
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2008, Article ID 369040, 10 pages
doi:10.1155/2008/369040

Research Article
Exploiting Process Locality of Reference in
RTL Simulation Acceleration

Aric D. Blumer and Cameron D. Patterson

Virgina Polytechnic Institute and State University, Blacksburg, VA 24061, USA

Correspondence should be addressed to Aric D. Blumer, aric@vt.edu

Received 1 June 2007; Revised 5 October 2007; Accepted 4 December 2007

Recommended by Toomas Plaks

With the increased size and complexity of digital designs, the time required to simulate them has also increased. Traditional
simulation accelerators utilize FPGAs in a static configuration, but this paper presents an analysis of six register transfer level (RTL)
code bases showing that only a subset of the simulation processes is executing at any given time, a quality called executive locality
of reference. The efficiency of acceleration hardware can be improved when it is used as a process cache. Run-time adaptations are
made to ensure that acceleration resources are not wasted on idle processes, and these adaptations may be affected through process
migration between software and hardware. An implementation of an embedded, FPGA-based migration system is described, and
empirical data are obtained for use in mathematical and algorithmic modeling of more complex acceleration systems.

Copyright © 2008 A. D. Blumer and C. D. Patterson. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

The capacity of integrated circuits has increased significantly
in the last decades, following a trend known as “Moore’s
Law” [1]. The code bases describing these circuits have
likewise become larger, and design engineers are stressed by
the opposing requirements of short time to market and bug-
free silicon. Some industry observers estimate that every 18
months the complexity of digital designs increases by at least
a factor of ten [2], with verification time taking at least 70%
of the design cycle [3]. Compounding the problem are the
large, nonrecurring expenses of producing or correcting an
integrated circuit, which makes the goal of first-time working
silicon paramount. Critical to satisfying both time to market
and design quality is the speed at which circuits can be
simulated, but simulation speed is “impractical” or at best
“inadequate” [4, 5].

As in the software industry, the efforts to mitigate the
effect of growing hardware complexity have resulted in the
use of greater levels of abstraction in integrated circuit
descriptions. The most common level of abstraction used
for circuit descriptions is the register transfer level (RTL).
RTL code represents the behavior of an integrated circuit
through the use of high-level expressions and assignments

that infer logic gates and flip-flops in a fabricated chip. While
the synthesis of descriptions above RTL is improving, it is not
yet as efficient as human-coded RTL [6, 7], so RTL still forms
a necessary part of current design flows.

While simulating circuit descriptions at higher levels of
abstraction is faster than RTL simulation, another method of
improving verification times is the hardware acceleration of
RTL code. The traditional approach to hardware-based sim-
ulation acceleration is to use an array of field programmable
gate arrays (FPGAs) to emulate the device under test [8]. The
RTL code of the device is mapped to the FPGAs causing a
significant increase in execution speed. There are, however,
two drawbacks to this approach. First, the RTL code must
be mapped to the hardware before the simulation can begin.
Second, once the mapping is complete, it is static. Because it
is static, the speedup is directly related to the amount of the
design that fits into the acceleration hardware. For example,
if only one half of the design can be accelerated, Amdahl’s law
states that the maximum theoretical speedup is two. Enough
hardware must be purchased then to contain most if not all
of the device under test, but hardware acceleration systems
are expensive [8].

FPGA smay be configured many times with different fun-
ctionality, but they are designed to be statically configured.

2 EURASIP Journal on Embedded Systems

That is, the power-up or reset configuration of the FPGA
can be changed, but the configuration remains static while
the device is running. This is the reason that existing
accelerators statically map the design to the FPGA array.
It is possible, however, to change the configuration of an
FPGA at run time, and this process is aptly termed run-
time reconfiguration (RTR). A run-time reconfigurable logic
array behaves as a sandbox in which one can construct
and tear down structures as needed. By instantiating and
removing processors in the array during run time, users
can establish a dynamically adaptable parallel execution
system. The system can be tuned by migrating busy processes
into and idle processes out of the FPGA and establishing
communication routes between processes on demand. The
processors themselves can be reconfigured to support a
minimum set of operations required by a process, thus
reducing area usage in the FPGA. Area can also be reduced by
instantiating a shared functional unit that processes migrate
to and from when needed. Furthermore, certain time-
consuming or often-executed processes can be synthesized
directly to hardware for further speed and area efficiency.

This paper presents the research done in the acceleration
of RTL simulations using process migration between hard-
ware and software. Section 2 gives an overview of existing
acceleration methods and systems. Section 3 develops the
properties that RTL code must exhibit in order for run-time
mapping to acceleration hardware to be beneficial. Section 4
presents the results of profiling six sets of RTL code to deter-
mine if they have exploitable properties. Section 5 describes
an implementation of an embedded simulator that utilizes
process migration. Section 6 develops an algorithmic model
based on empirical measurements of the implementation of
Section 5. Section 7 concludes the paper.

2. EXISTING ACCELERATION TECHNOLOGY

Much progress has been made in the area of hardware
acceleration with several commercial offerings in existence.
Cadence Design Systems (Calif, USA) offers the Palladium
emulators [9] and the Xtreme Server [10], both being parts of
verification systems which can provide hardware acceleration
of designs as well as emulation. Palladium was acquired with
Quickturn Design Systems, Inc., and the Xtreme Server was
acquired with Verisity, Inc. While information about their
technology is sketchy, they do make it clear in their marketing
“datasheets” that the HDL code is partitioned into software
and hardware at compile time. State can be swapped from
hardware to software for debugging, but there is apparently
no run-time allocation of hardware resources occurring.

One publication by Quickturn [11], while not specifically
mentioning Palladium, describes a system to accelerate
event-driven simulations by providing low-overhead com-
munication between the behavioral portions and the synthe-
sized portions of the design. The system targets synthesizable
HDL code to FPGAs, and then partitions the result across an
array of FPGAs. The behavioral code is compiled for a local
microprocessor run alongside the FPGA array. Additionally,
the system synthesizes logic into the FPGAs to detect trigger
conditions for the simulator’s event loop, thus off-loading

event detection from the software. The mapping to the hard-
ware is still static.

EVE Corporation produces simulation accelerators in
their ZeBu (“zero bugs”) product line [12]. EVE differenti-
ates itself somewhat from its competitors by offering smaller
emulation systems such as the ZeBu-UF that plugs into a
PCI slot of a personal computer, but their flow is similar,
requiring a static synthesis of the design before simulation.

Another approach to hardware acceleration is to assem-
ble an array of simple processing elements in an FPGA,
and to schedule very long instruction words (VLIWs) to
execute the simulation as in the SimPLE system [13]. Each
processing element (PE) is a two-input lookup table (LUT)
with a two-level memory system. The first level memory is a
register file dedicated to each PE with a second-level spill-
over memory shared among a group of PEs. The PEs are
compiled into an FPGA which is controlled by a personal
computer host through a PCI bus. The host schedules VLIWs
to the FPGA, and each instruction word contains opcodes
and addresses for all the PEs. On every VLIW execution,
a single logic gate of the simulation is evaluated on each
PE. The design flow is to synthesize the HDL design into a
Verilog netlist, translate the netlist into VLIW instructions
using their SimPLE compiler, and schedule them into the
FPGA to execute the simulation, resulting in a gate-level
simulation rather than RTL-level. An EDA startup company,
Liga Systems, Inc., (Calif, USA) has been founded to take
advantage of this technology [14].

These systems all suffer from a common shortcoming,
albeit to varying degrees. The design must be compiled to
a gate-level netlist or to FPGA structures before it can be
simulated. In some cases, the mapping is to a higher abstrac-
tion level, thus shortening the synthesis time, but some prior
mapping is required. Furthermore, all the systems except the
SimPLE compiler map to the hardware resources statically.
That is, once the mapping to hardware is established, the
logic remains there throughout the life of the simulation.
If the hardware resources are significant, then this is an
acceptable solution, but if a limited amount of hardware
needs to be used efficiently, this can be problematic. The next
section presents a property of RTL code that can be exploited
to reduce the amount of hardware that is required.

3. EXECUTIVE LOCALITY OF REFERENCE

An RTL simulation consists of a group of processes that
mimic the behavior of parallel circuitry. Typical RTL simu-
lation methods view processes as a sequence of statements
that calculate the process outputs from the process inputs
when a trigger occurs. The inputs are generally expressed
as signal values in the right-hand side of expressions or
in branching conditionals. The trigger, which does not
necessarily contain the inputs, is expressed as a sensitivity
list, which in synchronous designs is often the rising edge
of a clock, but it may be a list of any number of events.
These events determine when a process is to be run, and
thus the simulation method is called event-driven simulation
[15]. When all the events at the current simulation time
are serviced, the simulator advances to the time of the next

A. D. Blumer and C. D. Patterson 3

event. Every advance marks the end of a simulation cycle
(abbreviated as “simcycle”). In synchronous designs, the
outputs of synchronous process can only change on a clock
edge, so cycle-based simulation can improve simulation times
by only executing processes on clock edges [16].

The two most common languages used for RTL coding
are Verilog and VHDL, and in both cases, during a simu-
lation cycle, the processes do not communicate while they
are executing. Rather, the simulator propagates outputs to
inputs between process executions [17, 18]. Furthermore, the
language standards specify that the active processes may be
executed in any order [17, 18], including simultaneous. It
is, Through this simultaneous execution of processes, hard-
ware accelerators provide a simulation speedup. Traditional
hardware accelerators place both idle and active processes
in the hardware with a static mapping, and the use of the
accelerator is less efficient as a result.

A simulator that seeks to map only active processes to
an accelerator at run time relies fundamentally on the ability
to delineate between active and idle processes. Locality of
reference is a term used to describe properties of data that
can be exploited by caches [19]. Temporal locality indicates
that an accessed data item will be accessed again in the
near future. Spatial locality indicates that items near an
accessed item will likely be accessed as well. These properties
are exploited by keeping often-accessed data items in a
cache along with their nearest neighbors. For executing
processes, there is executive locality of reference. Temporal
executive locality is the property that an executing process
will be executed again in the near future. Spatial executive
locality is the property that processes receiving input from
an executing process will also be executed. These properties
can be exploited by keeping active processes in a parallel
execution cache.

Spatial executive locality is easily determined in RTL
code using the “fanout” or dependency list of a process’s
output, a structure a simulator already maintains. Temporal
executive locality, however, is not quite so obvious. Take,
for instance, a synchronous design in which every process
is triggered by the rising edge of a clock. An unoptimized
cycle-based simulator will run every process at every rising
edge of the clock, so every process is always active. If,
however, no inputs to a process have changed from the
previous cycle, then the output of the process will not
change. Therefore, it does not need to be run again until
the inputs do change. During this period, the process is idle.
This is the fundamental characteristic on which temporal
locality depends, and detecting changes on the inputs can be
accomplished with an input monitor.

Input monitoring has been used to accelerate the soft-
ware execution of gate simulations (a technique often called
“clock suppression”) [20], but it has not been used to deter-
mine how hardware acceleration resources should be used.
Whether the inputs change or not is readily determinable by
a simulator, but the question remains whether activity of the
processes varies enough to be exploitable. Memory caches
are inefficient if all the cachable memory is always accessed.
Similarly, an execution cache is inefficient if all the processes
are always active. Even though the processes exhibit good

(1) always @B $check sig(21, 0, B);
(2) always @C $check sig(21, 1, C);
(3) always @ (posedge CLK);
(4) if ($shall run(21));
(5) A <= B + C;

Algorithm 1: Input monitor instrumentation.

temporal locality, the effect of process caching is diminished
in this case. But are RTL processes always active during a
simulation? The next section addresses that question.

4. PROFILING AND RESULTS

The RTL code of six Verilog designs from OpenCores [21]
was instrumented and profiled using Cadence’s LDV 5.1.
Since the source code for LDV’s ncsim is not available, every
input of the always blocks is monitored with a PLI function
call. The previous value of the inputs are kept, and the
process is run only if at least one of the inputs changes from
the previous cycle. A sequence of code demonstrating the
method is shown in Algorithm 1. Lines (1), (2), and (4) were
added for this study, but RTL code will require no modi-
fications if this functionality is part of the simulator itself.
The arguments to $check sig() are the process number,
the signal number for this process, and the signal’s value.
Each process is assigned a unique number, and multiple
instantiations of the same process are also delineated. If there
are any changes detected by $check sig() for a process,
then the next call of $shall run() returns 1. Otherwise, it
returns 0, and the code is not run. With this instrumentation,
the test benches of the designs were run to verify correct
functionality.

The code that was analyzed included a PCI bridge,
Ethernet MAC, memory controller, AC97 controller, ATA
disk controller, and a serial peripheral interface (SPI). They
represent a range of functionality and code sizes (shown
in Figure 1, excluding the test bench). Activity data were
recorded on a per-test basis, and the metrics used for
evaluation are the activity ratio (AR) of each process and the
number of lines of code in each process. The AR, expressed
as a percentage, is the ratio of the number of times a process
is executed to the number of times it was triggered. In other
words, it is the ratio of the number of times $shall run()
returns 1 to the number of times it is called. The AR,
however, does not show the entire picture. If the inactive
processes are short sequences of code, then the bulk of the
design is still active. Figure 2 shows a representative example
of the activity ratios and the line counts of the PCI controller
for a single test. These graphs show that a large number
of the processes are inactive for the test, a demonstration
of temporal executive locality. The graph of the line counts
per process shows that the idle processes do comprise a
significant part of the design. Note that this graph’s Y-axis
is limited to show the detail of the majority of the processes;

4 EURASIP Journal on Embedded Systems

0

5000

10000

15000

20000

25000

L
in

es

P
C

I

E
th

er
n

et

M
em

C
tr

l

A
C

97

A
TA SP

I
Figure 1: Sizes of profiled code.

50
100

A
R

%

0 50 100 150 200 250 300

Process number

15
30

L
in

es

0 50 100 150 200 250 300

Process number

Figure 2: Process activity ratios and line counts for the PCI
controller.

several are larger than 30 lines. It is inefficient to place these
idle processes into acceleration resources.

The number of lines of HDL code is not a precise
indication of the actual run-time size of a process, but it
does provide a good estimate. A simulation system would
likely use metrics such as compiled code size or actual process
run times. Nevertheless, using data such as that shown in
Figure 2, it can be determined what percentage of the total
lines of code are active during a test. Whether a process is
considered active or not is determined by an AR threshold.
For example, one can determine how many lines of code
there are in all the processes that have an AR above 10%.
This is called the activity footprint. The smaller the activity
footprint, the less hardware is required to accelerate it. The
activity footprints for a number of tests are shown in Figure 3
with AR thresholds of 1%, 10%, 20%, and 30%. A system can
vary the AR threshold until the activity footprint fits within
the acceleration hardware.

The PCI code shows a small activity footprint for the
seventeen tests shown. Tests 8 and 9 are PCI target tests,
and they show the smallest footprints of 17.9% with a
1% AR threshold. Therefore, for these tests, only enough
acceleration hardware is required to hold 17.9% of the
process code. Test 16, a bus transaction ordering test, shows
the largest footprint, exceeding 50% in all cases. For almost
all the tests, the 10% AR threshold yields a footprint less
than 50%. The Ethernet code has larger activity footprints
in general, but the footprint varies from approximately 29%

0%

50%

100%

A
F

P
C

I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Test

0%

50%

100%

A
F

E
th

er
n

et

0 1 2 3 4 5 6 7 8 9

Test

0%

50%

100%

A
F

M
em

C
tr

l

0 1 2 3 4 5 6 7

Test

0%

50%

100%

A
F

A
C

97
C

tr
l

0 1 2 3

Test

0%

50%

100%

A
F

A
TA

C
tr

l

0 1 2 3

Test

0%

50%

100%

A
F

SP
I

C
tr

l

0 1 2 3 4 5 6 7 8

Test

1%
10%

20%
30%

AR thresholds

Figure 3: Activity footprints for each design.

for Test 2 (a walking-ones register test) to 88% for Test 3 (a
register reset test) when the AR threshold is 10%. The higher
values for Test 3 are partly attributable to the fact that the
test is relatively short. Even so, the Ethernet code exhibits
footprints of approximately 50% or less for a large number
of the tests when the AR threshold is 10%.

The behavior of the memory controller is comparable
with the Ethernet controller. Its characteristics are largely
attributable to a single-state machine process that is 789 lines
of code and is always active. In contrast, the AC97 controller
has a small activity footprint of just over 13% regardless of
the AR threshold. A small percentage of its code handles data
flow which the majority of each test exercises.

The ATA and SPI code bases are relatively small with
less than 25 processes each. Despite the small code size, they
do demonstrate some exploitable locality. In the case of the
ATA controller, an AR threshold of 10% gives results that are
comparable to the other designs. However, the SPI device,

A. D. Blumer and C. D. Patterson 5

which is the smallest, has rather large footprints; but these
footprints are a percentage of a small code base. It is intuitive
that as designs get smaller, they exhibit less exploitable
locality because the design is not large enough to have
independent code that is idle during a test. These smaller
designs would generally not be candidates for hardware
acceleration, but acceleration may still prove useful for a large
number of small devices such as those found in a system on
a chip (SoC) design.

The amount of data gathered from the profiling is
significant, and only a portion is shown here. These results,
however, show that executive locality of reference does
exist in these OpenCores designs, whose code demonstrates
various functionality and code size. RTL code is normally
proprietary and unavailable to researchers for analysis, but
by inference, one would be expected executive locality of
reference to be a general rule rather than an exception
demonstrated by these particular designs. The remainder of
this paper shows how this locality can be exploited.

5. IMPLEMENTING PROCESSMIGRATION

A process migration system consists of communicating pro-
cesses, processors, and a communication infrastructure. If
the processes are to be run in either software or hardware
contexts, they must be in a form that is portable. A common
instruction set (CIS) serves that purpose. Processes compiled
to a CIS can then be executed in a system composed of
simple virtual machines (VMs) and real machines (RMs)
as shown in Figure 4. A set of processes begins running
entirely in VMs, one per process. The use of VMs allows
the system to begin execution immediately, and it monitors
the activity of the processes to determine which processes
should be migrated to the RMs or synthesized directly to
the hardware. The algorithms used to determine when and
where to migrate processes is left to future work. If there are
more active processes that do not fit in the hardware, they can
be compiled to native code in the VMs. Idle processes in VMs
will not be run and can therefore be left in CIS form until
they become active. Also note that the state of any process is
available at any time for debugging.

5.1. Implementation details

The infrastructure required to implement a complete sim-
ulator would likely require several man-years of effort; but
before such an investment should be made in both time and
expense, the benefits and drawbacks of such a system must
be understood. To this end, the simulation of a simple sort
is presented which not only demonstrates the feasibility of a
migratory simulator, but also provides the ability to measure
system performance for empirical and algorithmic modeling.
Modeling allows the impact of further developments to be
evaluated.

To this end, a process migration system was implemented
on an XUPV2P board developed for the Xilinx University
Program [22]. The board is populated with a Virtex-II Pro
FPGA (XC2VP30) and 512 megabytes of DDR memory.
The XC2VP30 contains two PowerPC 405 processors along

RM

RM

VM

RM

VMVM

Interconnect

Figure 4: The VMs and RMs execute processes collaboratively. The
RMs execute in parallel.

P
ro

gr
am

m
em

or
y Execution

unit

Register
file

Input Output

D
at

a
m

em
or

y

Figure 5: VM and RM block diagram.

with 30,816 logic cells and 136 block RAMs. Using the
Xilinx EDK version 7.1i, the design was instantiated with a
DDR memory controller, the on-chip peripheral Bus (OPB)
infrastructure, the internal configuration access port (ICAP),
an ICAP controller, and an array of processors. A VM-based
cycle simulator runs the RTL simulation on one PowerPC,
and it migrates the state of the VMs to and from the RMs as
needed.

The internal structure of both the VMs and RMs is shown
in Figure 5. Migration is the transfer of the state in program
memory, data memory, and the register file between VMs
and RMs using RTR. It is possible in a system with only RMs
and VMs to migrate state without RTR, but there are two
reasons for using it as follows. (1) The use of only RMs is the
first step to a complete migration system that also uses run-
time synthesis of processes directly to hardware. It is more
efficient to measure migration overheads first with a simpler
RM-only system before committing to further work. (2) The
additional logic required for migration without RTR would
increase the size of the infrastructure, reducing the number
of RMs and making timing closure more difficult.

The original RMs were fully pipelined using flip-flops
for the register file, but Virtex-IIs do not provide a way to
update flip-flop state on a per-RM basis. The GRESTORE
configuration command updates all flip-flops in the FPGA
including critical infrastructure [23]. A solution is to use
LUT-distributed RAM instead. LUT-based RAMs can be
updated through the ICAP on a per-machine basis, but they
cannot provide the single-in-double-out interface required

6 EURASIP Journal on Embedded Systems

RM area

Space
unusable
for RMs

Infrastructure
(DDR, OPB,

PLB, etc.)

PowerPC
PowerPC

RM area

Figure 6: Device floor plan of the migration system.

by full pipelining without doubling the memories. We
elected to execute an instruction every two clock cycles in a
nonpipelined fashion, and the absence of data hazards makes
the RMs smaller.

There is another limitation of LUT RAMs, however, that
must be considered. A frame is the minimum configuration
unit in an FPGA. In Virtex-II FPGAs, frames span the entire
height of the device [23, page 337], and some of the logic
used to load the frames is used by LUT RAMs during normal
operation. Hence, no LUT RAMs within a frame can be
read or written while the frame is being configured. This
poses a problem with the infrastructure logic such as the
DDR memory controller and the OPB bus interfaces that use
LUT RAMs: just reading the frames used by them during
run time causes a malfunction. Careful floorplanning is
required to ensure that the RMs do not share any frames
with this infrastructure. This issue does not affect the RMs
themselves, however, because migration to and from RMs
only occurs between simulation cycles when the RMs are
idle. Each RM is constrained to occupy a 16 × 16 slice
area, and they are floorplanned into columns with other
frames reserved entirely for infrastructure. After protective
floorplanning, 35 RMs fit with an 82% slice utilization.
The resource utilization, including the unusable area due to
protective floorplanning, is shown in Figure 6.

5.2. The simulator application

The even-odd transposition (EOT) sort [24] is a good
application to measure the performance of the simulator
because it allows the number of RMs and the number
of simulation cycles to be varied orthogonally while still
giving correct results. Each iteration of the EOT sort is a
swapping—or transposition—of the numbers to place the
greater number on the right. When executed in parallel, it

requires a maximum of n cycles to sort n numbers when there
are n/2 transpositions per cycle. The sort was implemented
in VHDL as an array of identical processes, each comparing
its own output with its left or right neighbor’s output on
alternating cycles. In an RTL simulator, this code would
be compiled into one process for each instance (barring
optimization), each running the same code.

The VHDL was translated into the CIS, which is exe-
cutable in either VMs or RMs. In this implementation, the
CIS is much like typical RISC assembly languages, but the
CIS is an abstraction layer that may vary across migration
system implementations depending on the possible migra-
tion destinations. To make the RMs as small as possible, they
have 16-bit instructions and 16-bit data. Each RM also has
eight 16-bit registers with some aliased to inputs and outputs.

The PowerPC in the Virtex-II Pro operates at 300 MHz
while the remaining logic operates at 100 MHz. The Pow-
erPC executes the VMs and the simulation infrastructure
with the “standalone” software package provided in Xilinx’s
EDK version 7.1i. Inputs and outputs of the RMs are
connected to the on-chip peripheral bus (OPB) through
a mailbox. Between simulation cycles, the simulator reads
the outputs of the RMs and writes their inputs, a process
called software connectivity. On the other hand, hardware
connectivity is the joining of RM outputs to RM inputs
directly in the FPGA. To measure the difference in overhead
between the two types, a number of tests were run with
hardware connectivity written into RTL code. A complete
system would instead implement these connections at run
time, and that behavior is modeled in Section 6.2.

5.3. Results for empirical modeling

The FPGA holds 35 RMs, so the EOT sort was run with 35
processes. Each process is instantiated in a VM connected to
its left and right neighbors and is assigned an initial random
value. These values are sorted in no more than 35 simulation
cycles, but longer runs with correct results were also done for
performance measurements.

To evaluate pure parallel performance, the speedups
with no migration were measured for both software and
hardware connectivity. Figure 7 shows the resulting plots.
Because hardware connectivity is currently manual, its
performance was measured with 0, 24, 30, 34, and 35 RMs,
and Marquardt-Levenberg curve fitting provides the other
points. The speedup is the run time without RMs (T0)
divided by the run time with RMs (Tr) [19]. One result
of executing code in VMs without native just-in-time (JIT)
compilation is a “super-linear” speedup because the RMs
execute their processes faster than the VMs. Not shown in
the plots due to scaling disparity is the speedup of 1,005
when using hardware connectivity with 35 RMs. To illustrate
how this occurs, consider a serial program that executes 10
tasks, each taking 1 second. If those tasks are parallelized
on 10 processors, they all execute in 1 second for a speedup
of 10. If, however, the parallel processors are ten times
faster than the serial processor, the tasks complete in 0.1
second for a speedup of 100. Note also that the relatively
low speedups on the left side of the plots demonstrate

A. D. Blumer and C. D. Patterson 7

0

5

10

15

20

25

30

Sp
ee

du
p

0 5 10 15 20 25 30 35

RMs

Curve fit
SW connectivity
HW connectivity

Figure 7: Speedup of HW and SW connectivity (35 simcycles).

Table 1: Modeling parameters.

Param. Description Value

C Simcycles Varies

P Processes Varies

r Number of RMs Varies

M Number of migrations Varies

tv VM execution time 83.13
μs

simcycle

tr RM execution time 17.03
μs

simcycle

to Simulator overhead 2.96
μs

simcycle

tm Migration overhead 6.02
ms

migration

Amdahl’s law, a behavior exhibited by all parallel systems,
and is not unique to this system. Figure 7 shows clearly
that hardware connectivity is a necessary improvement.
These direct connections could be accomplished with a
reconfigurable crossbar switch, network on a chip, or run-
time routing.

The time required to execute the sorting simulation with
software connectivity is

T(r) = C
(
to + rtr + [P − r]tv

)
+ rMtm, (1)

where to, tr , and so forth are described in Table 1. The
sort tests use C = P = 35, while r varies from 0 to 35;
and tr includes any RM-related overhead (including the
software connectivity accesses) plus any time spent waiting
for the RMs to complete. The CIS code consists of 24
instructions, but not all are executed each simulation cycle
due to branching. A pessimistic estimate of 50 instructions
per simulation cycle gives an RM execution time of 1
microsecond. Since the RMs are notified to execute a sim-

ulation cycle just before the PowerPC executes the VMs, the
RMs are expected to be finished before the VMs.

Migration overhead, tm, is affected by reconfiguration
time, and the Virtex-II architecture does not lend itself
well to quick reconfiguration. Each frame spans the entire
height of the FPGA, thus incurring large overheads for the
migration of small amounts of state. Additionally, every read
and write of configuration frames requires a “dummy” frame
to be read or written, and the ICAP has only an 8-bit interface
run at a lower clock rate [25, page 4]. Multiple frames must
be read and written to migrate state to a single RM, and
the unoptimized migration time per machine was measured
to exceed 220 milliseconds. However, the full-height span
of frames can be exploited. The RMs were floorplanned
into columns of 8, except for the rightmost column which
contains 11. For each RM, an RLOC constraint places
the program, data, and register file memories into the
same frames. This optimization reduces the number of
frames containing memories from 65 to 16. Sharing frames
among RMs also allows frame caching, which minimizes
ICAP accesses by reading and writing a shared frame only
once during a series of migrations. These optimizations
reduced the average migration time from 220 milliseconds
to 6.0 milliseconds, and the maximum time for a single
migration—which frame caching does not help—is 18.9
milliseconds.

Speedup is defined as S = T0/T(r), which can be mod-
eled as follows for hardware connectivity, where T0 is the
measured time without RMs:

S =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

T0

C
(
to + Ptv

) for r = 0,

T0

C
(
to + tr + [P − r]tv

)
+ rMtm

for 0 < r < P,

T0

Cto + rMtm
for r = P.

(2)

The hardware connectivity execution time is calculated
differently than software (1) because processes in RMs with
direct connections cause no overhead in the simulator.
Equation (2) is piecewise because there are no RM overheads
tr and tm when zero RMs are in use. For the middle region,
there is a single tr for the single RM that has hardware
connectivity on one side and software connectivity on the
other. The remaining RMs have only hardware connectivity.
For the final case, nothing is run in VMs, so there is only the
simulator and migration overhead.

As mentioned previously, the EOT sort gives correct
results for runs longer than 35 simulation cycles. Figure 8
shows speedup plots for 35, 1024, and 10240 simulation
cycles, including all migration overheads for one migration
per RM (M = 1), along with plots of (2). These simulation
lengths are reasonable based on the test benches of the
OpenCores code, which contain simulations ranging from
dozens to millions of simulation cycles per test. Larger
simcycle-to-migration ratios (SMRs) amortize the migration
overhead over a longer period of time, improving the
speedup. For small SMRs (e.g., 35 : 1), the migration time
exceeds the simulation run time, and the system exhibits a

8 EURASIP Journal on Embedded Systems

0

5

10

15

20

25

Sp
ee

du
p

0 5 10 15 20 25 30 35

RMs

35 simycles, actual

1024 simycles, actual

10240 simycles, actual
Empirical model

25 30 35

40

80

120

Full vertical

Figure 8: HW connectivity speedups compared to the empirical
model.

0

10

20

30

40

50

60

Sp
ee

du
p

0 5 10 15 20 25 30 35

RMs

tv = 83.13 μs
tv = 40 μs

tv = 17.03 μs (tr)
tv = 10 μs

Figure 9: Modeled effect of tv on speedup (10 k simcycles).

speedup less than one. Using the measured speedups with
(2), the Marquardt-Levenberg curve fitting algorithm solves
for tr , tv, and tm as shown in Table 1. to was calculated directly
from the third case of (2) when M = 0.

No complete system would run CIS code in VMs without
compiling it to native code, so (2) is used to explore the effect
of VM-related run times (tv). Figure 9 shows that speedups
of 15 are possible even if VM execution is faster than RM
execution (tv < tr). Since tv includes the time to execute
a process and to update process inputs and outputs, it is
unlikely to be less than tr .

6. ALGORITHMICMODELING

A mathematical model based upon the empirical data ob-
tained in Section 5 is useful when simplifying assumptions
are made about the behavior of the system. Since an im-
plementation that can simulate larger code bases would
require a significant investment in infrastructure such as
JIT compilers and run-time routers, a more complex model
is required to better understand the behavior of complete
systems. Some behavior, such as the effect of frame caching, is
difficult to model with mathematical formulas. This section
explains an algorithmic model based on (2) that is executed
as a C program, allowing fixed parameters to be replaced
with functions. To ensure that the model reflects the behavior
of the system, the graph of Figure 8 was reproduced using
the model, and the average percent error for the 1024- and
10240-simcycle plots from the measured speedups is less
than 1%. For the 35 simulation cycle case, the average percent
error is 2.1%. The subsequent modeling scenarios assume the
pessimistic value of tv = 16 microseconds and a migration
time of tm = 12.5 milliseconds (the average of 6 milliseconds
and 18.9 milliseconds from Table 1).

6.1. Active process ratios

In Section 4, ARs of six designs were measured to demon-
strate exploitable executive locality of reference. It is the
activity ratio of the processes that identifies the best opportu-
nity for acceleration, and an AR threshold determines which
processes are to be migrated to the acceleration hardware.
The ARs were measured on a per-process basis in the six
designs, but for the purposes of modeling, process activity
is specified as two sets of processes, those with a 100% AR,
and those with a 0% AR. The ratio of the active processes
to the total number of processes is the active process ratio
(APR), and if the processes are assumed to be the same size,
it is equivalent to the activity footprint. For example, an APR
of 60% means that 60% of the processes are always active,
and 40% of the processes are never active. In the C model,
process activity is determined through a call to a function
which returns zero for inactive processes and non-zero for
active processes for every simulation cycle.

APRs of 17 : 35 and 30 : 35 are shown in Figure 10 with
an APR of 1 : 1 as a baseline. This single graph demonstrates
the benefit to speedup by exploiting executive locality. It
shows that the lower the APR, the less acceleration hardware
is required. The maximum speedup for each plot also shows
that overhead is reduced because inactive processes are not
migrated to hardware.

6.2. Route calculation

Another consideration in a migration system is the effect
of establishing interconnect. It is difficult to estimate the
time required to build connections between RMs at run time
without a full implementation, but the graph of Figure 11
shows that if the time is long enough, the speedup can be
less than one. This graph shows the route times in terms of

A. D. Blumer and C. D. Patterson 9

0

5

10

15

20

25

Sp
ee

du
p

0 5 10 15 20 25 30 35

RMs
APR 1:1
APR 17:35
APR 30:35

Figure 10: Modeled effect of APR on speedup.

0

2

4

6

8

10

12

14

Sp
ee

du
p

0 5 10 15 20 25 30 35

RMs

0
100tv
1000tv

10000tv
100000tv

Figure 11: Serial route calculation (10 k simcycles).

tv because the processor speed, which is reflected in tv, has a
direct effect on the route calculation time.

A possible optimization is to continue the simulation
using software connectivity while the routes between RMs
are calculated in parallel by another processor. (The imple-
mentation of Section 5.1 contains two PowerPC processors.)
In the algorithmic model, the behavior is modeled by keeping
track of the amount of time left until a route is complete.
While the time remaining to complete a route is greater
than zero, the model uses software connectivity. When the
timer reaches zero, the model uses hardware connectivity.
The results of such an algorithm are shown in Figure 12.
The knees in the plots of the shorter simulations are due to

1

2

3

4

5

6

7

8

9

Sp
ee

du
p

0 5 10 15 20 25 30 35

RMs

10 k simcycles
20 k simcycles
30 k simcycles
40 k simcycles

50 k simcycles
60 k simcycles
70 k simcycles
80 k simcycles

Figure 12: Parallel route calculation (10000 tv).

insufficient time to complete the parallel route calculation.
That is, the simulation ends before the route calculations
are complete. Longer simulations allow the parallel route
calculation to complete, and they benefit from the faster
hardware connectivity.

7. CONCLUSION

We have shown that the RTL code of various designs
demonstrates executive locality of reference which can be
exploited by a process cache. The larger designs exhibit
activity footprints below 50% in many cases and less than
75% in almost all cases. The smaller designs—SPI and ATA
in particular—do not exhibit as much inactivity, but smaller
designs are also less likely to require simulation acceleration.
Traditional RTL accelerators require a mapping of the RTL
code to the hardware prior to simulation, and that mapping
remains static. Since many processes are idle, and since activ-
ity can change during simulation prior, static mapping to
hardware does not maximize efficiency. Hardware/software
process migration is one means of implementing a process
cache to ensure that only active processes are accelerated.

Existing FPGAs, however, are not designed to be effi-
ciently run-time reconfigurable; nevertheless an implemen-
tation using an existing FPGA allows us to determine and
model the hurdles to efficient processes migration. The
largest hurdles are the migration time due to reconfiguration
and, potentially, the building of run-time routes. As run-
time reconfiguration becomes more prevalent, and as the
FPGA architectures are developed to improve reconfig-
uration performance, the migration time is expected to
decrease. The potential bottleneck of run-time routing may
also be overcome through the use of on-chip networks
where communication occurs during simulator overheads.

10 EURASIP Journal on Embedded Systems

Nevertheless, speedups of greater than ten are exhibited
in many of the modeled scenarios. Further work is also
warranted in comparing the trade-offs between a large
number of small, communicating processors, and run-time
synthesis of processes.

ACKNOWLEDGMENT

This work has been graciously funded through Virginia Tech
College of Engineering and Bradley Fellowships.

REFERENCES

[1] Intel Corporation, “Moore’s law: raising the bar,” 2005, ftp://
download.intel.com/museum/Moores Law/Printed Mater-
ials/Moores Law Backgrounder.pdf.

[2] S. Kakkar, “Proactive approach needed for verification crisis,”
EETimes, April 2004.

[3] A. Raynaud, “The new gate count: what is verification’s real
cost?” Electronic Design, October 2003.

[4] B. Bower, “The ‘what and why’ of TLM,” EETimes, March
2006.

[5] P. Varhol, “Is software the new hardware?” EETimes, August
2006.

[6] R. Goering, “Tools ease transaction-level modeling,” EETimes,
January 2006.

[7] C. Chang, J. Wawrzynek, and R. W. Brodersen, “BEE2: a high-
end reconfigurable computing system,” IEEE Design & Test of
Computers, vol. 22, no. 2, pp. 114–125, 2005.

[8] G. D. Peterson, “Evaluating simulation acceleration tech-
niques,” in Proceedings of the Enabling Technology for Simula-
tion Science V, vol. 4367 of Proceedings of SPIE, pp. 127–136,
Orlando, Fla, USA, April 2001.

[9] Cadence Design Systems, “Palladium accelerator/emulator,”
2003, http://www.cadence.com/products/functional ver/pall-
adium/index.aspx.

[10] Cadence Design Systems, “Xtreme server,” 2005, http://www
.cadence.co.in/products/functional ver/xtreme server/index
.aspx.

[11] J. Bauer, M. Bershteyn, I. Kaplan, and P. Vyedin, “A recon-
figurable logic machine for fast event-driven simulation,” in
Proceedings of 35th Design Automation Conference (DAC ’98),
pp. 668–671, San Francico, Calif, USA, June 1998.

[12] EVE Corporation, http://www.eve-team.com/.
[13] S. Cadambi, C. S. Mulpuri, and P. N. Ashar, “A fast,

inexpensive and scalable hardware acceleration technique
for functional simulation,” in Proceedings of 39th Design
Automation Conference (DAC ’02), pp. 570–575, ACM Press,
New Orleans, La, USA, June 2002.

[14] R. Goering, “Startup liga promises to rev simulation,”
EETimes, 2006.

[15] R. D. Smith, Simulation Article, Encyclopedia of Computer
Science, Nature Publishing, New York, NY, USA, 4th edition,
2000.

[16] D. Döhler, K. Hering, and W. G. Spruth, “Cycle-based
simulation on loosely-coupled systems,” in Proceedings of the
11th Annual IEEE International ASIC Conference, pp. 301–305,
Rochester, NY, USA, September 1998.

[17] IEEE Computer Society, “IEEE Standard VHDL Language
Reference Manual (Std 1076-2002),” Institute of Electrical and
Electronics Engineers, 2002.

[18] IEEE Computer Society, “IEEE Standard for Verilog� Hard-
ware Description Language (Std 1364-2005),” Institute of
Electrical and Electronics Engineers, 2006.

[19] J. Hennesey and D. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann, San Francisco,
Calif, USA, 1990.

[20] R. Razdan, G. P. Bischoff, and E. G. Ulrich, “Clock suppression
techniques for synchronous circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 12, no. 10, pp. 1547–1556, 1993.

[21] Opencores.org, 2006, http://www.opencores.org/.
[22] XilinxInc, “Xilinx University Program: Xilinx XUP Virtex-

II Pro Development System,” 2005, http://www.xilinx.com/
univ/xupv2p.html.

[23] XilinxInc, “Virtex-II Pro and Virtex-II Pro X FPGA User
Guide,” Xilinx, Inc., March 2005.

[24] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction
to Parallel Computing, Addison Wesley, New York, NY, USA,
2nd edition, 2003.

[25] D. R. Curd, “Xapp660: dynamic reconfiguration of Rocke-
tIO MGT attributes,” February 2004, http://www.xilinx.com/
support/documentation/application notes/xapp660.pdf.

	1. INTRODUCTION
	2. EXISTING ACCELERATION TECHNOLOGY
	3. EXECUTIVE LOCALITY OF REFERENCE
	4. PROFILING AND RESULTS
	5. IMPLEMENTING PROCESS MIGRATION
	5.1. Implementation details
	5.2. The simulator application
	5.3. Results for empiricalmodeling

	6. ALGORITHMIC MODELING
	6.1. Active process ratios
	6.2. Route calculation

	7. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

