 m/s (if the robot is not to bump
into obstacles and considering that minimum detectable
distance is set to 20 cm). This is more than enough for
our application. Finally, note that in this application the
interrupts are generated only by the serial port.

The design methodology described in Section 2.1 has
driven the development of this application. We call:

getSonar1, getSonar2, . . ., getSonar6 the periodic tasks
which read the sensors with period p1 = p2 = · · · = p6 =
500 milliseconds; updateMap a periodic task with period
p7 = 500 milliseconds; getOdo1, getOdo2 periodic tasks with
period p8 = p9 = 1200 milliseconds; antiSensor a periodic
task with period p10 = 2000 milliseconds.

Also, we choose the worst case task duration as C1 =
20 milliseconds (B1 = 500 milliseconds), then B2 =
480 milliseconds. Choosing C2 = 20 milliseconds, then B3 =
460 milliseconds. Choosing C3 = 20 milliseconds, then B4 =
440 milliseconds. Choosing C4 = 20 milliseconds, then B5 =
420 milliseconds. Choosing C5 = 20 milliseconds, then B6 =
400 milliseconds. Choosing C6 = 20 milliseconds, then B7 =
380 milliseconds. Choosing C7 = 100 milliseconds, then
B8 = 280 milliseconds. Choosing C8 = 20 milliseconds,
then B9 = 500(1 − 220/500 − 20/1200) = 271 milliseconds.
Choosing C9 = 20 milliseconds, then B10 = 500(1 −
220/500 − 40/1200) = 263 milliseconds. Finally we choose
C10 = 20 milliseconds.

As the condition holds, then the set of task can be
scheduled using nonpreemptive scheduling. In Figure 7,
the corresponding time diagram of the nonpreemptive
scheduling designed for the map building application is
reported. In black is shown the part of times which can be
dedicated to the aperiodic tasks.

The pseudocode for sonar real-time tasks is shown in
Pseudocode 6.

Two other real-time periodic tasks read the odometers:
the odometer increments the counter register for each tick of
the wheel encoder. The task reads the register and compares

robot.getSonarN()
{

fire ultrasonic sensor N (set logical 1 on digital pin)
while time < maxtime and echo not detected
{

listen for echo (check the I/O pin of sensor N to go
to logical level 1)

time++
}
calculate distance from time of flight

}

Pseudocode 6

robot.getOdoN
{

read OdoN counter;
diff=counter-previous;
if diff<0 diff=maxcounter-previous+counter;
calculate traversed distance from counter value;
previous=counter;
}

Pseudocode 7

it with the previous reading to find a traversed distance.
The wrapping of the counter when passing from maximum
value to 0 is easily handled since max wheel speed is such
that relative distance to previous reading is limited (see
Pseudocode 7).

The real-time periodic process that updates the map
reads the sensor readings stored in the internal circular list,
calculates the robot’s position, and updates the cells in the
histogram grid corresponding to sensor readings. The most
recent readings increment the histogram grid cells while the
oldest ones decrement the cells, that is, only the last Nc
readings compare in the map. In this way the portion of
the map with revealed obstacles moves with the robot (see
Pseudocode 8).

As opposed to the updateMap task a second real-time
periodic task called antisensor decrements all cells in a
specified area around a robot (an area in front of the robot
with range 1.5 m in the implementation). This mechanism is
used in order to eliminate moving obstacles and to correct
erroneous sonar readings. The antisensor task is scheduled
with much larger period than the map updating task allowing
for the cells in which real obstacles are present to reach high
values before they get decremented.

The map transfer task is a real-time aperiodic task
scheduled when a request for a map arrives. The array
containing the map is then compressed with a simple (value,
count) scheme and transmitted to a serial port running at
9600 bps. The number of bytes to be transmitted does not
grow with the array size due to the updating mechanism
discussed earlier where only the last readings compare in the
map (see Pseudocode 9).

10 EURASIP Journal on Embedded Systems

robot.updateMap();
{

getLastOdoReadings(); // the most recent odometry readings in circular list
calculateRobotPosition();
getLastSonarReadings(); // the most recent sonar readings
calculateSonarReadings(); // polar to cartesian based on relative sensor position
updateMapPositive(); // increments histogram map cells

getFirstOdoReadings(); // the oldest odometry readings
calculateRobotPosition();
getFirstSonarReadings(); // the oldest sonar readings
calculateSonarReadings();
updateMapNegative(); // decrements histogram map cells

}

Pseudocode 8

robot.sendMap()
{

compressMatrixData(); // the map stored in memory array
transferMatrixData(); // is transmitted to serial port
}

Pseudocode 9

(a) (b)

(c) (d)

Figure 8: Map building results. On the left the real maps, on the
right the maps estimated with the embedded system.

5.3. Experimental results

The bitmap estimated with the updateMap() method is
referred to absolute coordinates and requires absolute local-
ization results obtained with odometry. In other words, the
map is an array of bytes where each element represents a cell
of the grid by which the environment is divided. In our case,
each cell represents a square of 50 mm long sides.

/∗Components interfaces ∗/
#include <TCB.h> /∗ Thread Control Block ∗/
#include <yartek.h> /∗ Scheduler ∗/
#include <irq.h> /∗ Interrupt management ∗/

Algorithm 1

In Figure 8, some examples of maps obtained with the
described embedded system are reported: on the left the
actual map of the environment and on the right the perceived
map obtained from the embedded device.

6. CONCLUDING REMARKS

In this paper, a real-time kernel we called Yartek, designed
to implement embedded systems in mobile robotics, is
described. It has been used to develop an embedded system
for ultrasonic sensors-based environment mapping using
the VFH algorithm. The embedded device we developed
is currently used in our mobile robots: the ultrasonic
sensors are used by the embedded system to compute an
environmental map which is transferred to the robot without
any other computational cost. The development of Yartek
was motivated by the impossibility to find an open source
real-time kernel for the Coldfire microcontroller used in our
embedded system. Yartek is a small size kernel, which could
be simply ported to other microcontroller architectures
and implements nonpreemptive EDF scheduling. It also
implements a deferred interrupt mechanism; by using this
mechanism, interrupts are served by nonreal-time aperiodic
tasks, which are scheduled in background.

Applications developed externally, that is, using cross-
development systems, must be compiled inside the operating
system. Therefore, a development environment must be
available externally. Other features of the kernel include a
thread management mechanism, dynamic memory man-
agement using first-fit, availability of a serial port driver
which allows the connection of an external terminal for data

Enzo Mumolo et al. 11

/∗ the TCB (Thread Control Block) type ∗/
struct Tcb {char SMI, /∗ sending module ∗/

RMI, /∗ receiving module ∗/
PR, /∗ task priority ∗/
PX, /∗ process index ∗/
DATA[4], /∗ short data field ∗/
SR[2], /∗ Cpu condition codes (SR) ∗/
∗a[8], /∗ Cpu address registers: A0–A7 ∗/
∗d[8], /∗ Cpu data registers: D0–D7 ∗/
∗PC; /∗ Cpu Program Counter ∗/

short Stack, /∗ Assigned Stack ∗/
Heap; /∗ Assigned Heap ∗/

int BornAbsTime, /∗ Time of birth of process ∗/
Mem; /∗Memory address ∗/

char ST PR; /∗ Starting task priority ∗/
void (∗ fun)(); /∗ Pointer to the function to execute ∗/
unsigned int

PID,PPID; /∗ Process ID, Parent Process ID ∗/
CommandLine Command; /∗ Record field for longer data ∗/
char Name[NameDim]; /∗ Name of command or process ∗/
struct Tcb ∗CP; /∗ Chain pointer ∗/
char Type;
unsigned int

Born, /∗ Born time ∗/
Start, /∗ Next start time ∗/
Dline, /∗ Deadline ∗/
Period, /∗ Period of the thread ∗/
Maxtime, /∗Maximum duration of the thread ∗/
Stat; /∗ Duration of the previous execution ∗/

};
typedef struct Tcb TCB;

Algorithm 2

exchange and system monitoring purposes, and availability
of a RAM-disk which provides a convenient data structure
for temporary storage of information and for easily extend-
ing the operating system features.

Yartek has been developed for the Coldfire microcon-
troller family; if a porting to different architecture is to be
performed, there are some short pieces of assembler code,
mainly for the context switch and for timers management,
which must be rewritten. It should be pointed out that Yartek
could be simply modified for working both with preemptive
and nonpreemptive scheduling. The main difference between
nonpreemptive and preemptive scheduling is that in the
preemptive modality some more operations should be
performed to assure the preemption. In the preemptive case,
another table is required to contain the TCB ID, the next
activation time, and the task period. Before executing a TCB
code, a timer is set in order to execute the scheduling when a
periodic task arrives. The interrupt routine first updates this
table, adding the period to the next activation time of the
current task, it sorts the table by the next activation time in
the ascending order, and then the scheduler is called.

In Appendix C, we report what should be done if one
wants to adapt Yartek to another application.

The system we present in this paper is small, and it is
highly reconfigurable. Almost all the kernel has been written

in C language, and the source code can be freely down-
loaded [3]. The executable image takes less than 120 kbytes.
We are currently developing other embedded systems for
nonvisual sensors, namely inertial and infrared, for mobile
robots.

APPENDICES

A. DATA STRUCTURES

In the following the Yartek data sructures are briefly
summarized. To compile the application, a programmer
needs to include headers of the required components (see
Algorithm 1). The main data structure in Yartek is called
TCB and is defined in Algorithm 2.

The Interrupt table is defined as follows:
int InterruptTable[3]; /∗ Interrupt Table ∗/

B. EDF SCHEDULING

The scheduling algorithm of Yartek implements an EDF
nonpreemptive scheduling. A representative C code of this
routine for interrupt and real-time threads is reported in
Algorithm 3.

12 EURASIP Journal on Embedded Systems

void MainLoop()
{

bool Found;
register int i, j;
TCB ∗p, ∗p1, ∗p2;

mainloop:
/∗ ServiceInterruptTable ∗/
/∗ deferred mechanism, nonreal-time threads are scheduled using Call ∗/
/∗ Call takes a TCB from the free list and put it on queue 2 ∗/
if (InterruptTable [0]! = 0)
{

Call(ServiceInterrupt0);
}
if (InterruptTable [1]! = 0)
{

Call(ServiceInterrupt1);
}
if (InterruptTable [2]! = 0)
{

Call(ServiceInterrupt2);
}

/∗ ServiceTaskQueue ∗/
/∗ if a task to be activated is found on queue 1

then concatenate task on queue 0 (using concatTCB function) ∗/
p=fipt[1];

while (p!=NULL && p->Start<=RTClock)
{

fipt[1] = p->CP; /∗ fipt: root of the queue 1 ∗/
if (fipt[1]==NULL) lipt[1]=NULL;
p->PR = 0;
p->ST PR = 0;
concatTCB(p);
p = fipt[1];

}
if (p!=NULL)
while (p->CP!=NULL)

if (p->CP->Start<=RTClock)
{

p1=p->CP;
p->CP=p1->CP;
if (p->CP==NULL) lipt[1]=p;
p1->PR = 0;
p1->ST PR = 0;
concatTCB(p1);

} else p=p->CP;
if (Found==TRUE)
{
savedTCB=fipt[0];
}
if (savedTCB->CP == NULL)

lipt[0] = NULL; /∗ Updates the last element queue pointer ∗/
/∗ EXE execute the real-time thread ∗/
asm{

jmp EXE;
}
/∗When the real-time periodic thread has completed its period,
then it is enqueued on queue 1 ∗/

concatTCB(savedTCB);
goto mainloop;

}

Algorithm 3

Enzo Mumolo et al. 13

C. HINTS FOR DEVELOPERS

A Yartek application developer should

(i) write the code for the interrupt service routines Servi-
ceInterrupt0, ServiceInterrupt1, and ServiceInterrupt2;

(ii) write the Init() routine that schedules the periodic
real-time threads;

(iii) write the code of the periodic real-time threads.

REFERENCES

[1] K. Lenac, E. Mumolo, and M. Nolich, “Fast genetic scan
matching using corresponding point measurements in mobile
robotics,” in Proceedings of the 9th European Workshop on Evo-
lutionary Computation in Image Analysis and Signal Processing
(EvoIASP ’07), vol. 4448 of Lecture Notes in Computer Science,
pp. 375–382, Valencia, Spain, April 2007.

[2] E. Mumolo, K. Lenac, and M. Nolich, “Spatial map building
using fast texture analysis of rotating sonar sensor data for
mobile robots,” International Journal of Pattern Recognition
and Artificial Intelligence, vol. 19, no. 1, pp. 1–20, 2005.

[3] Yartek, http://www.units.it/smartlab/yartek.html.
[4] E. Mumolo, M. Nolich, and M. OssNoser, “A hard real-time

kernel for motorola microcontrollers,” Journal of Computing
and Information Technology, vol. 9, no. 3, pp. 247–252, 2001.

[5] K. Jeffay, D. F. Stanat, and C. U. Martel, “On non-preemptive
scheduling of periodic and sporadic tasks,” in Proceedings
of the 12th Real-Time Systems Symposium, pp. 129–139, San
Antonio, Tex, USA, December 1991.

[6] W. Li, K. Kavi, and R. Akl, “A non-preemptive scheduling
algorithm for soft real-time systems,” Computers and Electrical
Engineering, vol. 33, no. 1, pp. 12–29, 2007.

[7] M. Garey and D. S. Johnson, Computer and Intractability,
A Guide to the Theory of NP-Completeness, W.H. Freeman
Company, San Francisco, Calif, USA, 1979.

[8] L. Georges, P. Muehlethaler, and N. Rivierre, “A few results on
non-preemptive real-time scheduling,” Research Report 3926,
INRIA, Lille, France, 2000.

[9] Freescale, “MCF5282 ColdFire Microcontroller Users Man-
ual,” November 2004 http://www.freescale.com/files/32bit/
doc/ref manual/MCF5282UM.pdf.

[10] K. Sacha, “Measuring the real-time operating system perfor-
mance,” in Proceedings of the 7th Euromicro Workshop on Real-
Time Systems, pp. 34–40, Odense, Denmark, June 1995.

[11] A. Garcia-Martinez, J. Conde, and A. Vina, “A comprehensive
approach in performance evaluation for modern real-time
operating systems,” in Proceedings of the 22nd EUROMICRO
Conference (EUROMICRO ’96), pp. 61–68, Prague, Czech,
September 1996.

[12] K. Baynes, C. Collins, E. Fiterman, et al., “The performance
and energy consumption of embedded real-time operating
systems,” IEEE Transactions on Computers, vol. 52, no. 11, pp.
1454–1469, 2003.

[13] AVNET, http://www.em.avnet.com/.
[14] P. Mantegazza, “Diapm rtai for linux: why’s, what’s and how’s,”

in Proceedings of the Real Time Linux Workshop, Vienna,
Austria, November 1999.

[15] RTAI, http://www.rtai.org/.
[16] M. Silly-Chetto, T. Garcia-Fernandez, and A. Marchand,

“Cleopatre: open-source operating system facilities for real-
time embedded applications,” Journal of Computing and
Information Technology, vol. 15, pp. 131–142, 2007.

[17] “uClinux Embedded Linux Microcontroller Project,” http://
www.uclinux.org/.

[18] S. Thrun, “Robotic mapping: a survey,” in Exploring Artificial
Intelligence in the New Millenium, G. Lakemeyer and B. Nebel,
Eds., Morgan Kaufmann, San Fransisco, Calif, USA, 2002.

[19] J. Crowley, “World modeling and position estimation for a
mobile robot using ultra-sonic ranging,” in Proceedings of IEEE
International Conference on Robotics and Automation, vol. 2,
pp. 674–681, Scottsdale, Ariz, USA, May 1989.

[20] J. J. Leonard, H. F. Durrant-Whyte, and I. J. Cox, “Dynamic
map building for an autonomous mobile robot,” International
Journal of Robotics Research, vol. 11, no. 4, pp. 286–298, 1992.

[21] A. Elfes, “Occupancy grids: a stochastic spatial representation
for active robot perception,” in Autonomous Mobile Robots:
Perception,Mapping, and Navigation, S. S. Iyengar and A. Elfes,
Eds., vol. 1, pp. 60–71, IEEE Computer Society Press, Los
Alamitos, Calif, USA, 1991.

[22] A. Elfes, “Dynamic control of robot perception using multi-
property inference grids,” in Proceedings of IEEE International
Conference on Robotics and Automation, vol. 3, pp. 2561–2567,
Nice, France, May 1992.

[23] H. P. Moravec and A. Elfes, “High resolution maps from wide
angle sonar,” in Proceedings of IEEE International Conference
on Robotics and Automation, vol. 2, pp. 116–121, St. Louis, Mo,
USA, March 1985.

[24] J. Borenstein and Y. Koren, “Histogramic in-motion mapping
for mobile robot obstacle avoidance,” IEEE Transactions on
Robotics and Automation, vol. 7, no. 4, pp. 535–539, 1991.

[25] J. Borenstein and Y. Koren, “The vector field histogram-fast
obstacle avoidance for mobile robots,” IEEE Transactions on
Robotics and Automation, vol. 7, no. 3, pp. 278–288, 1991.

	1. INTRODUCTION
	2. NONPREEMPTIVE REAL-TIME SCHEDULING
	2.1. Nonpreemptive designmethodology

	3. YARTEK ARCHITECTURE
	3.1. Task scheduling
	3.2. Process states
	3.3. Memory management
	3.4. System calls
	3.5. Timer and interrupts

	4. PERFORMANCE EVALUATION
	4.1. RTAI
	4.2. Performancemeasures and comparisons
	4.2.1. Test for context switch time
	4.2.2. Test for jitter time
	4.2.3. Test for deferred interrupt latency
	4.2.4. Kernel stability and overhead

	4.3. Discussion

	5. APPLICATION: EMBEDDEDMAP BUILDING SYSTEM FORMOBILE ROBOTS
	5.1. Previous work in map building for robot navigation
	5.2. Implementation
	5.3. Experimental results

	6. CONCLUDING REMARKS
	APPENDICES A. DATA STRUCTURES
	B. EDF SCHEDULING
	C. HINTS FOR DEVELOPERS
	REFERENCES

