Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2008, Article ID 171358, 9 pages
doi:10.1155/2008/171358

Research Article

Novel Methodology for Functional Modeling and
Simulation of Wireless Embedded Systems

Emma Sosa Morales, Giorgia Zucchelli, Martin Barnasconi, and Nitasha Jugessur

NXP Semiconductors, Corporate Innovation and Technology, High Tech Campus 37, 5656AE Eindhoven, The Netherlands

Correspondence should be addressed to Emma Sosa Morales, emma.sosa.morales@nxp.com

Received 12 October 2007; Accepted 8 April 2008

Recommended by Christoph Grimm

A novel methodology is presented for the modeling and the simulation of wireless embedded systems. Tight interaction between
the analog and the digital functionality makes the design and verification of such systems a real challenge. The applied methodology
brings together the functional models of the baseband algorithms written in C language with the circuit descriptions at behavioral
level in Verilog or Verilog-AMS for the system simulations in a single kernel environment. The physical layer of an ultrawideband
system has been successfully modeled and simulated. The results confirm that this methodology provides a standardized
framework in order to efficiently and accurately simulate complex mixed signal applications for embedded systems.

Copyright © 2008 Emma Sosa Morales et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. INTRODUCTION

Today’s telecommunication systems embed high perfor-
mance analog, mixed-signal, radio frequency (RF), and
digital circuitry in a single chip. An example of such an
embedded system is the NXP semiconductors wireless USB
end-to-end silicon solution based on the ultrawideband
(UWB) technology [1].

UWB systems operate at radio frequency in the GHz-
range and use advanced modulation methods such as
orthogonal frequency-division multiplexing (OFDM), fast
frequency hopping techniques, smart radio control, and
calibration to maximize link reliability and channel efficiency
but also to minimize interference with other services. Grow-
ing complexity in the RF front end as well as very accurate
digital signal processing is observed. However, the analog
and digital subsystems are often developed separately. The
combination and tight interaction of RF implementation
with the baseband algorithms, required by calibration and
control loops, make the design and simulation of such
systems a real challenge.

The goal of this paper is to present a methodology for the
modeling and the simulation of the physical layer (PHY) of a
wireless system within a single simulation environment. This
framework enables the validation of the complete physical

layer, taking into account the interaction between the analog
and the RF models with the baseband algorithms described
in the C language.

This paper is organized in sections. In Section 2, the
challenges of next generation wireless systems are presented,
introducing the UWB as a relevant example. In Section 3,
the work related to the applied methodology is summarized.
In Section 4, the methodology is detailed. In Section 5,
an overview of the behavioral models for the UWB PHY
is given. In Section 6, the use of the Verilog Procedural
Interface (VPI) as part of the methodology is explained.
In Section 7, the results are presented for the UWB PHY
followed by the conclusions.

2. PROBLEM DESCRIPTION

In this section, the challenges of today’s wireless systems
are described and divided into two categories: design chal-
lenges, related to the technology and implementation of
such systems, and the subsequent modeling and simulation
challenges. The requirements that have to be fulfilled by
a design and verification methodology are mainly dictated
by the simulation challenges of these wireless embedded
systems.

EURASIP Journal on Embedded Systems

2.1. Design challenges

Next generation wireless systems are difficult to design
and verify due to extremely demanding requirements such
as high transmission frequencies, large bandwidth, sophis-
ticated modulation and coding techniques for high data
rate, fast frequency hopping, and low or strictly controlled
transmission power. All these features are present in the
UWB communication system.

WiMedia proposes the technical specifications for the
media access control and the physical layer of the UWB
system [2]. A multiband orthogonal frequency division mod-
ulation (MB-OFDM) scheme is specified for the physical
layer. The information is transmitted in packets which are
composed of a variable number of OFDM symbols according
to the achievable data rate. A total of 110 subcarriers is used
to transmit one OFDM symbol with a channel bandwidth of
528 MHz.

The available spectrum is divided into 14 bands which
cover the frequency range from 3.1GHz to 10.6 GHz.
To allow transmissions covering such a large bandwidth,
regulation bodies for different geographical regions have
put in place severe broadcast restrictions for power spectral
emissions of spurious and other interferences. By doing so,
UWB devices can make use of an extremely wide frequency
band while not emitting enough energy to be noticed by
narrowband devices nearby. Due to the restrictions regarding
power spectral emissions, the transmitted spread spectrum
signal has similar characteristics as wideband noise. There-
fore, sophisticated signal processing algorithms and receivers
with high sensitivity are required to recover the information
especially in the presence of interferers. Furthermore, to
increase the robustness, the UWB communication system
adopts fast frequency hopping across different frequency
bands.

2.2. Modeling and simulation challenges

The design challenges become true modeling and simulation
challenges when the physical layer has to be validated.
The high frequencies impose very small time steps for the
transient simulation which lead to long simulation times.
The approach of equivalent baseband modeling [3] does
not help to reduce the simulation time due to the large
bandwidth of the signals. The complex signal processing
and large channel bandwidth increase to a large extent the
amount of data that has to be handled by the simulator. In-
band and out-of-band interferences and the contribution of
noise also add to the complexity of the simulation.

The conventional approach for the design of complex
systems consists in dividing it into subsystems, each with
limited complexity. The subsystem specifications are defined
during the system exploration phase and are then passed
to different implementation teams. The design of these
subsystems is done by teams of specialists, often distributed
all over the world, using multiple and dedicated tools with
the consequence that the overall performance of the system
is not always monitored. Overspecification often results from
adopting a conservative approach to design the different

subsystems. Correction loops across multiple domains make
the system partitioning critical, requiring a strict definition
of the interfaces. Moreover, it is extremely difficult to prove
before the tape-out that the designed subsystems fulfill the
given requirements in realistic conditions (e.g., including
interferers and noise).

Another difficulty encountered when modeling and
simulating the whole system is due to the use of multiple
languages and simulation environments. Apart from provid-
ing a single simulation environment, a system design and
verification methodology should also fulfill the following
requirements.

(i) Single kernel solution: synchronization problems
due to the interaction between different simulation
kernels are avoided, resulting in better performance
and easier debugging.

(ii) Library independent: models described in standard-
ized languages can be used, thereby reducing the
dependency on vendors’ libraries. The user has the
freedom to decide the level of detail implemented in
the model. Refinements to include nonideal effects
during both top-down design and bottom-up veri-
fication are possible.

(iii) Tool independent: the implementation of the
methodology should be compatible with existing
mixed signal and mixed abstraction level design
environments and flows offered by commercial tool
vendors.

(iv) Reasonably fast: tradeoffs between modeled impair-
ments, accuracy, and simulation speed should be
possible in the simulation framework for both RF and
baseband models.

(v) Aligned with the design community: existing design
methodologies, modeling approaches, and standard-
ized languages used by the system and circuit design
community should be supported.

(vi) Support vector processing: to handle OFDM and
other complex modulation techniques, vector pro-
cessing should be facilitated by the simulation frame-
work.

The next section gives an overview of the different solutions
available to address the simulation challenges described.

3. RELATED WORK

The complexity of today’s telecommunication systems trig-
gers electronic design automation tool vendors and uni-
versities to provide solutions or study alternatives, ranging
from supporting multiple description languages, combining
dedicated solvers, or even linking different environments
together.

In the past years, significant effort has been spent to
develop mixed signal tools combining digital and analog
solvers in a single framework and to support mixed signal
languages [4, 5]. Nowadays, most major tool vendors provide
a solution for the circuit implementation, modeling, and
verification of mixed signal applications [6-8].

Emma Sosa Morales et al.

Most recently, the main effort to tackle the system
complexity has been dedicated to combining different levels
of design abstraction, facilitating both top-down design
and bottom-up verification [9-11]. MATLAB and the C
language are often used for the definition of the system
specifications and are widely recognized as the languages for
system level design [12]. The lack of connection between
the dedicated tools used for system level design and the
ones used for circuit level implementation has lead to the
trend of cosimulation support. Most commercial system level
tools have an interface to C language and MATLAB [13-
15] and provide cosimulation solutions with mixed signal
integrated circuit (IC) design simulators. The list of available
links among different tools and environments can easily get
lengthy including all possible flavors of analog, digital, and
REF solvers. Some examples include MathWorks Simulink and
Cadence AMS Designer or Mentor Graphics AdvanceMS,
Agilent ADS-Ptolemy and Cadence AMS Designer or Agilent
Circuit Envelope, Agilent ADS-Ptolemy and Cadence NcSim
or Mentor Graphics ModelSim, CoWare SPD and Cadence
AMS Designer.

However, the configuration of the environment and the
test bench for the cosimulation is often not trivial and
requires extra effort from the architect or the designer.
Moreover, converter blocks are often necessary to enable
the communication between the simulators [16]. These
converter blocks make the interface less transparent. The
tight communication between different solvers needed in a
cosimulation approach is a potential source of synchroniza-
tion problems, deteriorating the simulation performances in
terms of speed and increasing the difficulty of the debugging
process.

A single kernel solution linking system level with mixed
signal IC design presents advantages over cosimulation
solutions [3, 17]. The possibility of using standardized
programming interfaces to call C code functions within
hardware description languages (HDL) models overcomes
the limitations of cosimulation and guarantees a transparent
definition of the simulation set up. To the authors knowl-
edge, the standardized interfaces [18, 19] have since long
been used to set up cosimulation with third-party tools [10]
and for testing purposes [20, 21]. The innovative approach
described in the next section proposes the use of such
interfaces to embed digital signal processing in a mixed signal
environment without the penalties of cosimulation.

4. APPLIED METHODOLOGY

In this section, the methodology to address the modeling and
simulation challenges is introduced.

The methodology is based on the following three ele-
ments:

(1) the use of a mixed signal simulator to combine analog
and digital signals in a single kernel environment;

(2) the use of behavioral models to describe the func-
tionality of the RF and mixed signal blocks with
standardized languages and the use of high-level
languages (C/C++) for algorithms;

(3) the use of an environment that allows functional
description in combination with circuit level imple-
mentation to enable mixed abstraction level simula-
tions.

The mixed signal simulator provides a framework where ana-
log and digital seamlessly come together. Such a framework
is obviously useful for the simulation of blocks described
at implementation level as transistor netlists and RTL.
Most behavioral languages are supported by mixed signal
simulators, allowing both top-down and bottom-up design
methodologies: systems can be modeled and simulated at
different levels of design abstraction.

Through standardized languages, dedicated behavioral
models can be developed extending the commercially avail-
able libraries. Since the simulation speed depends on the
amount of details captured (e.g., impairments), models
can be refined to achieve the desired compromise between
accuracy and simulation speed. In-house developed mod-
els are intellectual property (IP), representing a valuable
asset that can be exchanged among design groups, thereby
increasing the level of expertise and IP reuse. Examples of
behavioral models for the functional description of the UWB
RF transceiver are presented in Section 5.

In a mixed signal IC design environment, Verilog and
Verilog-AMS are often used to model the digital and analog
implementation. However, for more complex systems such as
OFDM modems, where many computations are done using
vector or matrix operations, these HDL languages do not
offer sufficient semantics for efficient functional modeling
[3, 17]. Languages such as C or C++ are often used for
this purpose. The Verilog Procedural Interface (VPI) [18]
allows calling algorithm descriptions in C language from
within Verilog or Verilog-AMS modules. In Section 6, the
interaction between a given C function and a Verilog or
Verilog-AMS module through the VPI is described.

Since the VPI is part of the IEEE 1364 standard for Ver-
ilog HDL and supported by most tools vendors, the applied
methodology is tool-independent and can be implemented
in several commercially available simulation environments.

Figure 1 shows the philosophy behind the methodology.
Within a single environment, C language, behavioral models,
transistor netlists, and RTL can be brought together. This
methodology offers a framework in which the challenges
of next generation communication systems can be handled.
The standardized VPI for mixed abstraction level simula-
tions combined with the standardized HDLs for behavioral
modeling and a mixed signal environment results in a
differentiating methodology compared to other solutions
available on the market.

5. MODELING THE UWB PHYSICAL LAYER

In this section, the models for each block of the UWB
PHY and their interfaces are described. The baseband algo-
rithms, compliant with the WiMedia specification, are first
explained. The functional description of each constituent
of the RF transceiver is then summarized. These models
have simple characteristics and introduce only fundamental

EURASIP Journal on Embedded Systems

Analog Digital
E Behavioral @
2 models language
w
Unified
simulation
environment
5 Transistor
= netlist RTL
O

Ficure 1: With the applied methodology, different levels of design
abstraction for the analog and digital domains come together in the
same framework.

impairments. Within the framework, further refinement of
the models is possible.

Figure 2 shows the block diagram of the UWB PHY.
Behavioral models have been developed in Verilog-A or
Verilog-AMS for the RF transceiver and in C language for the
baseband. These models are combined together in a single
test bench for system validation. Within the same test bench,
the functional models can be replaced by transistor level
descriptions for circuit-level validation in the system context.
This framework therefore facilitates complex mixed signal
and mixed abstraction level simulations.

5.1. Baseband models

The baseband transmitter generates the OFDM signal com-
pliant to the physical layer specification of the WiMedia
proposal. This requires algorithms for digital signal process-
ing: scrambling, forward error correction, code interleaving,
constellation mapping, OFDM modulation using inverse fast
Fourier transformations, insertion of pilots, guard carriers
addition, and cyclic prefix addition.

This functional model is described as a C code function
that generates two vectors representing one frame of the in-
phase I and quadrature Q components of the OFDM signal.
It also generates the signal which controls the local oscillator
frequency of the IQ Modulator. The transmission rate and
the length of the packet are among the parameters of the
baseband transmitter model.

The baseband receiver implements the inverse operations
of the baseband transmitter. In order to recover the trans-
mitted data, the following procedures are used: timing and
frequency offset correction, OFDM demodulation using fast
Fourier transformations, channel correction, constellation
demapping (digital demodulation), deinterleaving, forward
error correction decoding and descrambling.

The functional model of the baseband receiver is imple-
mented as a C code function. It takes as inputs the I and
Q components of the OFDM signal and the information

passed from the synchronizer in order to extract the payload
from the packet. The model has the same parameters as the
baseband transmitter.

The synchronizer calculates, per sample of the I and
Q components, the information needed by the baseband
receiver to identify the payload in the packet. The synchro-
nizer also recovers the hopping sequence and controls the
local oscillator frequency of the IQ demodulator.

The functional model of the synchronizer is imple-
mented in C language and does not have any user-defined
parameters.

5.2. RF transceiver models

The IQ modulator and demodulator, respectively, up- and
down-convert the I and Q samples with a carrier frequency
that changes from symbol to symbol. A defined hopping
sequence is used to generate the carriers that drive the mixer
for the frequency conversion.

The Verilog-AMS models of the modulators [22] include
nonidealities such as third-order distortion and gain com-
pression. To simplify the model interface, the local oscillator
is described as an internal signal. The parameters of the
model are the input impedance, output impedance, voltage
conversion gain, and input referred third-order intercept
point. The demodulator model also contains a low pass filter
to reject the signal image of the demodulated signal at the
higher frequency.

The TX filter and the RX filter, respectively, filter the sym-
bols generated by the baseband transmitter and recovered by
the demodulator.

The Verilog-AMS models of the filters implement a linear
Laplace function with poles and zeros as arguments. The
poles and zeros are extracted from the circuit implementa-
tion after a pole-zero analysis. Input and output impedances
are specified as parameters.

The PA and LNA amplify the signal power to compensate
for the channel attenuation.

The Verilog-A model of the amplifiers includes second-
order distortion, third-order distortion, and gain compres-
sion. The parameters of the models are the input impedance,
output impedance, voltage conversion gain, input referred
third-order intercept point, and input referred second-order
intercept point.

The channel represents the pathway over which data is
transferred from the antenna of the transmitter to the one of
the receiver.

A Verilog-A model describes an ideal channel with the
attenuation as a parameter. Interference, fading, multipath
delay spread, and other nonidealities can be included in the
model.

5.3. Interfaces

The signal types at the interfaces of the Verilog-AMS models
are either wreal or electrical. Signals of type wreal are discrete
in the time domain and are handled by the discrete event
solver. Wreal is therefore preferred at the baseband interface.
However, the electrical type is more appropriate for the

Emma Sosa Morales et al.

Hopping_tx

I
I - A Y Y
TX filter Channel

Baseband Q.tx IQ
transmitter|

modulator

5
Hopping.rx Location
Synchronizer
Irx
LNA]
—%: RX filter
IQ - Q.rx | Baseband
demodulator receiver

FIGURE 2: Block diagram of the UWB PHY with the baseband (in light grey) and the RF transceiver.

void vpi_wrapper ()

{

vpiHandle taskHandle, arglter;
vpiHandle inHandle, outHandle;
s_vpi_value inVal, outVal;
double *puffer;

taskHandle = vpi_handle(vpiSysTfCall, NULL);
arglter = vpi_iterate(vpiArgument, taskHandle);
if (arglter) {
inHandle = vpi_scan(arglter);
outHandle = vpi_scan(arglter);
if (inHandle && outHandle) {
inVal.format = vpilntVal;
vpi_get_value(inHandle, &inVal);
/* Call to user-defined C function */
user_func(inVal.value.integer, buffer);
outVal.format = vpiRealVal;
outVal.value.real = *buffer;
vpi_put_value(outHandle, &outVal, NULL,
vpiNoDelay);

ExampLE 1

description of analog and RF signals. This type is handled
by the analog solver (continuous time) which has to solve
the differential equations from Kirchoff’s laws at all electrical
nodes.

6. EMBEDDING C CODE

This section describes the embedding of C code in a mixed
signal IC design environment. The interaction between a
C code function and a Verilog or Verilog-AMS model is
through the Verilog procedural interface. The main features
of the VPI are described in Section 6.1. The introduction
of the notion of time within the VPI and the handling of
the event synchronization and the vector processing for the
UWB PHY are detailed in Section 6.2.

6.1. Verilog Procedural Interface

The Verilog Procedural Interface is the programming inter-
face for the Verilog hardware description language and
standardized under IEEE 1364. The VPI allows the writing of
applications to create simulator tasks or functions that can
be called from within Verilog HDL designs. VPI applications
are dynamically loaded by the simulator, thereby making the
system task or function part of the simulator executable.
These user-defined system tasks are called from the HDL
design during simulation.

In the presented methodology, the VPI is used to embed
C code functions describing the baseband algorithms in
an IC design environment. All the functionalities and the
flexibility of the C language with respect to dynamic vector
allocation (pointers) are supported within the VPI making
it suitable for the support of vector-based digital signal
processing.

Figure 3 shows the interaction between a C code function
and a Verilog or Verilog-AMS module through the VPI. The
functionality to be imported is described as a C code function
(inner kernel in Figure 3). By using the access and utility
routines provided by the VPI, a wrapper is built around this
C code function. The wrapper handles the inputs/outputs
and allows the C code function to interact with the ports
and variables of the Verilog-AMS module. Two functions
are used for this purpose: vpi_get_value() and vpi_put_value().
vpi_get_value() is used to read a value from the Verilog-AMS
module and to make it available to the C code function.
vpi_put_value() allows the writing of the results calculated
by the C code function to the Verilog-AMS module. Within
the wrapper, any necessary signal type conversion is handled.
No additional models is necessary to translate the signals
as compared to cosimulation solutions where dedicated
interfaces (e.g., connect modules) are often required.

In Example 1, the code in C language shows an example
of how to combine the utility functions provided by the VPI
in order to build the wrapper.

Once the wrapper is built, it needs to be registered as
a simulator task or function and compiled into a shared
object library. In our case, gcc has been used for compilation
and linking and provides all standards options for debugging
the C code function. The debugging possibilities of the VPI
functions within the IC design environment are, however,

EURASIP Journal on Embedded Systems

Verilog-AMS module

C wrapper for VPI \

-

A

C code function

vpi_get_value(- - -)

vpi_put_value(- - -)

Registered simulation task

Verilog-AMS port

Registered call-back function

{@meem

Value passed to/from Verilog-AMS module
Internal variable of Verilog-AMS module

Registered simulation task compiled and dynamically loaded

FIGURE 3: Schematic representation of the interaction between the Verilog-AMS module and the C code function wrapped using VPI

routines.

g
3
£ 2
G V(1] e —
z | vz V(1]
& [Vi3l |
§~ V(4] T 2T) V(4] JnT Time
& V[-] V(2] V-]
g | Vin] .
=

F1GURE 4: Process of unrolling the vector generated by the C code
function in the time domain.

tool-dependent. The simulator task or function can be called
from a Verilog or a Verilog-AMS module. The shared object
is dynamically loaded during the elaboration phase.

In order to embed C code in a mixed signal IC design
environment, the user should have basic knowledge of the
C language as well as hardware description languages such
as Verilog or Verilog-AMS. Familiarity with C development
environments as well as with mixed signal simulators could
also prove to be useful. The steps of creating the wrapper,
registering the simulator task, compiling, and linking into a
shared object could be fully automated by tool vendors in
order to embed a C code function in a mixed signal IC design
environment.

TaBLE 1: Error on sampling time and characteristic frequency as a
function of precision.

Precision T (ns) AT (ps) Af (MHz)
1ns 2 106.060606- - - 29.568
1ps 1.894 0.060606- - - 0.017

6.2. Time management

With the described methodology, the wrapper is used for
introducing the concept of time that is otherwise not known
in the C code function. For a simulation in the time domain,
each sample is associated with a time stamp and is handled
as an event by the digital solver. The events are detected with
a finite accuracy. According to the chosen precision, a finite
number of digits are used to represent the time. The timing
error introduced with this approximated representation can
be interpreted as a fixed jitter on the sampling time. In
long simulation runs, this error can become relevant due
to its cumulative behavior. Synchronization problems arise
when events on a signal are missed due to the signal being
generated and sampled with clocks having the same sampling
rate but specified with different precisions.

The simulation time and the results depend on the cho-
sen precision. For the UWB system, the sampling time of the
baseband signals is 1.8939393- - - nanoseconds (1/528 MHz),
rounded to T by the digital solver. The resulting error AT
in the time domain affects the signal representation in the
frequency domain [23]. Table 1 shows the relation between

Emma Sosa Morales et al.

Frequency domain

~40
~60 I

Vour (dB)

-80 I {
-100

-120
325 35 375 4 425 45 475

Frequency (GHz)

Q)

Constellation

=

Hopping_tx Hopping_rx
Synchronizer
Irx
I tx
PA Y Y LNA

TX filter Channel RX filter | ()
Baseba'nd Q.tx 1Q 1Q
transmitter modulator demodulator Qurx

the chosen precision, the error introduced on the sampling
time, and the consequent error Af on the characteristic

frequency of the signal.

For a precision of 1 picosecond, the frequency error rela-
tive to the signal bandwidth is 17 kHz over 528 MHz which is
negligible. Furthermore, since the methodology makes use of
only one solver, the same precision is applied to all signals in
the system, thereby avoiding any synchronization problem.

The C code functions that describe the baseband algo-
rithms process vectors representing the signal packet or
frame without any notion of time. However, the capabilities

Time domain
(us)
0 100 200 300 400 500 600 700 800 900
) I . . S . |

I ! ! 0364001

’ 2EiI‘ll‘I\lll.li-Ihﬁli\l-‘Iﬁlllull‘II.HIIHIIIIi‘IIHJIIIILlliHlliIIIIIﬂﬂll.ﬂlﬂllrﬁlﬂhlilﬂinlﬂf;‘l‘ﬂlll
wumllmmnwuwlm\lw\unumll|l|ul|p|u-ml|uuwmll|"|m-|ll|l|mwmulnuqmwm;um

e 0000100000 000000 000000

0306l
b 0173924
s ¥ o e

EVM
o o

BER - 005 | 0107165
o

FiGURE 5: Abstracted view of the test bench and simulation results.

of vector processing from within Verilog modules are limited ~ blocks of the chain.

with the consequence that the vectors have to be processed

as a sequence of samples in the time domain. The unrolling

and the packing of the vectors are preferably done directly in 7. SIMULATION RESULTS

the wrapper using dedicated functions for controlling events

and adding time information.
The vectors generated by the C code function of the

The test bench for the functional simulation of the UWB
PHY and the performance results are described in this

baseband transmitter are unrolled in the wrapper to a section.

sequence of samples transmitted with a specific time stamp
as shown in Figure 4. The wrapper of the baseband receiver
samples the signals and packets them into a vector to be
processed by the C code function. This approach is very
flexible since the timing information as well as the length of
the vector can be adapted runtime according to the system
parameters and are not statically defined as in the case of
synchronous data flow solvers [24].

The data generated by the baseband transmitter are fed
through the RF chain and are then sampled and recollected
by the baseband receiver. For the correct functioning of the
system, the sampling frequency of the signal is known and is
the same for both the baseband transmitter and receiver.

Location
I_const|
EVM
sink
Baseband | Q-const
receiver '@
BER
sink

Due to the fact that a discrete event solver is used for
digital signal processing, the sampling rate is not a property
of each signal as it is for example in the case of a synchronous
data flow solver, where the rate is part of the scheduling
process. The knowledge of the correct sampling time is
essential for all signals that must be sampled by the successive
blocks in the chain. The sampling time could have been
retrieved with a specific function to recover the clock on
the receiver side. In our case, to limit the complexity of the
simulation, a clock is generated in the baseband transmitter
and triggers the sampling of the signals in the successive

The methodology is implemented using AMS Designer
[7], the mixed signal simulator of Cadence.

Figure 5 shows an abstracted view of the test bench
with the simulation results. The test bench combines the
functional models of the baseband transmitter and receiver
in C language, of the RF transceiver in Verilog-A or Verilog-
AMS together with the performance metrics. The frequency
spectrum is calculated using discrete fast Fourier transfor-
mations applied to the result of the transient analysis. The
constellation diagram is drawn by plotting the quadrature
output against the in-phase output of the baseband receiver.
The presented simulation results are qualitative and the
parameters of the functional models can be dimensioned

EURASIP Journal on Embedded Systems

according to the functional requirement specifications of the
UWB PHY.

The performance of the UWB system is evaluated in
terms of metrics such as bit error rate (BER) and error vector
magnitude (EVM). To evaluate the simulation performance
of the complete UWB PHY, a transient analysis is run
for 5 milliseconds which requires a simulation time of 3
hours. At the chosen rate of 110 Mbps, this corresponds to
approximately 143 packets of data and 590304 payload bits.
The number of processed bits is enough to evaluate the
EVM. However, the accurate estimation of the BER requires
a longer transient analysis.

To estimate the overhead introduced by the VPI, another
transient analysis of 5 milliseconds is done using a test bench
consisting of only the baseband models in C language. The
total simulation time required by this setup is less than 3
minutes. From the difference between the two run times,
it can be deduced that the contribution of the VPI to the
simulation time is negligible.

The framework shows the possibility of implementing
feedback loops. In the test bench, the synchronizer recovers
the hopping sequence from the received data and controls
the frequency of the local oscillator in the demodulator,
showing the tight interaction between the baseband and
the RF chain. This feedback loop is implemented without
introducing artificial delays in the system description.

The analog part of the UWB system is simulated
with a maximum time step around 25 picoseconds which
corresponds to a simulation bandwidth of 20 GHz. Such
a large simulation bandwidth not only allows the capture
of the spectral regrowth but also facilitates the addition of
interferers for coexistence studies.

8. CONCLUSIONS

The evolution of wireless communication standards has
lead to systems in which analog, RF, and mixed signal
functionalities have to be combined with digital signal
processing algorithms, calibration, and correction loops. The
functional simulation of such systems is a real challenge
when using existing methodologies and simulation tools that
have limited capabilities in handling mixed signal and mixed
abstraction level designs.

This paper has presented a methodology that enables
functional system verification in the time domain. The use of
a mixed signal simulator and the Verilog procedural interface
brings together analog and RF behavior in Verilog-AMS
models with baseband algorithms in C language, enabling
a true mixed signal and mixed abstraction level simulation
environment. A single kernel framework is used avoiding any
synchronization problem. The use of standardized languages
and interface makes the methodology library and tool
independent.

A demanding system, the ultrawideband physical layer,
has been selected to evaluate the methodology. Analog
behavioral models of the RF transceiver together with func-
tional models of the baseband allow raising the level of design
abstraction and coping with the system complexity. The test
bench serves as a framework for complex mixed abstraction

level simulations, where blocks at transistor level can be
verified in the system context. Algorithm exploration for the
calibration of impairments and compensation techniques in
the RF transceiver is also possible using the same test bench.
Feedback loops are simulated without any artificial delay
introduced by the simulation framework.

The results shown in this paper confirm that the
methodology can handle the complexity of modern mul-
tidisciplinary systems. A simulation platform is available
from which the system architects, the designers of integrated
circuits, and the algorithms can benefit, helping them to
manage the complexity of next-generation wireless embed-
ded systems.

REFERENCES

[1] NXP Semiconductors, UWB product literature, http://www
.nxp.com/acrobat_download/literature/9397/75015695.pdf.

[2] “High Rate Ultra Wideband PHY and MAC standards,”
standard ECMA 368.

[3] S. Joeres and S. Heinen, “Mixed-mode and mixed-domain
modelling and verification of radio frequency subsystems for
SoC-applications,” in Proceedings of the IEEE International
Behavioral Modeling and Simulation Workshop (BMAS °05),
pp- 54-59, San Jose, Calif, USA, September 2005.

[4] Verilog-AMS Language Reference Manual. Analog & Mixed-
Signal Extensions to Verilog HDL. Version 2.1, Accellera,
http://www.accellera.org/.

[5] IEEE Standard VHDL Language Reference Manual IEEE Std
1076, 2000.

[6] Mentor Graphics, product data sheet, http://www.mentor
.com/products/ic_nanometer_design/ms_circuit_simulation/
advance_ms/upload/ADMS_Datasheet.pdf.

[7] Cadence Design Systems, product data sheet, http://www
.cadence.com/datasheets/virtuoso_mmsim.pdf#page=7.

[8] Synopsys, product data sheet, http://www.synopsys.com/
products/discoveryams/discoveryams_ds.pdf.

[9] U. Knochel, T. Markwirth, A. Hartung, R. Kakerow, and R.
Atukula, “Verification of the RF subsystem within wireless
LAN system level simulation,” in Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition
(DATE *03), pp. 286-291, Munich, Germany, March 2003.

[10] S.Mu and M. Laisne, “Mixed-signal modeling using Simulink
based-C,” in Proceedings of the IEEE International Behavioral
Modeling and Simulation Workshop (BMAS °05), pp. 128-133,
San Jose, Calif, USA, September 2005.

[11] A. Sayinta, G. Canverdi, M. Pauwels, A. Alshawa, and W.
Dehaene, “A mixed abstraction level co-simulation case study
using systemC for system on chip verification ,” in Proceedings
of the Design, Automation and Test in Europe Conference and
Exhibition (DATE ’03), pp. 95-100, Munich, Germany, March
2003.

[12] G. Arnout, “C for system level design,” in Proceedings of

the Design, Automation and Test in Europe Conference and

Exhibition (DATE *99), pp. 384-386, Munich, Germany, March

1999.

Agilet EEsoft EDA, http://eesof.tm.agilent.com/.

The MathWorks, http://www.mathworks.com/.

CoWare, http://www.coware.com/.

U. Eichler, U. Knochel, S. Altmann, W. Hartong, and J. Har-

tung, “Co-simulation of Matlab/Simulink with AMS Designer

in System-on Chip Design,” SNE16/2 2006.

Emma Sosa Morales et al.

(17]

(18]

(21]

(22]

(23]

[24]

S. Joeres and S. Heinen, “Functional verification of radio
frequency SoCs using mixed-mode and mixed-domain sim-
ulations,” in Proceedings of the IEEE International Behavioral
Modeling and Simulation Workshop (BMAS °06), pp. 144-149,
San Jose, Calif, USA, September 2006.

C. Dawson, S. K. Pattanam, and D. Roberts, “The verilog
procedural interface for the verilog hardware description
language,” in Proceedings of the IEEE International Verilog HDL
Conference (IVC ’96), pp. 17-23, Santa Clara, Calif, USA,
February 1996.

E Martinolle and A. Sherer, “A procedural language interface
for VHDL and its typical applications,” in Proceedings of the
International Verilog HDL Conference and VHDL International
Users Forum (IVC/VIUF ’98), pp. 32-38, Santa Clara, Calif,
USA, March 1998.

L. Chun, Y. Jun, G. Gugang, and S. Longxing, “Domain
fault model and coverage metric for SoC verification,” in
Proceedings of IEEE International Symposium on Circuits and
Systems (ISCAS °05), vol. 6, pp. 5662-5665, Kobe, Japan, May
2005.

P. A. Riahi, Z. Navabi, and F Lombardi, “A VPI-based
combinational IP core module-based mixed level serial fault
simulation and test generation methodology,” in Proceedings
of the 12th Asian Test Symposium (ATS ’03), pp. 274277, Xian,
China, November 2003.

J. E. Chen, “Modeling RF Systems,” http://www.designers-
guide.org/.

R. B. Staszewski and R. Staszewski, “VHDL simulation and
modeling of an all-digital RF transmitter,” in Proceedings of the
5th International Workshop on System-on-Chip for Real-Time
Applications (IWSOC °05), pp. 233-238, Banff, Canada, July
2005.

E. A. Lee and D. G. Messerschmitt, “Static scheduling of
synchronous data flow programs for digital signal processing,”
IEEE Transactions on Computers, vol. 36, no. 1, pp. 24-35,
1987.

	1. INTRODUCTION
	2. PROBLEM DESCRIPTION
	2.1. Design challenges
	2.2. Modeling and simulation challenges

	3. RELATEDWORK
	4. APPLIEDMETHODOLOGY
	5. MODELING THE UWB PHYSICAL LAYER
	5.1. Baseband models
	5.2. RF transceiver models
	5.3. Interfaces

	6. EMBEDDING C CODE
	6.1. Verilog Procedural Interface
	6.2. Time management

	7. SIMULATION RESULTS
	8. CONCLUSIONS
	REFERENCES

