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1. INTRODUCTION

Aspect-oriented programming (AOP) offers programming
constructs to a base language, which aim at encapsulating
crosscutting concerns. These are concerns that cannot be
properly captured into a module by the decomposition
offered by the base language. AOP languages express cross-
cutting concerns in aspects, and weave (i.e., compile) them
in the base program with an aspect weaver. All the aspect
extensions of existing languages (like AspectJ [1]) share two
notions: pointcuts and advice. A pointcut describes, with a
general property, the program points (called join points),
where the aspect should intervene (e.g., all methods of the
class X, or all methods whose names begin with set). The
advice specifies what has to be done at each join point
(e.g., execute a piece of code before the normal code of the
method).

Reactive systems are control systems that are in con-
stant interaction with their environment. They are often
programmed in dedicated languages, which must fulfill
specific requirements. First, reactive systems often fulfill
safety-critical functions, and thus require the use of formal
methods in their development. Programming languages for
them must thus be formally defined, and have a connection
to verification tools. Furthermore, they usually fulfill several

tasks in parallel, and programming languages must thus offer
an explicit parallel composition of components.

The family of synchronous languages are such dedicated
languages, which are very successfully used to program
safety-critical reactive systems, for example, control systems
in airplanes or nuclear power stations. Synchronous lan-
guages are all based on the same semantic principle, the
synchrony hypothesis, which divides time into instants and
assumes that reactions of parallel components are atomic,
that is, that outputs are emitted as soon as the inputs are
received. A second principle is the synchronous broadcast,
which allows outputs of a component to be read by other
components in parallel. These principles allow to develop
synchronous languages that are very expressive and have a
clear and simple semantics with strong semantic properties.
The family of synchronous languages contains languages
with different styles, for example, the dataflow language
Lustre [2] and the imperative language Esterel [3]. The
simplest language of the family is Argos [4], a hierarchical
automata language, based on Mealy machines, which can be
composed by different operators.

There are also crosscutting concerns in synchronous
programs, which cannot be encapsulated with the parallel
composition and other operators of synchronous languages.
They are, however, different from crosscutting concerns



2 EURASIP Journal on Embedded Systems

in programs written in general-purpose languages because
they crosscut the parallel structure of reactive programs.
Therefore, and because they are usually not formally defined,
existing aspect languages cannot be applied to reactive
systems. Thus we developed an aspect-oriented extension for
Argos, called Larissa [5].

When designing Larissa, we took great care to give it a
clean and simple semantics and strong semantic properties,
as they are common in synchronous languages. Thus point-
cuts are specified as synchronous observers [6], that is, Argos
programs that, via the synchronous broadcast, observe the
inputs and the outputs of the base program, and compute
a safety property on them. This is a semantic and at the
same time very expressive mechanism. Larissa has different
kinds of advice, and all are specified depending only on the
interface of the base program, but not on its implementation.
Due to this semantic definition, Larissa aspects preserve the
equivalence of base programs.

Having a clean and simple semantics has the advantage
of making programs easier to understand for programmers.
Furthermore, it allows the semantic analysis of programs. In
this paper, we present two tools for semantic analysis.

The first combines Larissa aspects with another success-
ful programming technique, design-by-contract [7], which
has been originally introduced for object-oriented systems.
There, a method is specified by a contract, which consists
of an assumption clause and a guarantee clause. It fulfills its
contract if after its execution, the guarantee holds whenever
the assumption was true when the program was called.

Contracts have been adapted to reactive systems by
[8], where assumptions and guarantees are expressed as
observers, in the same way as Larissa pointcuts. Because
reactive systems constantly receive inputs and emit outputs,
it seems natural to let the assumption observer restrict the
inputs, and let the guarantee observer ensure properties on
the outputs.

Aspect-oriented programming and design-by-contract
can hardly be used concurrently: when an aspect is applied to
a method, it changes its semantics, such that its contract is no
longer valid. The approach we present solves this problem for
Argos and Larissa by generating a new contract that is valid
after the application of the aspect. We show how to apply an
aspect asp to a contract C and derive a new contract C′, such
that for any program P which fulfills C, P with asp fulfills C′.
Although an observer is also an Argos program, we cannot
directly apply aspects because it has a different interface
where the outputs of the program have become inputs. We
therefore transform the observers first into nondeterministic
Argos programs, which produce exactly the execution traces
the observer accepted, and apply the aspect to these. A second
difficulty comes from the fact that we must treat assumption
and guarantee differently to preserve the correctness of our
algorithm. We demonstrate this approach on an example
which models a tramway door controller.

The second semantic analysis we present treats interfer-
ence between aspects. Applying several aspects to the same
program may lead to unintended results because of conflicts
between the aspects. We say that two aspects interfere when

weaving them in different orders does not yield the same
result.

Whether two aspects interfere depends on the way they
are woven in the program. We distinguish sequential and
joint weaving. Sequential weaving means weaving the aspects
one by one, where the next aspect is woven in the result of
the previous weaving. Argos operators are defined that way,
and also Larissa aspects. On the other hand, joint weaving
means weaving several aspects together, into the same base
program. AspectJ is defined that way: its semantics is not
defined as a transformation of the base program, but as
injecting behavior in the running program, including other
aspects.

Sequential weaving often causes interference between
aspects because the second aspects is applied to the first,
but not the other way round. Therefore, we present a joint
weaving mechanism for Larissa, which applies aspects to
the same base program, and thus reduces interferences. As
opposed to AspectJ, however, all jointly woven aspects only
affect the base program, but not each other. Therefore, we
still need sequential weaving, in cases where one aspect needs
to affect another.

Joint weaving removes many cases of interference, which
we also demonstrate with an example. However, interference
is unavoidable when two aspects want to modify the
base program in the same point. Such cases should be
made explicit to the programmer. We therefore present an
interference analysis for jointly woven aspects, that can either
determine that two aspects do not interfere for a given base
program, or that they never interfere for any base program.
In the first case, we apply both pointcuts to the base program
and check if there are common join points. In the second
case, it is sufficient to perform a parallel product of the
two pointcuts. All these steps must be performed during the
compilation process anyway, and thus add no additional cost.

Both tools that we present in this paper are only possible
because of the semantic definition of Larissa. Thus the
contract weaving can apply aspects to programs whose
implementation is unknown. The interference analysis also
depends on the semantic definition of Larissa, notably on
the precise description of join points with observers, which
makes it possible to determine statically the points where
several aspects want to introduce their advice.

The structure of the paper is as follows: Section 2
introduces Larissa and Argos, Section 3 shows how to weave
contracts in aspects, and Section 4 contains an example for
this. Next, Section 5 explains the interference analysis, using
a second example. Section 6 discusses related work, and
Section 7 concludes. Work on the combination of contracts
and aspects has been published in [9], and work on aspect
interference in [10].

2. ARGOS AND LARISSA

This section presents a restriction of the Argos language
[4], and the Larissa extension [5]. Argos is defined as a set
of operators on complete and deterministic input/output
automata communicating via Boolean signals. The semantics
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of an Argos program is given as a trace semantics that is
common to a wide variety of reactive languages.

2.1. Traces and trace semantics

Definition 1 (Traces). Let I, O be finite sets of Boolean
input and output variables representing signals from and
to the environment. An input trace, it, is a function: it :
N→[I→{true,false}]. An output trace, ot, is a function:
ot : N→[O→{true,false}]. One denotes by InputTraces
(resp., OutputTraces) the set of all input (resp., output)
traces. A pair (it, ot) of input and output traces (i/o-traces for
short) provides the valuations of every input and output at
each instant n ∈ N . One denotes by it(n)[i] (resp., ot(n)[o])
the value of the input i ∈ I (resp., the output o ∈ O) at the
instant n ∈ N .

A set of pairs of i/o-traces S = {(it, ot) | it ∈ Input
Traces ∧ ot ∈ OutputTraces} is deterministic if and only if
for all (it, ot), (it′, ot′) ∈ S·(it = it′) ⇒ (ot = ot′), and
it is complete if and only if for all it ∈ InputTraces·∃ot ∈
OutputTraces·(it, ot) ∈ S.

A set of traces is a way to define the semantics of
an Argos program P, given its inputs and outputs. From
the above definitions, a program P is deterministic if from
the same sequence of inputs it always computes the same
sequence of outputs. It is complete whenever it allows
every sequence of every eligible valuations of inputs to
be computed. Determinism is related to the fact that the
program is indeed written with a programming language
(which has deterministic execution); completeness is an
intrinsic property of the program that has to react forever,
to every possible inputs without any blocking.

2.2. Argos

The core of Argos is made of input/output automata,
the synchronous product, and the encapsulation. The syn-
chronous product allows to put automata in parallel which
synchronize on their common inputs, and the encapsulation
is the operator that expresses the communication between
automata. The semantics of an automaton is defined by a
set of traces, and the semantics of the operators is given by
translating expressions into flat automata.

Definition 2 (Automaton). An automaton A is a tuple A =
(Q, sinit,I,O,T ), where Q is the set of states, sinit ∈ Q is the
initial state, I and O are the sets of Boolean input and output
variables, respectively, T ⊆ Q×Bool(I)× 2O ×Q is the set
of transitions. Bool(I) denotes the set of Boolean formulas
with variables in I. For t = (s, �,O, s′) ∈ T , s, s′ ∈ Q are
the source and target states, � ∈ Bool(I) is the triggering
condition of the transition, and O ⊆ O is the set of outputs
emitted whenever the transition is triggered. Without loss
of generality, we consider that automata only have complete
monomials as input part of the transition labels.

The semantics of an automaton A = (Q, sinit,I,O,T ) is
given in terms of a set of pairs of i/o-traces. This set is built

using the following functions:

S stepA : Q × InputTraces×N −→ 2Q,

O stepA : Q × InputTraces×N \ {0} −→ 2(2O),
(1)

where S step(s, it,n) returns the set of states that are
reachable from state s after performing n steps with the input
trace it; O step(s, it,n) contains the different combinations
of outputs that can be emitted at step n after executing it from
s:

n = 0 : S stepA(s, it,n) = {s},
n > 0 : s′ ∈ S stepA(s, it,n), O ∈ O stepA(s, it,n),

where s′′ ∈ S stepA(s, it,n− 1)

∧ ∃(s′′, �,O, s′) ∈ T

∧ � has value true for it(n− 1).

(2)

Note that if the automaton is deterministic and complete,
S step and O step always return a set with a single element.

We denote Traces(A) the set of all traces built following
this scheme: Traces(A) defines the semantics of A. The
automaton A is said to be deterministic (resp., complete) if
and only if its set of traces Traces(A) is deterministic (resp.,
complete) (see Definition 1). Two automata A1, A2 are
trace-equivalent, noted A1∼A2, if and only if Traces(A1) =
Traces(A2). We assume that Argos programs are determin-
istic and complete, as these are important properties for
reactive systems.

Definition 3 (synchronous product). Let A1 =
(Q1, sinit1,I1,O1,T1) and A2 = (Q2, sinit2,I2,O2,T2) be
automata. The synchronous product of A1 and A2 is the
automaton A1‖A2 = (Q1 × Q2, (sinit1, sinit2),I1 ∪ I2,O1 ∪
O2,T ), where T is defined by

(
s1, �1,O1, s′1

) ∈ T1 ∧
(
s2, �2,O2, s′2

) ∈ T2

⇐⇒ ((
s1, s2

)
, �1 ∧ �2,O1 ∪O2,

(
s′1, s′2

)) ∈ T .
(3)

The synchronous product of automata is both commu-
tative and associative, and it is easy to show that it preserves
both determinism and completeness.

Definition 4 (Encapsulation). Let A = (Q, sinit,I,O,T ) be
an automaton and Γ ⊆ I∪O be a set of inputs and outputs of
A. The encapsulation of A w.r.t. Γ is the automaton A \ Γ =
(Q, sinit,I \ Γ,O \ Γ,T ′), where T ′ is defined by

(
s, �,O, s′

) ∈ T ∧ �+ ∩ Γ ⊆ O ∧ �− ∩ Γ∩O

= ∅⇐⇒ (
s,∃Γ·�,O \ Γ, s′

) ∈ T ′,
(4)

where �+ is the set of variables that appear as positive
elements in the monomial � (i.e., �+ = {x ∈ I | (x∧�) = �}).
�− is the set of variables that appear as negative elements in
the monomial l (i.e., �− = {x ∈ I | (x ∧ �) = �}). ∃Γ·� is
then defined as ∃Γ·� = ∧a∈�+\Γa∧

∧
a∈�−\Γa.

Intuitively, a transition (s, �,O, s′) ∈ T is still present in
the result of the encapsulation operation if its label satisfies a
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local criterion made of two parts: �+ ∩ Γ ⊆ O means that a
local variable which needs to be true has to be emitted by the
same transition; �− ∩ Γ∩O = ∅ means that a local variable
that needs to be false should not be emitted in the transition.
If the label of a transition satisfies this criterion, then the
names of the encapsulated variables are hidden, both in the
input part and in the output part. This is expressed by ∃Γ·�
for the input part, and by O\Γ for the output part. In general,
the encapsulation operation does not preserve determinism
nor completeness. This is related to the so-called “causality”
problem intrinsic to synchronous languages (see, e.g., [3]).

2.2.1. An example

Figure 1(a) shows a 3-bits counter. Dashed lines denote
parallel compositions and the overall box denotes the encap-
sulation of the three parallel components, hiding signals b
and c. The idea is the following: the first component on the
right receives a from the environment, and sends b to the
second one, every two a’s. Similarly, the second one sends c
to the third one, every two b’s. b and c are the carry signals.
The global system has a as input and d as output; it counts
a’s modulo 8, and emits d every 8 a’s. Applying the semantics
of the operator (first the product of the three automata, then
the encapsulation) yields the simple flat automaton with 8
states (Figure 1(b)).

2.3. Larissa

Argos operators are already powerful. However, there are
cases in which they are not sufficient to modularize all
concerns of a program: a small modification of the global
program’s behavior may require that we modify all parallel
components, in a way that is not expressible with the existing
operators.

The goal of aspects being to specify such cross-cutting
modifications, we proposed an aspect-oriented extension for
Argos [5], which allows the modularization of a number of
recurrent problems in reactive programs, like the reinitial-
ization. This leads to the definition of a new operator (the
aspect weaving operator), which preserves determinism and
completeness of programs, as well as semantic equivalence
between programs. Similar to aspects in other languages, a
Larissa aspect consists of a pointcut, which selects a set of
join points, and an advice, which modifies these join points.

2.3.1. Join point selection

To preserve semantical equivalence, pointcuts in Larissa
are not expressed in terms of the internal structure of
the base program (as, e.g., state names), but refer to the
observable behavior of the program only, that is, its inputs
and outputs. In the family of synchronous languages, where
the communication between parallel components is the
synchronous broadcast, observers [6] are a powerful and
well-understood mechanism which may be used to describe
pointcuts. Indeed, an observer is a program that may observe
the inputs and the outputs of the base program, without
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c b a
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Figure 1: A 3-bits counter. Notations: in each automaton, the
initial state is denoted with a little arrow; the label on transitions
are expressed by “triggering condition/emittedoutputs,”
for example, the transition labelled by “a/b” is triggered when a is
true and emits b.

A

a

b

B b/c

(a) Base program

c/JP

(b) Pointcut

Figure 2: Example pointcut.

modifying its behavior, and computes a safety property (in
the sense of safety/liveness properties as defined in [11]).

Therefore, observers are well suited to express pointcuts.
A pointcut is thus an observer which selects a set of join point
transitions by emitting a single output JP, the join point signal.
A transition T in a program P is selected as a join point
transition when in the concurrent execution of P and the
pointcut, JP is emitted when T is taken.

Technically, we perform a synchronous product between
the program and the pointcut and select those transitions
in the product which emit JP. However, if we simply put a
program P and an observer PC in parallel, P’s outputs O will
become synchronization signals between them, as they are
also inputs of PC. They will be encapsulated, and are thus
no longer emitted by the product. We avoid this problem
by introducing a new output o′ for each output o of P : o′

will be used for the synchronization with PC, and o will
still be visible as an output. First, we transform P into P′

and PC into PC′, where for all o ∈ O, o is replaced by
o′. Second, we duplicate each output of P by putting P in
parallel with one single-state automaton per output o defined
by duplo = ({q}, q, {o′}, {o}, {(q, o′, o, q)}). The complete
product, where O is noted {o1, . . . , on}, is given by

P (P, PC) = (P′∥∥PC′
∥
∥duplo1‖ · · · ‖duplon

) \ {o′1, . . . , o′n
}
.

(5)

The join point transitions are those transitions of P (P, PC)
that emit JP. Figure 2 illustrates the pointcut mechanism.
The pointcut (b) specifies any transition which emits c: in
base program (a), the loop transition in state B is selected as
a join point transition.

2.3.2. Specifying the advice

In aspect-oriented languages, the advice expresses the mod-
ification applied to the base program. In Larissa, we define
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Target state T

�2/O2, JP

�2/Oins

�1/Oins

�1/O1, JP

σ1

σn

(a) toInit aspect

�2/O2, JP

�1/Oins

�1/O1, JP

σ1 σ1

σn

Target state T

σn

Target state T

�2/Oins

(b) toCurrent aspect

Figure 3: Schematic toInit and toCurrent aspects. Advice transitions are in bold, join point transitions are dotted.

two types of advice: in the first type, an advice replaces the
join point transitions with advice transitions pointing to an
existing target states; in the second type, an advice introduces
an Argos program between the source state of the join point
transition and an existing target state. In both cases, target
states have to be specified without referring explicitly to state
names.

An advice adv has two ways of specifying the target state
T among the existing states of the base program P. T is the
state of P that would be reached by executing a finite input
trace from either the initial state of P, adv is then called toInit
advice, or from the source state of the join point transition,
adv is then called toCurrent advice. As the base program is
deterministic and complete, executing an input trace from
any of its states defines exactly one state.

The advice weaving operator �JPadv weaves a piece of
advice adv in a program.

Advice transitions

The first type of advice consists in replacing each join point
transition with an advice transition. Once the target state
is specified by a finite input trace σ = σ1 · · · σn, the only
missing information is the label of these new transitions.
We do not change the input part of the label, so as to
keep the woven automaton deterministic and complete, but
we replace the output part by some advice outputs Oadv.
These are the same for every advice transition, and are thus
specified in the aspect. Advice transitions are illustrated in
Figure 3.

Formal definition

We only define toInit advice formally. A formal definition of
the complete Larissa language can be found in [12, Chapter
4].

Definition 5 (toInit advice weaving). Let A = (Q, sinit,I,
O,T ) be a deterministic and complete automaton and
adv = (Oadv, toInit, σ) a piece of advice, with σ : [0, . . . ,
�σ]→[I→{true, false}] a finite input trace of length �σ+1. The
advice weaving operator, �JP , weaves asp on A and returns
the automaton�JPadv = (Q, sinit,I,O∪Oadv,T ′), where T ′

is defined as follows, with {targ} = S stepA(sinit, σ , �σ) being
the new target state:

((
s, �,O, s′

) ∈ T ∧ JP /∈O
)(
s, �,O, s′

) ∈ T ′, (6)
((
s, �,O, s′

) ∈ T ∧ JP ∈ O
)
(s, �,Oadv, targ) ∈ T ′. (7)

Transitions (6) are not join point transitions and are left
unchanged. Transitions (7) are the join point transitions,
their final state targ is specified by the finite input trace σ .
S stepA (which has been naturally extended to finite input
traces) executes the trace during �σ steps, from the initial
state of A.

Advice programs

It is sometimes not sufficient to modify single transitions,
that is, to jump to another location in the automaton in
only one step. It may be necessary to execute arbitrary code
when an aspect is activated. In these cases, we can insert an
automaton between the join point and the target state.

Therefore, we use an inserted automaton Ains that can
terminate. Since Argos has no built-in notion of termination,
the programmer of the aspect has to identify a final state F
(denoted by filled black circles in the figures).

We first specify a target state T as explained above. Then,
for every T , a copy of the automaton Ains is inserted, which
means: (1) replace every join point transition J with target
state T by a transition to the initial state I of this instance
of Ains. As for advice transitions, the input part of the label
is unchanged and the output part is replaced by Oadv; (2)
connect the transitions that went to the final state F in Ains

to T . Advice programs are illustrated in Figure 4.

2.3.3. Fully specifying an aspect

An aspect is given by the specification of its pointcut and its
advice: asp = (PC, adv), where PC is the pointcut and adv
is the advice. adv is a tuple which contains (1) the advice
outputs Oadv; (2) the type of the target state specification
(toInit or toCurrent); (3) the finite trace σ over the inputs
of the program; and optionally, (4) Padv, the advice program.
Thus advice can be a tuple 〈Oadv, type, σ〉, or, with an
advice program, a tuple 〈Oadv, type, σ ,Padv〉, with type ∈
{toCurrent, toInit}. An aspect is woven into a program by
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· · ·

(a) Inserted
automaton Ains
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b

· · ·�/Oadv· · ·�/JP

Target state T

(b) Woven program

Figure 4: Inserting an advice automaton.
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Figure 5: A mono stable flip-flop (a), made retriggerable (b).

first determining the join point transitions and then weaving
the advice.

Definition 6 (Aspect weaving). Let P be a program and asp =
(PC, adv) an aspect for P. The weaving of asp on P is defined
by

P � asp = P (P, PC)�JPadv. (8)

2.3.4. Example

As an example, consider a monostable flip-flop (MFF) with
one input a and one output b, which emits two bs after
it received an a. Figure 5(a) shows an implementation of
the MFF in Argos. We want to make the MFF retriggerable,
meaning that if an a is emitted during several following
instants, the MFF continues emitting b. We do this by
applying the aspect Atri = (PC, 〈b, toInit, (a)〉) to the
MFF, where PC = ({S}, S, {a, b}, {JP}, {(S, a·b, JP, S)}) is
a pointcut which selects all occurrences of a·b. as join
points. Figure 5(b) shows the result of applyig Atri to the
implementation.

3. COMBINING CONTRACTS AND ASPECTS

In this section, we show how to apply aspects to a specifi-
cation of programs in form of a contract. First, we formally
define contracts for Argos, then explain informally how to
weave aspects into them, and finally define this process
formally.

3.1. Contracts for Argos

The observers we use in contracts are slightly different from
those used as pointcuts. Notably, once they start emitting
their output err, they continue emitting it forever. This is

done in an error state error. Such an observer specifies a
class of programs fulfilling a certain safety property, namely,
those programs where the observer never emits err when
combined with them. The error state is thus a way to refuse
certain inputs while keeping the observer complete.

Definition 7 (observer). An observer is an automaton (Q ∪
{Error}, q0,I ∪ O, {err},T) which observes an automaton
with inputs I and outputs O. When an observer emits err,
it will go to state error and also emit err in the next instant.
A program P is said to obey an observer obs (noted P |= obs)
if and only if P‖obs \O produces no trace which emits err.

Transitions leading to the error state are called error
transitions.

A contract specifies a class of programs with two obser-
vers, an assumption and a guarantee. Definition 8 is an
auxiliary definition, used to formally define contracts in
Definition 9. � denotes the trace for a single output err
that never emits err, that is, �(err)[n] = false for all n. An
observer that accepts a trace emits �.

Definition 8 (trace combination). Let it : N→[I→{true,
false}] and ot : N→[O→{true, false}] be traces, with I∩O =
∅. Then, it·ot : N→[I ∪ O→{true, false}] is a trace s.t. for
all i ∈ I·it·ot(n)(i) = it(n)(i)∧ for all o ∈ O·it·ot(n)(o) =
ot(n)(o).

Definition 9 (contract). A contract over inputs I and outputs
O is a tuple (A,G) of two observers over I ∪ O, where A is
the assumption and G is the guarantee. A program P fulfills
a contract (A,G), written P |= (A,G), if and only if

(it·ot,�) ∈ Traces(A)∧ (it, ot) ∈ Traces(P)(it·ot,�)

∈ Traces(G).
(9)

Intuitively, a guarantee G should only restrict the outputs
of a program and an assumption A should only restrict the
inputs. We do not require this formally, but contracts which
do not respect this constraint are of little use. Indeed, if G
restricts the inputs more than A, it follows from Definition 9
that there exists no program P s.t. P |= (A,G). Conversely, a
program is usually placed in an environment E, s.t. E |= A.
If A restricts the outputs, no such E exists, as the outputs are
controlled by P.

As an example for a contract, consider the following
contract for the MFF from Section 2.3.4. The contract is
composed of an assumption, shown in Figure 6(a), which
states that a’s always occur in pairs, and a guarantee
consisting of two automata, shown in Figures 6(b) and
6(c), which are composed in parallel. The automaton in
Figure 6(b) guarantees that a single b is never emitted, and
the automaton in Figure 6(c) guarantees that when a occurs
while no b is emitted, b is emitted in the next instant. The
product of Figures 6(b) and 6(c) is shown in Figure 6(d).

3.2. Weaving aspects in contracts

We want to apply an aspect asp not to a specific program P,
but to a class of programs defined by a contract C, and obtain



David Stauch 7

a a

a/err

True/err

Error

(a) aMFF

b
b

b

b
b/err

True/err

Error

(b)

b

b/err
True/err

Error

a.b

(c)

a.b̄

b/err
b/err

Error

b

b

a.b
a.b

b

(d) gMFF

Figure 6: The contract for the MFF.

a new class of programs, defined by a contract C′, such that
P |= C ⇒ P � asp |= C′. To construct C′, we simulate the
effect that the aspect has on a program as far as possible on
the assumption and the guarantee observers of C. However,
an aspect cannot be applied directly to an observer because
the aspect has been written for a program with inputs I and
outputs O, whereas for the observer, O are also inputs.

Therefore, we transform the observers of the contract
first into nondeterministic automata (NDA), which produce
exactly those traces that the observer accepts. We then weave
the aspects into the NDA, with a modified definition of the
weaving operator. The woven NDA are then transformed
back into observers. The obtained observers may still be
nondeterministic, and are thus determinized.

Except for aspect weaving, all of these steps are different
for the assumption and the guarantee, as far as the Error
transitions are concerned. This is because the assumption
and the guarantee have different functions in a contract: the
assumption states which part of the program is defined by the
contract, and the guarantee gives properties that are always
true for this part. Indeed, a contract (A,G) can be rewritten
as (true,A ⇒ G), where A ⇒ G is an observer that emits
err when G emits err but not A. Thus the assumption can
be considered as a negated guarantee.

After weaving an aspect, the assumption must exclude the
undefined part of any program which fulfills the contract.
Therefore, it must reject a trace (by emitting err) as soon
as there exists a program for which it cannot predict the
behavior. The guarantee, on the other hand, emits err only
for traces which cannot be emitted by any program which
fulfills the contract. Therefore, after weaving an aspect, the
new guarantee may only emit err if it is sure that there exists
no program that produces the trace.

On the other hand, we want the assumption to be as
permissive as possible, to include all possible programs, and
the guarantee as restrictive as possible, to characterize the
woven program as exactly as possible. Thus when we know
exactly the behavior of the program, as, for example, that
of an inserted advice program, we do not emit err in the
assumption, but we emit err in the guarantee to exclude all
input/output combinations that are never produced by the
program.

3.3. Formal definitions

This section describes the weaving of aspects into contracts
in detail, and illustrates it on the MFF example. First,
Definition 10 defines the transformation of an observer into
an NDA through two functions, one for guarantee observers
and one for assumption observers.

Definition 10 (observer to NDA transformation). Let obs =
(Q ∪ {Error}, q0,I ∪ O, {err},T) be an observer with an
error state Error over inputs I and outputs O, with I∩O =
∅. NDG(obs) = (Q, q0,I,O,TNDG) defines an NDA, where
TNDG is defined by (s, �I ∧ �O , ∅, s′) ∈ T ⇒ (s, �I, �+

O , s′) ∈
TNDG . NDA(obs) = (Q ∪ {Error}, q0,I,O,TNDA) defines an
NDA, where TNDA is defined by (s, �I ∧ �O , o, s′) ∈ T ⇒
(s, �I, �+

O ∪ o, s′) ∈ TNDG .

Note that the transitions in obs which emit err (i.e.,
the error transitions) have no corresponding transitions in
NDG(obs). In the guarantee, these transitions correspond to
input/output combinations which are never produced by the
program and must not be considered by the aspect. The other
transitions are transformed such that part of the condition
concerning O disappears, and those outputs that appeared
as positive atoms in the condition (i.e., �+

O) become outputs.
As an example, consider the guarantee of the MFF

(Figure 6(d)). Its transformation into an NDA is shown in
Figure 7(a). Note that the error state and the transitions
leading to it have disappeared, and that b is now an output.
Thus the transition label b has been transformed to true/b,
and label a·b to a.

In the assumption, on the other hand, the error transition
corresponds to inputs from the environment to which the
program may react arbitrarily. If the aspect replaces these
transitions in the assumption, they are also replaced in the
program, and can thus be accepted from the environment
by the woven program. Thus error transitions are not
removed in NDA(obs), so that the aspect weaving can modify
them. The transformation of the assumption of the MFF
(Figure 6(a)) is shown in Figure 8(a).

We can now apply an aspect to an NDA. However, a
trace may lead to several states. Thus for each join point
transition, several advice transitions must be created, one for
each target state. We only give a definition for toInit advice,
but the extension to toCurrent advice and advice programs is
straightforward, and can be found in [12, Chapter 8].

Definition 11 (toInit weaving for NDA). Let A = (Q, sinit,
I,O,T ) be an automaton and adv = (Oadv, toInit, σ) a piece
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Figure 7: (a) NDG(gMFF), (b) NDG(gMFF) � Atri, (c) OBSG(NDG(gMFF) � Atri).
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Figure 8: (a) NDA(aMFF), (b) NDA(aMFF) � Atri, (c) OBSA(NDA(aMFF) � Atri).

of toInit advice, with σ : [0, . . . , �σ]→[I→{true, false}] a
finite input trace of length �σ+1. The advice weaving operator
�, weaves adv into A and returns the automaton A � adv =
(Q, sinit,I,O ∪Oadv,T ′), where T ′ is defined as follows:

((
s, �,O, s′

) ∈ T ∧ JP /∈O
)(
s, �,O, s′

) ∈ T ′, (10)
((
s, �,O, s′

) ∈ T ∧ JP ∈ O
)∀targ ∈ S stepA

(
sinit, σ , �σ

)

·(s, �,Oadv, targ
) ∈ T ′.

(11)

Transitions (10) are not join point transitions and are left
unchanged. Transitions (11) are the join point transitions,
their final state targ is specified by the finite input trace σ .
S stepA (which has been naturally extended to finite input
traces) executes the trace during �σ steps, from the initial
state of A. Figures 7(b) and 8(b) show the NDAs from
our example with the retriggerable aspect from Section 2.3.4
woven into them. For both NDAs, the trace leads to a single
state, thus only one advice transition is introduced per join
point transition.

Transforming an NDA back into an observer is different
for assumptions and guarantees. In the assumption, we do
not add additional error transitions, but only leave those
already there. In the guarantee, we add transitions to the
error state from every state where the automaton is not
complete. This is correct, as these transitions correspond to
traces that are never produced by any program.

Definition 12 (NDA to guarantee transformation). Let
nd = (Q, q0,I,O,T) be an NDA. OBSG(nd) = (Q ∪

{Error}, q0,I∪O, {err},T′∪T′′) defines an observer, where
T′ and T′′ are defined by

(s, �, o, s′) ∈ T(s, � ∧ �o ∧ �O\o, ∅, s′) ∈ T′,

(s, �, ∅, s′) /∈T′ ∧ s ∈ Q

∧ � is a complete monomial over I∪O

(s, �, {err}, Error) ∈ T′′,

(12)

where lO =
∧

o∈Oo and lO =
∧

o∈Oo for a set O of variables.

When transforming an NDA to an assumption, we do not
add additional error transitions, but only leave those already
there.

Definition 13 (NDA to assumption transformation). Let
nd = (Q, q0,I,O ∪ {err},T) be an NDA. OBSA(nd) =
(Q, q0,I ∪ O, {err},T′) defines an observer, where T′ is
defined by

(
s, �, o∪ e, s′

) ∈ T ∧ o ⊆ O ∧ e ⊆ {err}
(
s, � ∧ �o ∧ �O\o, e, s′

) ∈ T′.
(13)

Figures 7(c) and 8(c) show the NDAs from our example
transformed back into observers. As expected, the obtained
guarantee in Figure 7(c) tells us that whenever the program
receives an a, it emits b’s the two following instants. The
assumption, however, requires that if an a is emitted, it
continues to be emitted until there is no b.

The resulting observer may not be deterministic. How-
ever, it can be made deterministic, as observers are acceptor
automata. Determinization for guarantees and assumptions
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is different: a guarantee must only emit err for a trace σ
if all programs fulfilling the contract never emit σ , and an
assumption must emit err if there exists a program fulfilling
the contract which is not defined for σ .

Existing determinization algorithms can be easily
adapted to fulfill these requirements. We do not detail such
algorithms here, but instead give conditions the determiniza-
tion for assumptions and guarantees must fulfill. The new
assumption and the new guarantee in the example are already
deterministic, thus there is no need to determinize them.

The assumption determinization gives precedence to
error transition. If there is a choice between an error
transition and a nonerror transition, the error transition is
always taken. Thus the determinized assumption only accepts
a program if all possible nondeterministic executions of the
nondeterminized assumption accept it.

Definition 14 (assumption determinization). Let M be an
NDA with outputs {err}. DetA(M) is a deterministic
automaton such that

(it, ot) ∈ Traces
(
DetA(M)

)⇐⇒
(it, ot) ∈ Traces(M)∧ �ot′·(it, ot′

)

∈ Traces(M)∧ ot′(n)[err]

= true∧ ot(n)[err] = false.

(14)

As opposed to the assumption determinization, the
guarantee determinization gives precedence to nonerror
transitions over error transitions. Thus the determinized
guarantee emits err only if all possible executions of the
nondeterminized guarantee also emit err.

Definition 15 (guarantee determinization). LetM be an NDA
with outputs {err}. DetG(M) is a deterministic automaton
such that

(it, ot) ∈ Traces
(
DetG(M)

)⇐⇒
(it, ot) ∈ Traces(M)∧ �ot′ · (it, ot′)

∈ Traces(M)∧ ot′(n)[err]

= false∧ ot(n)[err] = true.

(15)

We can now state the following theorem, which states
that a contract constructed with the above operations holds
indeed for any program fulfilling the original contract with
an aspect applied to it.

Theorem 1. Let P be a program and let (A,G) be a contract.
Then

P |= (A,G)P � asp

|= (DetA
(
OBSA

(
NDA(A) � asp

))
,

DetG
(
OBSG

(
NDG(G) � asp

)))
.

(16)

Theorem 1 first transforms the assumption and the
guarantee into NDA with the respective operators, then
applies the aspect to both and transforms the result back
in observers, which are determinized. We prove it in
Appendix A.

inStation

inStation

Out
inStation

OK

In Error

inStationleaving.inStation
Dep.

doorOK.inStation

Figure 9: Model of the tramway, MTram.

4. EXAMPLE: THE TRAMWAYDOOR CONTROLLER

We implement and verify a larger example, taken from the
Lustre tutorial [13], a controller of the door of a tramway.
The door controller is responsible for opening the door when
the tram stops and a passenger wants to leave the tram, and
for closing the door when the tram wants to leave the station.
Doors may also include a gangway, which can be extended to
allow passengers in wheelchairs enter and leave the tram.

We implement the controller as an Argos program. We
first develop a controller for a door without the gangway, and
then add the gangway part with aspects. Table 1 gives the in-
and outputs of the controller with their specifications, and
also the in- and outputs which are added by the gangway.
The controller uses additional inputs, called Helper Signals,
which are also shown in Table 1 and are calculated from the
original inputs.

It is important for the safety of the passengers that the
doors are never open outside a station. We call this property
PSafety, and formally express it as an observer that emits err
whenever doorClosed·inStation is true. to formally verify
this property, we must first develop a model that describes
the possible behavior of the physical environment of the
controller, which consists of the door and the tramway. These
models are also expressed as Argos observers. The models for
the tramway (called MTram) and the door (called MDoor) are
shown in Figures 9 and 10, respectively. These models require
that the environment behaves correctly (e.g., the door only
opens if openDoor has been emitted).

Furthermore, we give a contract for the door controller,
which focuses on PSafety. The guarantee GContr of the contract
is shown in Figure 11, it ensures that the controller emits
doorOk only if the doors are closed, and openDoor only if
the tram is in a station. The contract has also an assumption
AContr, which is the model of the door given in Figure 10,
that is, AContr = MDoor. An implementation IContr of the
controller, which fulfills the contract, is given in Figure 12.

We can now prove that the controller satisfies the
contract (IContr |= (AContr,GContr)), and that the contract in
the environment never violates the safety property. Formally,
this is expressed as MDoor‖MTram‖GContr |= PSafety, where the
synchronous product of observers means that the properties
expressed by all the observers must be fulfilled.

4.1. Adding the gangway

Two aspects are used to add support for the gangway: one
aspect Aext that extends the gangway before the door is
opened if a passenger has asked for it, and one aspect Aret
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Table 1: The interfaces of the controller and the gangway, and the helper signals.

Controller Inputs Controller Outputs

inStation Tram is in station doorOK door is closed and ready to leave

leaving Tram wants to leave station openDoor opens the door

doorOpen the door is open closeDoor closes the door

doorClosed the door is closed beep emits a warning sound

askForDoor a passenger wants to leave the tram setTimer starts a timer

timer the timer set by setTimer has run out

Gangway inputs Gangway outputs

gwOut the gangway is fully extended extendGW extends the gangway

gwIn the gangway is fully retracted retractGW retracts the gangway

askForGW a passenger wants to use the gangway

Helper Signals Outputs

acceptReq the passenger can ask for the door or the gw

doorReq the passenger has asked for the door to open

gwReq the passenger has asked for the gangway

depImm the tramway wants to leave the station

Error

Closing Opening

doorClosed

CloseddoorClosed
closeDoor

.doorClosed
openDoor

.doorOpen

closeDoor.doorClosed.doorOpen

openDoor.doorClosed.doorOpen

doorOpen
doorOpen.closeDoor

closeDoor
.doorClosed

openDoor
.doorOpen

doorClosed.openDoor

Error

doorOpen

Open

Figure 10: Model of the door, MDoor.

Error
doorOK.(doorClosed∨openDoor)

openDoor

openDoor

inStation.openDoor
In Out

inStation.openDoor

Dep.

doorClosed.doorOK.openDoor

Figure 11: The guarantee of the contract of the controller, GContr.

that retracts the gangway when the tram is about to leave, if
it is extended.

The pointcut PCext of Aext selects all transitions, where
openDoor·doorReq·doorClosed·gwOut is true, and the poi-
ntcut PCret of Aret selects all transitions where doorOK.gwIn
is true.

Both aspects insert an automaton and return then
to the initial state of the join point transitions. The
inserted automata for the aspects are shown in Figure 13.
Aext is specified by (PCext, 〈∅, toCurrent, (), Iext〉), and Aret

by (PCret, 〈{retractGW}, toCurrent, (), Iret〉). Weaving these

aspects into IContr adds one state between Closed and
OK, where the gangway is retracted, and one state before
Opening, where it is extended.

4.2. Modularly verifying the safety properties

We want to check that the new controller IContr�Aext�Aret

still verifies the safety property from above, and also
verifies two new safety properties, which require that the
gangway is always fully retracted while the tram is out
of station, and that the gangway is never moved when
the door is not closed. We express these three properties
as an observer and call it PSafeties. To verify this, we first
weave the aspects into the contract, and thus obtain a
new contract that holds for controller with the aspects.
Then we check that the environment, to which we added a
model of the gangway MGW, satisfies the new assumption
(i.e., MDoor‖MTram‖MGW |= AContr�Aext�Aret), and that
the new guarantee satisfies the safety requirements in the
environment (i.e., MDoor‖MTram‖MGW‖GContr�Aext�Aret |=
PSafeties).
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Figure 12: A sample controller for the tramway door, IContr.
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Figure 13: Inserted automata for Aext (a) and Aret (b).

An alternative to this modular approach is to ver-
ify directly that the sample controller with the aspects
does not violate the given safety properties (i.e., MDoor‖
MTram‖MGW‖IContr�Aext�Aret |= PSafeties). One disadvantage
of the alternative approach is that the woven controller
may be much bigger than the woven contract. To illustrate
this problem, we verified the safety properties using our
implementation [14]. The source code of the door controller
example is available at [15]. Verifying the woven program
takes 11.0 seconds. On the other hand, weaving the aspects
into the guarantee of the controller contract and verifying
against the environment takes 3.7 seconds, and verifying
that the sample controller verifies the contract and verifying
that the environment fulfills the assumption with the aspects
takes <0.5 second. (Experiments were conducted on an
Intel Pentium 4 with 2.4 GHz and 1 Gigabyte RAM.) Thus
using this modular approach to verify the safety properties
of the controller is significantly faster than verifying the
complete program. Although the size of the woven controller
is not prohibitive in this example, this indicates that larger
programs can be verified using the modular approach.

5. ASPECT INTERFERENCE

A key point when dealing with aspects is the notion of
interferences, which is closely related to the way aspects
are woven. We illustrate the problem of interfering aspects
on an example presented in Section 5.1. Next, we also
present a new weaving algorithm in Section 5.2, that weaves
aspects jointly, and removes aspect interferences in many
cases. Finally, we introduce an algorithm in Section 5.3 that

proves noninterference of aspects or identifies remaining
interferences in jointly woven programs.

5.1. Example

As an example, we present a simplified view of the interface of
a complex wristwatch, implemented with Argos and Larissa.
The full case study was presented in [16]. The interface is a
modified version of the Altimax model by Suunto. (Suunto
and Altimax are trademarks of Suunto Oy.)

5.1.1. The watch

The Altimax wristwatch has an integrated altimeter, a
barometer and four buttons, the mode, the select, the
plus, and the minus button. Each of the main functionalities
(time keeping, altimeter, barometer) has an associated main
mode, which displays information, and a number of sub-
modes, where the user can access additional functionalities.
An Argos program that implements the interface of the watch
is shown in Figure 14. For better readability, only those state
names, outputs and transitions we will refer to are shown.

In a more detailed model (as in [16]), the submode
states would contain behavior using the refinement operator
of Argos (see [4] for a definition). We do not present this
operator in this paper since we do not need it to define
aspect weaving. Adding refinement changes nothing for the
weaving definition, as it works directly on the transformation
of the program into a single trace-equivalent automaton.
For the same reason, the interference analysis presented in
Section 5.2 is also the same.

The buttons of the watch are the inputs of the program.
The mode button circles between modes, the select button
selects the submodes. There are two more buttons: the plus
and the minus button which modify current values in the
submodes, but their effect is not shown in the figure. The
buttons have different meanings depending on the mode in
which the watch is currently.

The interface component we model here interprets the
meaning of the buttons the user presses, and then calls a
corresponding function in an underlying component. The
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Figure 14: The Argos program for the Altimax watch.

outputs are commands to that component. For example,
whenever the program enters the time mode, it emits the
output Time-Mode, and the underlying component shows
the time on the display of the watch.

5.1.2. Two shortcut aspects

The plus and the minus buttons have no function consistent
with their intended meaning in the main modes: there are
no values to increase or decrease. Therefore, they are given a
different function in the main modes: when one presses the
plus or the minus button in a main mode, the watch goes to
a certain submode. The role of the plus and minus buttons
in the main modes are called shortcuts since it allows to
quickly activate a functionnality, which would have needed,
otherwise, a long sequence of buttons.

Pressing the plus button in a main mode activates the
logbook function of the altimeter, and pressing the minus
button activates the 4-day memory of the barometer. These
functions are quite long to reach without the shortcuts since
the logbook is the third submode of the altimeter, and the
4-day memory is the second submode of the barometer.

These shortcuts can be implemented easily with Larissa
aspects. Figure 15(a) shows the pointcut for the logbook
aspect, and Figure 15(b) the pointcut for the memory aspect.
In both pointcuts, state main represents the main modes
and state sub represents the submodes. When, in a main
mode, plus (resp., minus) is pressed, the pointcut emits
JPl (resp., JPm), thus the corresponding advice is executed;
when select is pressed, the pointcut goes to the sub state,
and JPl or JPm are no longer emitted. Furthermore, we
use toInit advice with traces leading to the functionality we
want to reach, that is, σl = mode.select.mode.mode for the
logbook aspect and σm = mode.mode.select.mode for the 4-
day memory aspect, and the output that tells the underlying
component to display the corresponding information.

5.2. Applying several aspects

If we apply first the logbook aspect, and then, sequentially,
the memory aspect to the watch program, the aspects do not

behave as we would expect. If, in the woven program, we
first press the minus button in a main mode, thus activating
the logbook aspect, and then the plus button, the memory
aspect is activated, although we are in a submode. This
behavior was clearly not intended by the programmer of the
memory aspect.

The problem is that the memory aspect has been written
for the program without the logbook aspect: the pointcut
assumes that the only way to leave a main mode is to press
the select button. However, the logbook aspect invalidates
that assumption by adding transitions from the main modes
to a submode. When these transitions are taken, the pointcut
of the memory aspect incorrectly assumes that the program
is still in a main mode.

Furthermore, for the same reason, applying first the
memory aspect and then the logbook aspect produces
(in terms of trace-equivalence) a different program from
applying first the logbook aspect and then the memory
aspect: watch � logbook � memory /∼watch � memory �
logbook.

As a first attempt to define aspect interference, we say
that two aspects A1 and A2 interfere when their application
on a program P in different orders does not yield two trace-
equivalent programs: P � A1 � A2 /∼P � A2 � A1. We say
that two aspects that do not interfere are independent.

With interfering aspects, the aspect that is woven second
must know about the aspect that was applied first. To be able
to write aspects as the ones above independently from each
other, we propose a mechanism to weave several aspects at
the same time. The idea is to first determine the join point
transitions for all the aspects, and then apply the advice.

Definition 16 (Joint weaving of several aspects). Let
A1 · · ·An be some aspects, with Ai = (PJPi , advi), and P
a program. We define the application of A1 · · ·An on P as
follows:

P �
(
A1, . . . ,An

) = P
(
P,PJP1‖ · · · ‖PJPn

)

�JPnadvn · · ·�JP1 adv1.
(17)

Note that Definition 16 reuses the advice weaving opera-
tor defined in Definition 5, and indexes the join point signal
used by each advice. Furthermore, the advice is woven in the
reverse order, that is, we first the advice from the last aspect in
the aspect list, and the advice from the first aspect last. This
way, aspects that are later in the list have higher priority: if
a join point transition is claimed by several aspects, the one
that is woven first replaces the join point transition with its
advice transition, and removes the join point signals of the
other aspects. To give priority to the aspects that are applied
later is consistent with sequential weaving, where aspects that
are applied later modify the aspects that have already been
applied, but not the other way round.

Jointly weaving the logbook and the memory aspect
leads to the intended behavior, that is, both aspects can
be activated only when the program is in a main mode.
Furthermore, the weaving order does not influence the result
because both aspects first select their join point transitions
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Figure 15: The pointcuts for the aspects.

in the main modes, and change the target states of the join
point transitions only afterwards.

Note that Definition 16 does not make sequential weav-
ing redundant. We still need to weave aspects sequentially in
some cases, when the second aspects must be applied to the
result of the first. For instance, imagine an aspect that adds
an additional main mode to the watch. Then the shortcut
aspects must be sequentially woven after this aspect, so that
they can select the new main mode as join point.

Definition 16 does not solve all conflicts. Indeed, the Ai

in P � (A1, . . . ,An) do not commute, in general, since
the advice weaving is applied sequentially. We define aspect
interference for the application of several aspects.

Definition 17 (Aspect interference). Let A1 · · ·An be some
aspects, and P a program. We say that Ai and Ai+1 interfere
for P if and only if

P�
(
A1 · · ·Ai,Ai+1 · · ·An

)
/∼P�

(
A1 · · ·Ai+1,Ai · · ·An

)
.

(18)

As an example for interfering aspects, assume that the
condition of the join point transition of the pointcut of
the logbook aspect (Figure 15(a)) is only minus and the
condition of the join point transition of the pointcut of the
logbook aspect (Figure 15(b)) is only plus. In this case, the
two aspects share some join point transitions, namely, when
both buttons are pressed at the same time in a main mode.
Both aspects then want to execute their advice, but only one
can, thus they interfere. Only the aspect that was applied last
is executed.

In such a case, the conflict should be made explicit to the
programmer, so that it can be solved by hand. Here, it was
resolved by changing the pointcuts to the form they have in
Figure 15, so that neither aspect executes when both buttons
are pressed.

5.3. Proving noninterference

In this section, we show that in some cases, noninterference
of aspects can be proven, if the aspects are woven jointly,
as defined in Definition 16. We can prove noninterference
of two given aspects either for any program, or for a given
program. Following [17], we speak of strong independence in
the first case, and of weak independence in the second.

We use the operator jpTrans to determine interference
between aspects. It computes all the join point transitions of
an automaton, that is, all transitions with a given output JP.

Definition 18. Let A = (Q, sinit,I,O,T ) be an automaton
and JP ∈ O. Then

j pTrans(A, JP) = {t | t = (s, �,O, s′
) ∈ T ∧ JP ∈ O

}
. (19)

The following theorem proves strong independence
between two aspects.

Theorem 2 (strong independence). Let A1 · · ·An be some
aspects, with Ai = (PJPi , advi). Then the following equation
holds:

j pTrans
(
PJPi‖PJPi+1 , JPi

)∩ j pTrans
(
PJPi‖PJPi+1 , JPi+1

) = ∅

P �
(
A1 · · ·Ai,Ai+1 · · ·An

)

∼P �
(
A1 · · ·Ai+1,Ai · · ·An

)
.

(20)

See Appendix B for a proof. Theorem 2 states that if there
is no transition with both JPi and JPi+1 as outputs in the
product of PJPi and PJPi+1 , Ai and Ai+1 are independent and
thus can commute while weaving their advice. Theorem 2
defines a sufficient condition for noninterference, by looking
only at the pointcuts. When the condition holds, the aspects
are said to be strongly independent.

Theorem 3 (Weak independence). Let A1 · · ·An be some
aspects, with Ai = (PJPi , advi), and Ppc = P (P,PJP1‖ · · ·
‖PJPn). Then the following equation holds:

j pTrans
(
Ppc, JPi

)∩ j pTrans
(
Ppc, JPi+1

) = ∅

P �
(
A1 · · ·Ai,Ai+1 · · ·An

)

∼P �
(
A1 · · ·Ai+1,Ai · · ·An

)
.

(21)

See Appendix C for a proof. Theorem 3 states that if there
is no transition with both JPi and JPi+1 as outputs in Ppc, Ai

and Ai+1 do not interfere. This is weaker than Theorem 2
since it also takes the program P into account. However,
there are cases in which the condition of Theorem 2 is false
(thus it yields no results), but Theorem 3 allows to prove
noninterference, for example, in the case of the gangway
aspects from Section 4, which is discussed in Section 5.3.2.

Theorem 3 is a sufficient condition, but, as Theorem 2, it
is not necessary: it may not be able to prove independence
for two independent aspects. The reason is that it does not
take into account the effect of the advice weaving: consider
two aspects such that the only reason why the condition for
Theorem 3 is false is a transition sourced in some state s,
and such that s is only reachable through another join point
transition; if the advice weaving makes this state unreachable,
then the aspects do not interfere.

The results obtained by both Theorems are quite intu-
itive. They mean that if the pointcuts do not select any join
points common to two aspects, then these aspects do not
interfere. This condition can be calculated on the pointcuts
alone, or can also take the program into account.

Note that the detection of noninterference is a static
condition that does not add any complexity overhead.
Indeed, to weave the aspects, the compiler needs to build
first PJP1‖ · · · ‖PJPn = Pall JP : the condition of Theorem 2
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can be checked during the construction of Pall JP . Second, the
weaver builds Ppc = P (P,Pall JP). Afterwards, it can check
the condition of Theorem 3. Thus to calculate the conditions
of both Theorems, it is sufficient to check the outputs of the
transitions of intermediate products during the weaving. The
weaver can easily emit a warning when a potential conflict is
detected.

To have an exact characterization of noninterfer-
ence, it is still possible to compute the predicate P �
(A1 · · ·Ai,Ai+1 · · ·An)∼P � (A1 · · ·Ai+1,Ai · · ·An),
but calculating semantic equality is very expensive for large
programs.

Note that the interference presented here only applies
to the joint weaving of several aspects, as defined in
Definition 16. Sequentially, woven aspects may interfere even
if their join points are disjoint, because the pointcut of the
second aspects applies to the woven program. A similar
analysis to prove noninterference of sequential weaving
would be more difficult because the effect of the advice
must be taken into account. Indeed, the advice of an aspect
influences which transitions are selected by the pointcut of
an aspect that is sequentially woven next.

5.3.1. Interference between the shortcut aspects

Figure 16(a) shows the product of the pointcuts of the log-
book (Figure 15(a)) and the memory aspect (Figure 15(b)).
There are no transitions that emit both JPl and JPm, thus,
by applying Theorem 2, we know that the aspects do not
interfere, independently of the program they are applied to.

Let us assume again that the condition of the join
point transition of the pointcut of the logbook aspect
(Figure 15(a)) is only minus and the condition of the join
point transition of the pointcut of the logbook aspect
(Figure 15(b)) is only plus. In this case, the state main in
Figure 16(a) would have another loop transition, with label
minus.plus/JPl, JPm. Thus, Theorem 2 not only states that
the aspects potentially interfere, but it also states precisely
where: here, the problem is that when both minus and plus
are pressed in a main mode, at the same time, both aspects
are activated. Larissa thus emits a warning and the user can
solve the conflict.

5.3.2. Interference between the gangway aspects

As an example for weak interference, let us examine the
gangway aspects from the Tram example in Section 4.
Figure 16(b) shows the product of their pointcuts. There is a
transition that has both JPext and JPret as outputs. Theorem 2
states that the aspects may interfere, but when applied to the
tram controller from Figure 12, they do not. This is because
doorOK and openDoor are outputs of the controller, and are
never emitted at the same time.

In this example, the use of Theorem 3 is thus needed to
show that the aspects do not interfere when applied to the
wristwatch controller. As expected, JPext and JPret are never
emitted at the same time in Ppc, and Theorem 3 thus shows
that the aspects do not interfere for this base program.

6. RELATEDWORK

6.1. Contracts and aspects

Goldman and Katz [18] modularly verify aspect-oriented
programs using an LTL tableau representation of programs
and aspects. As opposed to ours, their system can verify
AspectJ aspects, as tools like Bandera [19] can extract suitable
input models from Java programs. It is, however, limited to
the so-called weakly invasive aspects, which only return to
states already reachable in the base program.

Clifton and Leavens [20] noted before us that aspects
invalidate the specification of modules, and propose that
either an aspect should not modify a program’s contract, or
that modules should explicitly state which aspects may be
applied to them.

6.2. Aspect interference

Some authors discuss the advantages of sequential versus
joint weaving. Lopez-Herrejon and Batory [21] propose to
use sequential weaving for incremental software develop-
ment. Colyer and Clement [22, Section 5.1] want to apply
aspects to bytecode which already contains woven aspects. In
AspectJ, this is impossible because the semantics would not
be the same as weaving all aspects at the same time.

Sihman and Katz [23] propose SuperJ, a superimposition
language which is implemented through a preprocessor for
AspectJ. They propose to combine superimpositions into a
new superimposition, either by sequentially applying one
to the other, or by combining them without mutual influ-
ence. Superimpositions contain assume/guarantee contracts,
which can be used to check if a combination is valid.

A number of authors investigate aspect interference in
different formal frameworks. Much of the work is devoted
to determining the correct application order for interfering
aspects, whereas we focus on proving noninterference.

Douence et al. [17] present a mechanism to statically
detect conflicts between aspects that are applied in parallel.
Their analysis detects all join points where two aspects want
to insert advice. To reduce the detection of spurious conflicts,
they extend their pointcuts with shared variables, and add
constraints that an aspect can impose on a program. To
resolve remaining conflicts, the programmer can then write
powerful composition adaptors to define how the aspects
react in presence of each other.

Pawlak et al. [24] present a way to formally validate
precedence orderings between aspects that share join points.
They introduce a small language, CompAr, in which the
user expresses the effect of the advice that is important for
aspect interaction, and properties that should be true after
the execution of the advice. The CompAr compiler can then
check that a given advice ordering does not invalidate a
property of an advice.

Dur et al. [25] propose an interaction analysis for
composition filters. They detect when one aspect prevents
the execution of another, and can check that a specified trace
property is ensured by an aspect.
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minus.plus/JPm

Main

Sub

Select
Time-Mode∨
Alti-Mode∨
Baro-Mode

minus.
plus/JPl

(a)

openDoor.doorReq.doorClosed.gwOut
.doorOK.gwIn/JPext, JPret

openDoor.doorReq.doorClosed.gwOut
.doorOK.gwIn/JPext

openDoor.doorReq.doorClosed.gwOut
.doorOK.gwIn/JPret

(b)

Figure 16: Interference between pointcuts.

Balzarotti et al. [26] use program slicing to check if
different aspects modify the same code, which might indicate
interference.

7. CONCLUSION

We presented two formal analysis tools for Larissa, which
both exploit its semantic definition. The first combines
Larissa with design-by-contract, and shows exactly how a
Larissa aspect modifies the contract of a component to which
it is applied. This allows us to calculate the effect of an aspect
on a specification instead of only on a concrete program.
This approach has several advantages. First, aspects can be
checked against contracts even if the final implementation
is not yet available during development. Furthermore, if the
base program is changed, the woven program must not be
reverified, as long as the new base program still fulfills the
contract. Finally, woven programs can be verified modularly,
which may allow to verify larger programs.

The second approach is an analysis for aspect interference
in Larissa. We introduced an additional operator which
jointly weaves several aspects together into a program, closer
to the way AspectJ weaves aspects. Because Larissa is defined
modularly, we only had to rearrange the building steps of the
weaving process. Then we could analyze interference with a
simple parallel product of the pointcuts. When a potential
conflict is detected, the user has to solve it by hand, if needed.
In the examples we studied, the conflicts were solved by
simple modifications of the pointcuts.

These analyses are only possible because Argos and
Larissa are very simple languages with clean and simple
semantics. They thus illustrate the advantage of using a
programming language with simple semantics. Because of
this simplicity, both approaches seem quite precise. Indeed,
We believe that the contract weaving is exact in that it gives
no more possible behaviors for the woven program than
necessary. That is, for a contract C and a trace t ∈ Traces(C �
asp), there exists a program P s.t. P |= C and t ∈ Traces(P �
asp). This remains however to be proven.

The interference analysis for Larissa seems also quite
precise, that is, we can prove independence for most inde-
pendent aspects. One reason for that are Larissa’s powerful
pointcuts, which describe join points statically, yet very
precisely, on the level of transitions. Another reason is the
exclusive nature of the advice. Two pieces of advice that share
a join point transition never execute sequentially, but there is
always one that is executed while the other is not. If the two

pieces of advice are not equivalent, this leads to a conflict.
Thus as opposed to [17], assuming that a shared join point
leads to a conflict does not introduce spurious conflicts.

There are some interesting points for further work. In the
context of contract weaving, an interesting question is if we
can derive contracts the other way round. Given a contract
C and an aspect asp, can we automatically derive a contract
C′ such that C′ � asp |= C? Finally, both approaches work
only because we have restricted Argos and Larissa to Boolean
signals. It would be interesting to see if they can be extended
to programs with variables.

APPENDICES

A. PROOF FOR THEOREM 1

Definitions

We first introduce a number of definitions.
P(p) |= (A(a),G(g)) means that program P fulfills

contract (A,G), where the initial states of P, A, and G have
been set to p, a, and g, respectively.

Furthermore, we introduce the following notations for
terms from the theorem. Let

A′ � asp = OBSA
(
NDA(A) � asp

)
,

A � asp = DetA
(
A′ � asp

)
,

G′ � asp = OBSG
(
NDG(G) � asp

)
,

G � asp = DetG
(
G′ � asp

)
.

(A.1)

We now define the structure of some of these terms. Let

P = (QP , qP0,I,O,TP
)
,

asp = (PC,
〈
Oadv, toInit, σ

〉)
,

PC = (QPC, qPC0,I∪O, {JP},TPC
)
,

A = (QA ∪ {Error}, qA0,I∪O, {err},TA
)
,

G = (QG ∪ {Error}, qG0,I∪O, {err},TG
)
,

P � asp = (QP ×QPC,
(
qP0, qPC0

)
,I,O,TP�

)
,

A′ � asp = ((QA ×QPC
)∪ {Error}, (qA0, qPC0

)
,

I∪O, {err},TA�
)
,

G′ � asp = ((QG ×QPC
)∪ {Error}, (qG0, qPC0

)
,

I∪O, {err},TG�
)
.

(A.2)

We prove the theorem by induction over a trace of P �
asp. Let (it, ot) ∈ Traces(P � asp). We show that the
following induction hypothesis holds for any n.
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Induction hypothesis

The induction hypothesis states that the states reached by
executing (it, ot) on P � asp, A′ � asp, and G′ � asp formed
a valid contract in P, A, and G, that is, before the aspect was
applied, provided (it, ot) is accepted by A � asp. Formally,
we write it as follows:

O stepA�asp

((
sA0, sPC0

)
, it·ot,n

) = ∅∧ (pn, pcn
)

= S stepP�asp

((
sP0, sPC0

)
, it,n

)

∃(an, pcn
) ∈ S stepA′�asp

((
sA0, sPC0), it·ot,n

)

·∃(gn, pcn
) ∈ S stepG′�asp

((
sG0, sPC0

)
, it·ot,n

)

·P(pn
) |= (A(an

)
,G
(
gn
))∧ gn /= Error

(A.3)

(pn, pcn), (an, pcn), and (gn, pcn) are the states reached when
executing (it, ot) for n steps on P � asp, A′ � asp and G′ �
asp, respectively.

Base case

n = 0. P |= (A,G) holds as it is the assumption of the
implication in the theorem. If the initial state of G is the error
state, either A (and A � asp) do not accept any trace, or no
P exists, and in both cases we are done.

Induction step

From n− 1 to n.
If O stepA�asp(it·ot,n) = {{err}}, we are done. Other-

wise, from O stepA�asp(it·ot,n) = {∅} follows O stepA′�asp
(it·ot,n) = {∅} because Definition 14, which defines the
determinization of A′, gives precedence to error transitions.
We distinguish two cases as follows.

(i) First case: {JP} /∈O stepPC(it·ot,n), we are not in a
join point.
Because of P(pn−1) |= (A(an−1),G(gn−1)), there is a transi-
tion tp = (pn−1, it(n), ot(n), pn) in TP , a transition ta =
(an−1, it(n) ∧ ot(n), ∅, an) in TA, and a transition tg =
(gn−1, it(n) ∧ ot(n), ∅, gn) in TG, such that P(pn) |= (A(an),
G(gn))·tp, ta and tg are not modified by the weaving, thus
there is a transition ((pn−1, pcn−1), it(n), ot(n), (pn, pcn))
in TP�, a transition ((an−1, pcn−1), it(n) ∧ ot(n), ∅, (an,
pcn)) in TA�, and a transition ((gn−1, pcn−1), it(n) ∧
ot(n), ∅, (gn, pcn)) in TG� with (gn, pcn) /=Error.

(ii) Second case: {JP} ∈ O stepPC(it·ot,n), we are in a
join point.
Let pσ = S stepP(sP0, σ , lσ) be the state in the P reached
after executing σ , and let σ be a trace of length lσ such that
for all i ≤ lσ·σ(i) = O stepP(sP0, σ , i). Then let S stepPC
(sPC0, σ·σ, lσ) = pcσ be the state of the pointcut reached
after executing σ . Then we also have S stepP�asp((sP0,
sPC0), it,n) = (pσ , pcσ).

All join point transitions in G′�asp (resp., A′�asp)
are replaced by transitions to all possible target states,
thus there is a transition tg′� ∈ TG′� (resp., ta′� ∈ TA′�)
to a target state (gσ , pcσ) (resp., (aσ , pcσ)) such that
S stepG(sG0, σ·σ, lσ) = gσ (resp., S stepA(sA0, σ·σ, lσ) = aσ).

Because pσ , aσ , and gσ can be reached with the same
trace (σ , σ) (resp., (σ·σ,�) for aσ and gσ) from the initial
state, P(pσ) |= (A(aσ),G(gσ)) follows from P |= (A,G).
Furthermore, ot(n) = �0adv ∧ �O\0adv

, and we have ta′� =
((an−1, pcn−1), it(n) ∧ ot(n), ∅, (aσ , pcσ)), and tg′� =
((gn−1, pcn−1), it(n) ∧ ot(n), ∅, (gσ , pcσ)), and thus
(aσ , pcσ) = S stepA′�asp((sA0, sPC0), it·ot,n) and (gσ , pcσ) =
S stepG′�asp((sG0, sPC0), it·ot,n). Furthermore, we have
(gσ , pcσ) /=Error, as otherwise aσ = Error (impossible
because of O stepA′�asp((sA0, sPC0), it·ot,n) = ∅), or
(it, ot) /∈Traces(P), by the definition of P |= (A,G).

It follows from the induction hypothesis that

(it·ot,�) ∈ Traces(A � asp)∧ (it, ot)

∈ Traces(P � asp)(it·ot,�)

∈ Traces
(
G′ � asp

)
,

(A.4)

and we have (it·ot,�) ∈ Traces(G′ � asp) ⇒ (it·ot,�) ∈
Traces(G � asp) by Definition 15. Thus the theorem follows
from the induction hypothesis.

B. PROOF FOR THEOREM 2

Theorems 2 and 3 are both implications with the same
consequent.

We show that the antecedent of the implication in
Theorem 3,

j pTrans
(
P
(
P,PJP1‖ · · · ‖PJPn

)
, JPi

)

∩ j pTrans
(
P
(
P,PJP1‖ · · · ‖PJPn

)
, JPi+1

) = ∅,
(B.5)

follows from the antecedent of the implication in Theorem 2,

j pTrans
(
PJPi‖PJPi+1 , JPi

)

∩ j pTrans
(
PJPi‖PJPi+1 , JPi+1

) = ∅,
(B.6)

JPi and JPi+1 can only occur in PJPi and PJPi+1 . Thus
if a transition that has both of them as outputs in
P (P,PJP1‖ · · · ‖PJPn), there must already exist a transition
with both of them as outputs in PJPi‖PJPi+1 .

Thus because of the transitivity of the implication,
Theorem 2 is a consequence of Theorem 3.

C. PROOF FOR THEOREM 3

Because the synchronous product is commutative P (P,
PJP1‖ · · · ‖PJPi‖PJPi+1‖ · · · ‖PJPn) and P (P,PJP1‖ · · · ‖PJPi+1

‖PJPi‖ · · · ‖PJPn) are the same.
Let P (P,PJP1‖ · · · ‖PJPn)�JPnadvn · · ·�JPi+2 advi+2 =

(Q, sinit,I,O,T ) = Pi+2. Then Pi+2�JPi+1 advi+1 yields an
automaton Pi+1 = (Q, sinit,I,O ∪ Oadvi+1 ,T ′), where T ′ is
defined as follows:

((s, �,O, s′) ∈ T ∧ JPi+1 /∈O)

(s, �,O, s′) ∈ T ′

((s, �,O, s′) ∈ T ∧ JPi+1 ∈ O)

(s, �,Oadvi+1 , S stepP′(sinit, σi+1, lσi+1 )) ∈ T ′,

(C.7)
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and Pi+1�JPiadvi yields an automaton Pi = (Q, sinit,I,O ∪
Oadvi+1 ∪Oadvi ,T

′′), where T ′′ is defined as follows:
((
s, �,O, s′

) ∈ T ∧ JPi+1 /∈O ∧ JPi /∈O
)

(
s, �,O, s′

) ∈ T ′,
((
s, �,O, s′

) ∈ T ∧ JPi+1 ∈ O ∧ JPi /∈O
)

(
s, �,Oadvi+1 , S stepP′

(
sinit, σi+1, lσi+1

)) ∈ T ′,
((
s, �,O, s′

) ∈ T ∧ JPi+1 /∈O ∧ JPi ∈ O
)

(
s, �,Oadvi , S stepP′(sinit, σi, lσi

)) ∈ T ′,

(C.8)

((
s, �,O, s′

) ∈ T ∧ JPi+1 ∈ O ∧ JPi ∈ O
)

(
s, �,Oadvi+1 , S stepP′

(
sinit, σi+1, lσi+1

)) ∈ T ′.
(C.9)

If we calculate Pi+2�JPiadvi�JPi+1 advi+1, we obtain the
same automaton, except for transitions (C.9), which are
defined by

((
s, �,O, s′) ∈ T ∧ JPi+1 ∈ O ∧ JPi ∈ O

)

(
s, �,Oadvi , S stepP′(sinit, σi, lσi)) ∈ T ′).

(C.10)

Transitions (C.9) are exactly the join point transitions
that are in j pTrans(P (P,PJP1‖ · · · ‖PJPn), JPi) ∩ j pTrans
(P (P,PJP1‖ · · · ‖PJPn), JPi+1). By precondition, there were
no such transitions in P (P,PJP1‖ · · · ‖PJPn). Because we
require that all the JPj outputs occur nowhere else, JPi
and JPi+1 cannot be contained in a Oadv j , thus no tran-
sition of type (C.9) has been added by the weaving of
�JPnadvn · · ·�JPi+2 advi+2.

Thus we have P (P,PJP1‖ · · · ‖PJPn)�JPnadvn · · ·�JPi+2

advi+2�JPi+1 advi+1�JPiadvi = P (P,PJP1‖ · · · ‖PJPn)�JPnadvn
· · ·�JPi+2 advi+2�JPiadvi�JPi+1 advi+1. Weaving �JPi−1 advi−1

· · ·�JP1 adv1 trivially yields the same result.
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