
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2008, Article ID 376920, 2 pages
doi:10.1155/2008/376920

Editorial
Selected Papers from SLA++P 07 and 08Model-Driven
High-Level Programming of Embedded Systems

FlorenceMaraninchi,1 Michael Mendler,2 Marc Pouzet,3 Alain Girault,4 and Eric Rutten4

1VERIMAG Laboratory, 38610 Gieres, France
2University of Bamberg, 96045 Bamberg, Germany
3Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud 11, 91405 Orsay Cedex, France
4 INRIA Grenoble - Rhône-Alpes, 38334 Saint Ismier Cedex, France

Correspondence should be addressed to Florence Maraninchi, florence.maraninchi@imag.fr

Received 31 December 2008; Accepted 31 December 2008

Copyright © 2008 Florence Maraninchi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Model-based high-level programming of embedded systems
has become a reality in the automotive and avionics indus-
tries. These industries place high demands on the efficiency
and maintainability of the design process as well as on
the performance and functional correctness of embedded
components. These goals are hard to reconcile in the face
of the increasing complexity of embedded applications and
target architectures. Research efforts towards meeting these
goals have brought about a variety of high-level engineering
design languages, tools, and methodologies. Their strength
resides in clean behavioral models with strong semantical
foundations providing a rigorous way to go from a high-
level description to mathematically certifiable executable
code.

The most successful representatives of this trend of
putting logic and mathematics behind design automation
in embedded systems are synchronous languages; they have
been receiving increasing attention in industry ever since
they emerged in the 80s. Lustre, Esterel, and Signal are now
widely and successfully used to program real-time and safety
critical applications, from nuclear power plant management
layer to Airbus air flight control systems. Their recent
successes in the automatic control industry highlight the
benefits of formal verification and automatic code generation
from high-level models.

Model-based programming is making its way in other
fields of software engineering too. Strong interest is emerg-
ing in component programming for large-scale embedded
systems, in the link between simulation tools and com-
piler tools, in languages for describing the system and its

environment, integrated tools for both compilation and
simulation of more general models of communication and
coordination, and so forth. The impact of such unifying
methodologies will depend on the extent to which it will be
possible to maintain the high degree of predictability and
verifiability of system behavior that is the strength of the
classic synchronous world.

List of Published Papers

This special issue features five very interesting papers. The
first paper, “Lutin: a language for specifying and executing
reactive scenarios,” is by P. Raymond et al. It introduces
the Lutin language, which targets the description and the
execution of constrained random scenarios for reactive
systems. It does so by allowing the user to express, in a Lustre-
like dataflow style, constraints on input/output relations. The
language constructs are inspired by regular expressions and
process algebra.

The second paper, “Compilation and worst-case reaction
time analysis for multithreaded Esterel processing,” is by
R. Von Hanxleden et al. It presents the compiling method
used for Esterel programs onto the Kiel Esterel Processor
(KEP), a multithreaded reactive architecture equipped with
a dedicated instruction set to handle the Esterel features. On
top of providing very efficient code, it is predictable, which
allows the computation of the Worst Case Reaction Time
(WCRT) of Esterel programs, an essential feature for real-
time systems.



2 EURASIP Journal on Embedded Systems

The third paper, “Formal analysis tools for the syn-
chronous aspect language Larissa,” is by D. Stauch. It presents
two tools for the formal analysis of the aspect language
Larissa, which extends the Argos synchronous language. The
first tool allows the combination of design-by-contract with
Larissa aspects. The second tool allows to weave aspects in
a less conflict-prone manner, therefore allowing the static
detection of remaining conflicts statically.

The fourth paper, “Embedded systems programming:
accessing databases from Esterel,” is by G. Luettgen and
D. White. It presents two Application Programming Inter-
faces (APIs) which enable the use of relational databases
inside Esterel programs. The first API is dedicated to database
requests that can be answered very fast, and hence that
complies to the synchrony hypothesis, while the second
API is dedicated to database requests that must be handled
asynchronously thanks to the external task mechanism of
Esterel.

The fifth and final paper, “SoC Design Approach using
Convertibility Verification,” is by R. Sinha et al. It addresses
the compositional design of systems on chip from verified
components, and particularly the issue of protocol converters
enabling the matching of different components. Convert-
ibility is verified using Kripke structures, model checking
of ACTL temporal logic, and a tableau-base converter
generation algorithm (Bamberg, Grenoble, and Paris, April
10th, 2009.).

Florence Maraninchi
Michael Mendler

Marc Pouzet
Alain Girault
Eric Rutten


	Editorial

