Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2008, Article ID 251957, 9 pages
doi:10.1155/2008/251957

Research Article

Using Visual Specifications in Verification of Industrial

Automation Controllers

Valeriy Vyatkin' and Gustavo Bouzon?

I Department of Electrical and Computer Engineering, University of Auckland, Auckland 1142, New Zealand
2 Controle Solugoes em Mecatrénica Lida., Rua Mauro Nerbass, 72, CEP 88024-420 Lages, SC, Brazil

Correspondence should be addressed to Valeriy Vyatkin, v.vyatkin@auckland.ac.nz

Received 3 February 2007; Accepted 4 November 2007

Recommended by Jose L. Martinez Lastra

This paper deals with further development of a graphical specification language resembling timing-diagrams and allowing specifi-
cation of partially ordered events in input and output signals. The language specifically aims at application in modular modelling
of industrial automation systems and their formal verification via model-checking. The graphical specifications are translated into
a model which is connected with the original model under study.

Copyright © 2008 V. Vyatkin and G. Bouzon. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. INTRODUCTION

Formal verification of industrial automation systems re-
quires three constituent components: a model of the con-
troller, a model of the uncontrolled plant, and a specifica-
tion of desired or forbidden plant behaviour. Generation of
the two first elements can be facilitated by application of
modular modelling approaches and from automatic model-
generation as described in [1].

However, languages commonly used for specification,
such as temporal logic, are still rarely familiar to control en-
gineers. So, the engineers would benefit from having user-
friendly means of specifying the desired or forbidden be-
haviour of a model.

Inspired by the timing diagram specifications explored in
the domain of digital systems design (e.g., by Fisler [2], Amla
etal. [3], Schlor etal. [4]), a graphical language for describing
the dependency of interface signal changes was proposed in
[5], and some of its implementation issues were developed in
[6].

In this paper, we harmonise the earlier developed spec-
ification and implementation techniques aiming at a solu-
tion that can be a part of an integrated verification frame-
work. The underlying modelling language of the framework
is the modular formalism of net condition/event systems
(NCES) described in [7, 8]. The proposed visual language
specifies the behaviour of NCES models and the verifica-

tion technique also relies on the use of NCES. We suggest
two procedures for translation and checking of visual spec-
ifications: one for verifying the output behaviour, and the
other for combined input-output behaviour. The paper is or-
ganized as follows. Net condition/event systems are briefly
introduced in Section 2. Timing diagrams as a means for
specifying desired or forbidden behaviour of NCES models
of automation systems are defined in Section 3. The trans-
formation of timing diagrams to NCES modules is subject
of Section 4. Section 5 describes the implementation of the
method in a software prototype. Some conclusions are pre-
sented in Section 6.

2. NET CONDITION/EVENT SYSTEMS

The formalism of net condition/event systems (NCES) was
introduced by Rausch and Hanisch [7] as a modular exten-
sion of signal/net systems (SNS)—a place-transition formal-
ism for discrete state, discrete time modelling. The idea of
signal/net systems is described as follows, following [9].

2.1. Definition of SNS

A signal/net system is a tuple (P,T,F,V,B,W,S, M, my,
eft, Ift), where P is a nonempty finite set of places; T is a
nonempty finite set of transitions disjoint with P; F is the set
of flow arcs, where F < (P X T) U (T X P); V maps a weight

EURASIP Journal on Embedded Systems

» ,;@
rs
D4

j2%

FIGURE 1: Signal-net system.

to every flow arc and V: F — N; B is the set of condition
arcs, which carry condition signals and B € P X T; W maps a
weight to every condition arc and W: B — N; Sis the set of ir-
reflexive event arcs, which convey event signalsand S € T'xT;
M maps an event-processing mode (AND or OR) to every
transition, M: T — {A, V};my: P — Ny is the initial marking
of SNS, where for each place p € P, there are n, € Ny tokens;
eft maps the earliest firing time to every pre-arc [p,t] € F,
eft: F N (P X T) — Np; and lft maps the latest firing time
to every pre-arc [p,t] € F,1ft Fn (P x T) — Ny U {w},
where w € N and 0 < eft(p,t) < Ift (p,t) < w. The interval
[eft (p, 1), lft (p,t)] is called the permeability interval.

An example of SNS is presented in Figure 1. The model
consists of four places and five net transitions. Places p; and
p3 have tokens at the initial marking. Besides ten token flow
arcs, the transition f, is connected to t; via an event arc, and
place p; is connected to 5 via condition arcs.

2.2. State of SNS model

Places bear integer clocks whose values are denoted as u: P —
No, where for each place p € P, the clock reading in the place
is denoted as u, € Ny. All clocks have zero value at the initial
state of the model. The clock of a place resets to zero anytime
marking of the place changes.

A state in timed SNS is defined as a pair z = [m, u], where
m is a marking of P and u is the vector of the clock positions,
such that u(p) >0 — m(p) > 0. Evolution of SNS consists of
changing its states. A state change (also called state transition)
can consist in changing net’s marking, or changing values of
clocks (elapsing of time).

In every state there could be some enabled net transitions.
If there are no enabled transitions, then the clocks count (in-
crement they value by 1) in all marked places and the SNS
net transitions to a new state. Otherwise, that is, if there are
some enabled transitions, then it is said that one or several
enabled transitions fire, that leads to the change of marking
as explained by the firing rules. The set of simultaneously fir-
ing transitions is called step. In a given state, there could be
several different steps ready to fire, meaning that a state of
SNS can have several successor states.

2.3. Firing rules

Let St denote the set of incoming event arcs of transition t:
St:={t' | [t',t] € S}. If St is empty, which indicates that no
incoming event arc is associated with transition t, then ¢ is

spontaneous, otherwise it is forced. Firing of a forced transi-
tion is caused by firing of some other transition connected to
it by an event arc. Both are included in the same step, that is,
fire simultaneously. Enabled spontaneous transitions can fire
regardless of other transitions. For example, the transition 4
in Figure 1 is forced and other transitions are spontaneous.
Accordingly, the transition set T' can be subdivided on two
disjoint sets: T = Spont U Forc, where Spont is the set of all
spontaneous transitions of the SNS, and Forc denotes the set
of all forced transitions of the SNS.

For any transition ¢, there can be three kinds of markings:
the marking on incoming flow arc ¢~, the marking on outgo-
ing flow arc t*, and the marking on incoming condition arc
t, defined as follows:

V(p,t), if [p,t] €F,
t=(p) :=
0, else,
V(p,t), if [t,p] €F,
£ (p) = { P b)
R else,
N Wi(p,t), if [p,t] €B,
t(p) := <l
0, else.

For any subset s = T, the markings s~ and s* denote the
sum of markings ¢~ and t*, respectively, and s represents the
union of markings f for t < s.

The firing of a spontaneous transition is determined by
the three factors listed below.

(1) Token concession

A transition is said to have a token concession or is token-
enabled when all the flow arcs from its preplaces are enabled.
More specifically, a flow arc is enabled when the token num-
ber in its source place is not less than its weight, that is,
m(p) = V(p,t). For example, given the marking m, tran-
sition t is token-enabled if t~ < m. Transitions which have
no preplaces are always marking-enabled.

(2) Permeability interval

The permeability interval defines the time constraints ap-
plied to the input flow arcs of transitions. A transition
A(p,t) € F is time-enabled only when clocks of all its pre-
places have a time u (p) within permeability interval of
the corresponding place-transition arc: eft(p,t) < u(p) <

It (p, t).

(3) Incoming condition signals

A spontaneous transition may have incoming condition arcs.
It is considered condition-enabled when all the condition sig-
nals on its incoming condition arcs are true, that is, f<m.
A spontaneous transition is eligible to fire only when it is
token-enabled, time-enabled, and condition-enabled.

V. Vyatkin and G. Bouzon

2.4. Step and state transitions

SNSs are executed in steps, meaning that for each state tran-
sition there is a unique set of concurrently firing transitions
s © T. A state is dead if no further step is enabled or will
be enabled by elapsing time. For nondead states, the delay
D(m, u) denotes the minimum amount of elapsed time be-
fore a step is enabled.

A step is referred to as executable at the state [m, u] if all
of its constituent transitions fire after D(m, u). The execution
of an executable step s at state [m, u] is accomplished by first
elapsing D(m, u) amount of time and then firing s.

The new state [m',u’] led by the execution of step s is
determined by

m =m-—s +st,
u(p) + D(myu), if m(p) >0 A m'® >0,

u'(p) = Ap & (Fs U sF),

0, otherwise.

2)

Subsequent step executions from the initial state con-
struct the reachability graph of the SNS model, which illus-
trates the relationship of all realizable states within the state
space. The reachability graph of a timed SNS can be repre-
sented as a 3-tuple:

RG = (Z,R, %), (3)

where Z is a finite set of reachable states, R is a finite set of
state transitions, and zy is the initial state [#1g, ug].

For any subsequent states [m;, u;] and [mjy1, uir1] € Z,
there is a state transition 7 € R, such that [m;1, uiy1] is
reachable from [m;, u;] via state transition 7. This state tran-
sition is also denoted as [m, u] > [m’, u’].

2.4.1. Adding modularity to SNS

A basic net condition/event system [10] is an SNS augmented
by interface elements: condition and event inputs and out-
puts, which can be connected by event and condition arcs to
SNS transitions and places. A basic NCES without inputs is
SNS. A composite NCES consists of the interface elements
and a network of other NCES, interconnected by event and
condition arcs with each other and with the interface ele-
ments.

The NCES concept provides a basis for a compositional
approach to build larger models from smaller components.
According to the rules presented in [11], the composition is
performed by connecting inputs of one module with out-
puts of another module as depicted in Figure 2. The mod-
ularity, introduced in NCES, does not bring any semantic
consequences—the model analysis is applied to the SNS re-
sulting from the composition of several NCES modules.

The result of the composition of two NCES, N; and N,
is an NCES Nj;;, obtained as a union of the components.
The result of the composition again can be represented as a
new module. Inputs and outputs of the “composition” are

3
Module; Module;
N e
e <>—¢—>.<>
Ci] eop el
p2 pa
col cip cop

Module1+2

Cil

FIGURE 2: An example of a modular composition.

unions of the components’ inputs and outputs, except for
those which are interconnected to each other, and hereby
“glued,” that is, substituted by the corresponding condition
and event arcs. If the resulting NCES from Figure 2 is consid-
ered stand alone, its condition input can be neglected making
it semantically equivalent to the SNS from Figure 1.

The reachability graph of the model from Figure 2 is
shown in Figure 3, assuming that the input ci; of the Mod-
ulel is not assigned, thus neglecting the condition arc
(ciy, t1). The transitions are shown as arcs of the graph, and
are marked by names of NCES transitions simultaneously oc-
curred. Observing values of model parameters along a cer-
tain path in the reachability graph, one can draw a timing
diagram, like the one shown in the right part of Figure 3 for
some outputs of the NCES modules from Figure 2 (some of
which are inputs to another module).

NCES attempts to enhance the structured model de-
velopment of place-transition nets. NCES models can pre-
cisely follow the structure of popular block diagram mod-
elling and implementation languages, such as stateflow of
MATLAB/Simulink and the function blocks of the IEC61499
standard—new reference architecture [12] used for mod-
elling and implementation of distributed automation sys-
tems.

NCES were successfully used for modelling of traditional
automation systems built using programmable logic con-
trollers (PLCs), as presented, for example, in [1, 13], and of
distributed embedded control systems following IEC61499
systems, as explained in [14].

The trend to improve structuring and composition po-
tential of formal languages based on Petri net is seen in other
dialects of Petri nets, as reported in [15, 16].

2.5. Integrated tools for model creation,
editing, and analysis

The timing diagram specification technique explained in this
paper is a part of the tool chain for integrated modelling and

EURASIP Journal on Embedded Systems

Behavior along the path
Ml-eol
M1'C01 1 —
Mz-CO]

Sl S3 S4 S3 SZ Sl

(b)

FIGURE 3: Reachability graph describing the complete behaviour of
the model from Figure 2 and timing diagram in one of possible
traces.

verification of automation systems. The tool chain, described
in more details in [17], consists of

(1) a graphical editor of NCES models;

(2) the integrated environment for model assembly and
checking (VisualVerifier) that inputs model-type files
and is capable of assembling a composite, hierarchi-
cally organized model from modules contained in dif-
ferent libraries and translating the model into a “flat”
NCES with the through numbering of places and tran-
sitions.

Thus, module boundaries are removed and the model-
checking tools can be applied. In particular, the translator
generates files in the input format of SESA model-checker
[9].

Model-checkers like SESA prove properties of desired or
prohibited behaviour of NCES models in their reachability
space. A reachability graph like the one in Figure 3 is gen-
erated, and the properties are checked in its states or trajec-
tories. Properties of single states can be captured in form of
predicates, and properties of trajectories are usually defined
in temporal logic languages, such as computational tree logic
(CTL).

3. TIMING DIAGRAMS
3.1. Idea of use for specification

Capturing trajectory relevant properties in some formal lan-
guage like CTL is quite difficult for control engineers. The
idea of using timing diagrams for specification is to draw a
specification graphically and then ask the model checker: if
inputs behave as shown in the input diagram, will outputs
behave like in the output diagram? However, a single timing
diagram describes only a single scenario. Sometimes it is de-
sirable to define a class of input scenarios with certain prop-
erties and then check if certain output patters are observed
among all or any trajectories in the reachability graph. The
idea is illustrated in Figure 4. The diagram consists of two
parts: the upper (if) part presents the “input” part of guaran-
teed signals and the lower part is the “conjecture” to prove. In
this example, there is conditional restriction added between

Specification
M 1+€01
If | | Restis not
important
M 1:€C0q
M 1°€01 |—b I_
Then
M2 “CO1 | ¥
e e e3

FIGURE 4: Timing diagram specification.

the rising edge of M, - co; (event e;) and the falling edge of
M, - co; (event e3)—the restriction says that e; occurs after
e;. Note that the signal M, - co; belongs to both parts. In the
“Input” part, it is specified by a single wavefront change that
is simultaneous with the event M; - eo;. The waveform of the
same signal in the “output” diagram is more complicated.
Comparing the “then” part of the specification with the tim-
ing diagram of real behaviour in Figure 3, one sees that the
specification holds in the given path. The idea of this paper is
to enable such a check automatically using model checkers.

3.2. Definitions

The use of timing diagrams (TDs) as a method of formal
specification requires the definition of a graphical specifica-
tion and its semantics.

In a diagram, sequences of changes in signal specification
values are assigned to condition and event signals. Given the
subsets E € E™ U E°" and C < C™™ U C°, a specification for
a signal set A = E U C is described as a tuple S = (4, f,g),
where f = f. U f. defines sequences of specification values:
fer E = Z.* with ¥, = {noevent, maybe, always} specifies
sequences for event inputs and outputs, while f;: C — X.*
with 2, = {zero, any, stable, one} defines values for condi-
tion signals.

The partial function g: f(A) X N X f(A) XN - (>,=,
#) assigns an ordering operator (precedence, simultaneity,
or nonsimultaneity) between signal changes from different
signals, in such a way that g(a;, m, a;, n) indicates an ordering
restriction between the mth signal change of a; and the nth
signal change of a;.

A graphical description of a specification is illustrated in
Figure 5 (for a model with outputs “FAILURE”, “RESUME,”
and “SENS”). Signal changes at the beginning or ending of
the diagram are implicitly simultaneous. Nevertheless, no
further ordering is determined by the horizontal position of
signal changes; therefore, a timing diagram usually specifies
a partial ordering among signal changes.

The semantics associated to the diagram is as follows:
when the set of levels specified at the beginning of the dia-
gram is achieved, it is required that the sequence of changes
of the signals does not violate the partial ordering specified
in the diagram, until a final state is reached.

V. Vyatkin and G. Bouzon

Always

3 |

ent

Failure

Always
Maybe

N, t

INo-event =

One

Sens [ngfle \%

Zero

Resume

FIGURE 5: Specification including two event inputs, one condition
output and a simultaneity operator.

3.3. Specified signals

In order to describe specifications of NCES models, TDs
must provide different representations for event and con-
dition signals. Thus, we define the following possibilities of
specification:

(i) in the case of a condition signal, the specification may
have one of four possible levels: zero, corresponding
to a logical zero; any, representing the situation where
the signal might assume any logical value which can
change at any state transition; stable, which also means
undefined value, however assuming that the signal re-
mains at a single level; or one, corresponding to the
logical one;

(ii) event signals are specified in two possible levels: no
event, in the case where the occurrence of the event is
forbidden, and maybe, meaning that the event might
occur, it is also possible to specify an obligatory occur-
rence of the event signal (always), but in this case only
as a single pulse, because of the instantaneous nature
of an event signal.

We define a diagram event as any level change specified at a
condition signal; a level change from no event to maybe or
vice versa, at an event-signal; or a specification of an obliga-
tory occurrence of an event (always peak at an event signal).

3.4. Event ordering at different signals

If a partial ordering semantics is assumed, no prior ordering
of events on different signals is implicit. In other words, al-
though each signal presents an ordering of its events, two
events of different signals may occur at any sequence, except
when special operators explicitly define their sequence. On
the other hand, it is also possible to assume that the ordering
of all events is defined through their position at the visual
description. In this case, we are talking about a strict or se-
quential ordering.

Although more intuitive, adopting a sequential ordering
would limit the representational capabilities of a diagram.
Therefore, we adopt a partial ordering semantics for the TD
language. In this case, the same TD represents a set of pos-
sible behaviours of the system, each one represented by a
different event chain on the modelled system. Each chain is

One
Stable \
Any §;

Zero

One

Stable
Any $ | \

Zero

(a)

One
Stable
Any S1
Zero
One

Stable
Any S

Zero

(®)

FIGUre 6: Temporally independent signals (a) and event ordering

(b).

called scenario, and the set of scenarios defined by the dia-
gram is named diagram language.

In Figure 6(a), we observe the specification of two sig-
nals: s; and s,. Had we adopted a sequential ordering seman-
tics, only one scenario would compose the diagram language:
s27s17827. As the temporal dependence among events from
different signals is not predefined (assumed partial ordering
semantics), the same figure represents a TD with the fol-
lowing scenarios: (s2*,817)s275 827 (s17,827); 81782782~ and
s2*sy7s; 7. Figure 6(b) indicates the timing diagram that,
based on the adopted semantics, accepts as its only sce-
nario s;*s;”s;”, by introducing operators that indicate the
obligatory ordering among events from different signals. The
meaning of these operators will be stated in the next section.

In order to constrain the ordering of two events from dif-
ferent signals, we define the following precedence operators:

#: events are not allowed to occur simultaneously;

=: events must be simultaneous;

>: event from the first signal must occur prior to the event
from the second signal.

3.5. Specification of finite behaviour

The TD represents a finite behaviour that must be satisfied
by the model. The satisfaction of a TD is evaluated from the
moment when all specified signals are in their initial levels
and some of them execute an initial transition, as indicated
at the beginning of the diagram. The verification process
ends when all signals achieve their final state, indicated in the
end of the diagram. The initial part of the diagram, denom-
inated precondition, corresponds to a condition, whose satis-
faction by the model indicates that we must start comparing
the model’s behaviour with the remaining part of the TD.
The comparison ends up when the final part of the diagram,
called postcondition, is reached. Both pre- and postcondition
are highlighted at the diagram (Figure 7).

When a TD specifies a finite behaviour, different inter-
pretations are possible.

EURASIP Journal on Embedded Systems

One

Stable
Any
Zero O
One Iinitial state

Signal remains at its

Stal
Any |$— Transition during precondition

Zero
;\I—/
Precondition

;\,_/
Postcondition

FIGURE 7: Pre- and postcondition.

Existence of a scenario (from the diagram language): here
we require that at least one of the specified scenarios will oc-
cur at the model. In other words, there is a path at the state
tree of the model, where the precondition is satisfied and the
behaviour of the model does not contradict the specification.

Existence of all scenarios: the existence of each scenario
must be tested inside the state space of the model.

Generality of a single scenario: here a single scenario, from
the set of scenarios specified at the diagram, must be recog-
nized in every path, indicating a situation that has to occur
in the future, regardless of which path is taken by the model.

Generality of the diagram’s language: the behaviour spec-
ified at the diagram will eventually occur, no matter which
scenario is in each path from the state tree of the model. No-
tice that, in this case, the existence of a path with no occur-
rence of the precondition would already be a counterexam-
ple.

Satisfaction of a single scenario: every satisfaction of the
precondition must be followed by the satisfaction of the
same scenario, among those that are possible according to
the specification. This corresponds to an assume-guarantee
clause, where the precondition plays the role of an assump-
tion that, when fulfilled, guarantees the occurrence of a given
sequence of events.

Satisfaction of the diagram: the specified behavior must
not be contradicted, which means that every occurrence of
the precondition at the model leads to a behaviour that is ac-
cepted by the diagram language. As a particular case, a model
that presents no occurrence of a given precondition satisfies
every specification starting with this precondition. The fol-
lowing topics will be based on this interpretation of the TD.

3.6. Specification of infinite behaviour

The timing diagram could also correspond to a specification
to be satisfied from the time when the precondition occurs,
without the need to specify a postcondition. In this case, the
final state specified at the diagram would correspond to a re-
striction that must not be violated.

The absence of a specification for the precondition could
indicate that the initial state of the model should comply with
the levels specified at the beginning of the diagram. Although
these two approaches also present a practical appeal, the ab-
sence of postcondition or precondition will not be issued in
the work, as a matter of simplicity.

In order to allow the translation of the timing diagram
into a formal model, some requirements have to be done in

respect to the events presented in each signal. Diagrams sat-
isfying the requirements are said to be feasible.

4. NCES MODEL OF TIMING DIAGRAMS

When verifying autonomous NCES models without inputs,
each signal specification is translated into an NCES supervi-
sor module comprising two basic submodules: an event gen-
erator creates sequences of transitions, one for each change
of level specified for the signal. Each transition stimulates,
through an event arc, the corresponding event input of a sig-
nal generator, which causes the output of the signal generator
to recreate the signal according to the input stimulated. Or-
dering operators are translated into special places and tran-
sitions that create interdependency of event generators.

The verified module is then connected through event
arcs to the event generators of the corresponding signals,
in such a way that every change of signal in the first is re-
ported to the latter. Along with the translation of the specifi-
cation into NCES modules, a set of automatically generated
temporal-logic statements is created. The composite module
is then model-checked against these statements to verify if
each transition at the supervisor always fires whenever the
corresponding transition at the verified module is fired.

The graphical specification also provides automatic test
possibilities for input/output behaviour or nonautonomous
NCES modules. In this case, the NCES supervisor modules
that describe input signals are used for generating the speci-
fied sequences of input signal changes, while the output sig-
nals are again verified as described before. The components
of the NCES model of the timing diagram are detailed in the
following subsections.

4.1. Event generator

The main part of the NCES model for the specification is
called event generator and consists of a set of parallel processes
(sequences of transitions and places), started simultaneously
by the firing of a transition denoted ty,,. Each process is re-
sponsible for reproducing the behavior specified for one sig-
nal. Events on the signals are translated into transitions at the
processes.

For each signal i, there is a place pnotstart;i Which is a pre-
place of tyar and postplace of the last transition of the cor-
responding process. The transition tyar indicates the begin-
ning of the timing diagram. The situation where the diagram
language is not being executed corresponds to the marking
Protstarti =1 for every signal i.

In the case that at least a signal j has the marking
Protstartj = 0, the marking protstart,i = 1 for a signal i indicates
that this signal has already achieved the last level specified at
the diagram.

The precedence relationships among events of different
signals are mapped to special interconnections among the
corresponding processes, as will be detailed in the following
section.

V. Vyatkin and G. Bouzon

Behavior of jig Sequence \\
input A AN
P N
L% . . .
= Condition signal
B @Pl :
NN »O tl €0y
N 0 e01 zero
f>oone
p2 p<fstable not_signal
P2 Foany signal
5]
SC HAof
p3
p3
N t3 50%
13
P4
P4
ty €04
| s eoy
ps
ps
R ts €05
i A a—

FiGure 8: Translation of a single specification for a condition output, and linking to the verified model.

Condition signal generator

7ero tozero

ez'1

not_signal

|

co1

signal

[0

one tio
eip M ty L—L|tm\)
resetter
v
t\aﬂx
stable tostable /7 p3
ei3 M f _/p3 < f7
any
toan P4 t
eiy V2ly Y ’
I3 P4 tg

FIGURE 9: Generator of condition signals.

4.2. Signal generation module

For each specified signal, we create a signal generator mod-
ule which reproduces, at its output, the possible values for
the signal, according to the level specification stimulated at
its input. Each event on the timing diagram (modelled by
the firing of a transition at the event generator) stimulates,

by an event arc, the corresponding change at the signal gen-
erator, which guarantees that the NCES module, resulting
from the combination of the event generator with the sig-
nal generators, will reproduce at its output the diagram lan-
guage. The idea is illustrated in Figure 8. To each condition
signal included at the specification is assigned a signal gen-
erator module with four event inputs, corresponding to the

EURASIP Journal on Embedded Systems

Event signal generator

no-_event

eil

maybe

ei2

1,
6 - result event
-—‘V \—I<
ty eo

always

ei3

Model to be

verified (XML)

L=

U=

Specification

Composite model
(XML)

i}

Composite model
|:> (verifed model +

specification model)

(XML)

J

Model under SESA format
.pnt file (SNS model) .in

(script/eCTL formulas)

=

FiGure 11: User interface of the TDE tool and file formats adopted for data storage.

four possible specification levels, and two condition outputs,
indicating the two possible values assumed by the condition
signal (zero or one).

Figure 9 shows the structure of a signal generator for a
condition signal.

The transitions tozero, toone, tostable, and toany receive
event arcs, respectively, from the zero, one, stable, and any
event inputs.

Firing one of these transitions means that the corre-
sponding signal has changed its specification level to, respec-
tively, zero, any, stable, or one—in other words, a diagram
event has occurred. The condition outputs not_signal and
signal are linked to the internal places zero_p and one_p. The
remaining transitions and places implement the desired non-
deterministic behaviour, after the firing of tostable and toany,
the marking of places zero_p and one_p should be nondeter-
ministic, and may change randomly in the latter case, until

another input event is stimulated. The place p, always has a
conflict with respect to transitions 5 and t; leading to non-
deterministic choice in case of the signal “to stable” (i.e., the
stable value can be assigned either to 0 or to 1).

Figure 10 presents the internal structure of a signal gen-
erator for an event signal.

Event signals are represented by modules with three event
inputs, corresponding to the three possible specification val-
ues, and an event output, whose firing corresponds to the
generation of the event. Internally, this generation corre-
sponds to the firing of the result transition.

The transitions to_noev# (1 and 2), to_maybe# (1 and
2), and to_always# (1 and 2) are fired by stimulating the
no_event, maybe, and always inputs, respectively. Every di-
agram event leads to the firing of at least one of these
transitions—actually, an always peak at the specification, fol-
lowed by the specification of a new level, implies that both

V. Vyatkin and G. Bouzon

the result and the transition that leads to the new level speci-
fication (to_noev# or to_maybe#) will be enforced to fire.

5. PROGRAM IMPLEMENTATION

The timing diagram editor (TDE) is an application devel-
oped with the aims of providing the following functionali-
ties.

(i) Create, edit, save, and load specifications of function
blocks whose internal logic is specified by means of an
NCES. These specifications are generated and visual-
ized graphically as timing diagrams, while each signal
at the timing diagram may be of one of the following
types: event signals and condition signals; the signal
levels allowed for each type of signals that were pre-
sented above.

(ii) Translate the combination of a function block and the
behaviour specified for it into a composite finite state
model (NCES) and temporal propositions written in
the eCTL [18] format, in such a way that the composite
model, and consequently the original function block,
can be verified formally with the aid of the SESA tool
[19]. If all the generated eCTL propositions evaluate to
true with regard to the composite model, we conclude
that the behaviour of the original model satisfies the
specification.

The TDE tool uses XML as a storage format for both tim-
ing diagrams and NCES models and converts them to the
input formats of the SESA model checker as illustrated in
Figure 11.

6. CONCLUSION

The paper presented the idea of visual specification language
to be used with modular discrete models, in particular of
plant-controllers systems. Future work will include integra-
tion of this language to the visual verification framework
[17].

ACKNOWLEDGMENTS

The authors express their gratitude to Professor Hans-
Michael Hanisch, who supervised this work and significantly
contributed to its success. The work was supported in part
by the Deutsche Forschungsgemeinschaft under the reference
Ha 1886/10-2 and Ha 1886/12-2 and by the University of
Auckland (Grants UARC 3607207 and 3607893).

REFERENCES

[1] H.-M. Hanisch, J. Thieme, A. Liider, and O. Wienhold, “Mod-
eling of PLC behaviour by means of timed net condition/event
systems,” in Proceedings of the 6th IEEE Conference on Emerging
Technologies and Factory Automation (ETFA °97), pp. 391-396,
Los Angeles, Calif, USA, September 1997.

[2] K. Fisler, “Timing diagrams: formalization and algorithmic
verification,” Journal of Logic, Language, and Information,
vol. 8, no. 3, pp. 323-361, 1999.

[3] N. Amla, E. Emerson, R. Kurshan, and K. Namjoshi, “Model
checking of synchronous timing diagram,” in Proceedings of
the Formal Methods in Computer Aided Design (FMCAD °00),
Austin, Tex, USA, November 2000.

[4] R. Schlor, A. Allara, and S. Comai, “System Verification using
User-Friendly Interfaces,” in Design, Automation and Test in
Europe, pp. 167-172, IEEE Computer Society Press, 1999.

[5] V. Vyatkin and H.-M. Hanisch, “Application of visual specifi-
cations for verification of distributed controllers,” in Proceed-
ings of the IEEE International Conference on Systems, Man and
Cybernetics, vol. 1, pp. 646-651, Tucson, Ariz, USA, October
2001.

[6] G.Bouzon, V. Vyatkin, and H.-M. Hanisch, “Timing diagram
specifications in modular modelling of industrial automation
systems,” in IFAC World Congress, Prague, July 2005.

[7] M. Rausch and H.-M. Hanisch, “Net condition/event systems
with multiple condition outputs,” in Proceedings of the IEEE
Conference on Emerging Technologies and Factory Automation,
vol. 1, pp. 592-600, Paris, France, October 1995.

[8] H.-M. Hanisch and A. Liider, “Modular modelling of closed-
loop systems,” in Proceedings of the Colloquium on Petri Net
Technologies for Modelling Communication Based Systems, pp.
103-126, Berlin, Germany, October 1999.

[9] P. Starke, S. Roch, K. Schmidt, H.-M. Hanisch, and A. Liider,
“Analysing Signal-Event Systems, Humbold,” http://www
.ece.auckland.ac.nz/~vyatkin/tools/modelchekers.html.

[10] V. Vyatkin and H.M. Hanisch, “Re-use in Formal Modeling
and Verification of Distributed Control Systems,” in Proceed-
ings of the IEEE Conference on Emerging Technologies and Fac-
tory Automation (ETFA’05), Catania, Italy, September 2005.

[11] J. Thieme, “Symbolische Erreichbarskeitanalyse und automa-
tische Implementierung struktuirter,” Dissertation zur Erla-
gung des Grades Dr.-Ing, zeitbewerter Steuerungsmodelle,
Berlin: Logos Verl, 2002.

[12] Function Blocks for Industrial Process Measurement & Con-
trol Systems, “International Electrotechnical Commission,”
Part 1: Architecture, 2005.

[13] H.-M. Hanisch, A. Lobov, J. L. Martinez Lastra, R. Tuokko,
and V. Vyatkin, “Formal validation of intelligent-automated
production systems: towards industrial applications,” Interna-
tional Journal of Manufacturing Technology and Management,
vol. 8, no. 1-3, pp. 75-106, 2006.

[14] V. Vyatkin and H.-M. Hanisch, “Verification of distributed
control systems in intelligent manufacturing,” Journal of Intel-
ligent Manufacturing, vol. 14, no. 1, pp. 123-136, 2003, special
issue on Internet Based Modelling in Intelligent Manufactur-
ing.

[15] L. Gomes and J. P. Barros, “Structuring and composability is-
sues in petri nets modeling,” IEEE Transactions on Industrial
Informatics, vol. 1, no. 2, pp. 112-123, 2005.

[16] N.Hagge and B. Wagner, “A new function block modeling lan-
guage based on petri nets for automatic code generation,” IEEE
Transactions on Industrial Informatics, vol. 1, no. 4, pp. 226—
237, 2005.

[17] “Visual Verification Framework,” http://www.tb61499.com/
valid.html.

[18] S. Roch, “Extended computation tree logic,” in Proceedings of
the Workshop on Concurrency, Specification and Programming,
Berlin, Germany, 2000.

[19] “SESA—Signal/Net System Analyzer,” http://www.ece.auck-
land.ac.nz/~vyatkin/tools/modelchekers.html.

	1. INTRODUCTION
	2. NET CONDITION/EVENT SYSTEMS
	2.1. Definition of SNS
	2.2. State of SNS model
	2.3. Firing rules
	(1) Token concession
	(2) Permeability interval
	(3) Incoming condition signals

	2.4. Step and state transitions
	2.4.1. Adding modularity to SNS

	2.5. Integrated tools for model creation, editing, and analysis

	3. TIMING DIAGRAMS
	3.1. Idea of use for specification
	3.2. Definitions
	3.3. Specified signals
	3.4. Event ordering at different signals
	3.5. Specification of finite behaviour
	3.6. Specification of infinite behaviour

	4. NCES MODEL OF TIMING DIAGRAMS
	4.1. Event generator
	4.2. Signal generation module

	5. PROGRAMIMPLEMENTATION
	6. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

