
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2007, Article ID 85318, 15 pages
doi:10.1155/2007/85318

Research Article
A High-End Real-Time Digital Film Processing
Reconfigurable Platform

Sven Heithecker, Amilcar do Carmo Lucas, and Rolf Ernst

Institute of Computer and Communication Network Engineering, Technical University of Braunschweig,
38106 Braunschweig, Germany

Received 15 May 2006; Revised 21 December 2006; Accepted 22 December 2006

Recommended by Juergen Teich

Digital film processing is characterized by a resolution of at least 2 K (2048×1536 pixels per frame at 30 bit/pixel and 24 pictures/s,
data rate of 2.2 Gbit/s); higher resolutions of 4 K (8.8Gbit/s) and even 8K (35.2Gbit/s) are on their way. Real-time processing at
this data rate is beyond the scope of today’s standard and DSP processors, and ASICs are not economically viable due to the small
market volume. Therefore, an FPGA-based approach was followed in the FlexFilm project. Different applications are supported on
a single hardware platform by using different FPGA configurations. The multiboard, multi-FPGA hardware/software architecture,
is based on Xilinx Virtex-II Pro FPGAs which contain the reconfigurable image stream processing data path, large SDRAMmem-
ories for multiple frame storage, and a PCI-Express communication backbone network. The FPGA-embedded CPU is used for
control and less computation intensive tasks. This paper will focus on three key aspects: (a) the used design methodology which
combines macro component configuration and macrolevel floorplaning with weak programmability using distributed microcod-
ing, (b) the global communication framework with communication scheduling, and (c) the configurable multistream scheduling
SDRAM controller with QoS support by access prioritization and traffic shaping. As an example, a complex noise reduction al-
gorithm including a 2.5-dimension discrete wavelet transformation (DWT) and a full 16 × 16 motion estimation (ME) at 24 fps,
requiring a total of 203Gops/s net computing performance and a total of 28Gbit/s DDR-SDRAM frame memory bandwidth, will
be shown.

Copyright © 2007 Sven Heithecker et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Digital film postprocessing (also called electronic film post-
processing) requires processing at resolutions of 2K × 2K
(2048×2048 pixels per anamorphic frame at 30 bit/pixel and
24 pictures/s resulting in an image size of 15Mibytes and a
data rate of 360Mbytes per second) and beyond (4×4K and
even 8K× 8K up to 48 bit/pixel). Systems able to meet these
demands (see [1, 2]) are used in motion picture studios and
advertisement industries.

In recent years, the request for real-time or close to real-
time processing to receive immediate feedback in interac-
tive film processing has increased. The algorithms used are
highly computationally demanding, far beyond current DSP
or processor performance; typical state-of-the-art products
in this low-volume high-price market use FPGA-based hard-
ware systems.

Currently, these systems are often specially designed for
single algorithms with fixed dedicated FPGA configurations.
However, due to the ever-growing computation demands
and rising algorithm complexities for upcoming products,
this traditional development approach does not hold for sev-
eral reasons. First, the required large FPGAs make it neces-
sary to apply ASIC development techniques like IP reuse and
floorplanning. Second, multichip and multiboard systems
require a sophisticated communication infrastructure and
communication scheduling to guarantee reliable real-time
operation. Furthermore, large external memory space hold-
ing several frames is of major importance since the embed-
ded FPGA memories are too small; if not carefully designed,
external memory access will become a bottleneck. Finally,
the increasing needs concerning product customization and
time-to-market issues require simplifying and shortening of
product development cycles.



2 EURASIP Journal on Embedded Systems

RAM RAM RAM RAM RAM RAM RAM RAM

C
on

f.

FPGA
XC2VP50

Router

8

8

8

8

8

8

FPGA
XC2VP50

FlexWAFE 1

FPGA
XC2VP50

FlexWAFE 2

FPGA
XC2VP50

FlexWAFE 3

2
×
8

2× 8

125

E
xt
en
si
on

bo
ar
ds

Host

2× 8 PCI-express 4X, 8Gbit/s bidirectional

8 Chip-2-Chip interconnection, 8Gbit/s

SDRAM channel, 32 bit, 125MHz DDR

RAM 1Gibit DDR-SDRAM, 32 bit, 125MHz

Control bus, 16 bit

Clock, reset, FlexWAFE conf.

Conf. IO-FPGA configuration flash

125 125MHz system clock

RAM RAM

RAM RAM RAM RAM RAM RAM

Figure 1: FlexFilm board (block diagram).

This paper presents an answer to these challenges in the
form of the FlexFilm [3] hardware platform in Section 2.1
and its software counterpart FlexWAFE [4] (Flexible Weakly-
Programmable Advanced Film Engine) in Section 2.2.
Section 2.3.1 will discuss the global communication architec-
ture with a detailed view on the inter-FPGA communication
framework. Section 2.4 will explain the memory controller
architecture.

An example of a 2.5-dimension noise-reduction appli-
cation using bidirectional motion estimation/compensation
and wavelet transformation is presented in Section 3.
Section 4 will show some example results about the quality of
service features of the memory controller. Finally, Section 5
concludes this paper.

This design won aDesign Record Award at the DATE 2006
conference [5].

1.1. Technology status

Current FPGAs achieve up to 500MHz, have up to 10Mbit
embedded RAM, 192 18-bit MAC units, and provide up to
270, 000 flipflops and 6-input lookup-tables for logic imple-
mentation (source Xilinx Virtex-V [6]). With this massive
amount of resources, it is possible to build circuits that com-
pete with ASICs-regarding performance, but have the advan-
tage of being configurable, and thus reusable.

PCI-Express [7] (PCIe), mainly developed by Intel and
approved as a PCI-SIG [8] standard in 2002, is the successor
of the PCI bus communication architecture. Rather than a
shared bus, it is a network framework consisting of a series
of bidirectional point-to-point channels connected through
switches. Each channel can operate at the same time with-
out negatively affecting other channels. Depending on the ac-
tual implementation, each channel can operate at speeds of 2
(X1-speed), 4, 8, 16, or 32 (X16) Gbit/s (full duplex, both di-
rections each). Furthermore, PCI-Express features a sophis-

13
Gb/s

13
Gb/s

13
Gb/s

13
Gb/s

13
Gb/s

13
Gb/s

13
Gb/s

13
Gb/s

8Gb/s 8 8

8Gb/s 8 88Gb/s

8Gb/s

8Gb/s

2 Gibit 2 Gibit 2 Gibit 2 Gibit

2 Gibit 2 Gibit 2 Gibit 2 Gibit

Processing
(FlexWAFE)

FPGAs

Router
FPGA

PCIe 4x
extension

Virtex-II pro V50-6
23616 slices
4.1 Mibit RAM
2 PPC
PCI-express
125MHz core clock

PCIe 4x to host PC

Figure 2: FlexFilm board.

ticated quality of service management to support a variety
of end-to-end transmission requirements, such as minimum
guaranteed throughput or maximum latency.

Notation

In order to distinguish between a base of 210 and 103 the IEC-
60027-2 [9] norm will be used: Gbit, Mbit, Kbit for a base of
103; Gibit, Mibit, Kibit for a base of 210.

2. FLEXFILM ARCHITECTURE

2.1. System architecture

In an industry-university collaboration, a multiboard, ex-
tendable FPGA-based system has been designed. Each Flex-
Film board (Figures 1 and 2) features 3 Xilinx XC2PV50-
6 FPGAs, which provide the massive processing power
required to implement the image processing algorithms.



Sven Heithecker et al. 3

PCI express
switch

PCI express
network

Router 1 2 3

Router 1 2 3

PCI express
host interface

FlexWAFE core FPGAs

Figure 3: Global system architecture.

Another FPGA (also a Xilinx XC2PV50-6) acts as a PCI-
Express router with two PCI-Express X4 links, enabling
8Gbit/s net bidirectional communication with the host PC
and with other boards (Figure 3).

The board-internal communication between FPGAs
uses multiple 8Gbit/s FPGA-to-FPGA links, implemented
as 16 differential wire pairs operating at 250MHz DDR
(500Mbit/s per pin), which results in a data rate of one 64-bit
word per core clock cycle (125MHz) or 8Gbit/s. Four ad-
ditional sideband control signals are available for scheduler
synchronization and back pressuring.

As explained in the introduction, digital film applications
require huge amounts of memory. However, the used Virtex-
II Pro FPGA contains only 4.1Mibit of dedicatedmemory re-
sources (232 RAM blocks of 18 Kibit each). Even the largest
available Xilinx FPGA provides only about 10Mibit of em-
bedded memory, which is not enough for holding even a sin-
gle image of about 120Mibit (2 K resolution). For this rea-
son, each FPGA is equipped with 4Gibit of external DDR-
SDRAM, organized as four independent 32-bit wide chan-
nels. Two channels can be combined into one 64-bit chan-
nel if desired. The RAM is clocked with the FPGA core clock
of 125MHz, which results at 80% bandwidth utilization in
a sustained effective performance of 6.4 Gbit/s per channel
(accumulated 25.6Gbit/s per FPGA, 102.4Gbit/s per board).

The FlexWAFE FPGAs on the FlexFilm board can be re-
programmed on-the-fly at run time by the host computer via
the PCIe bus. This allows the user to easily change the func-
tionality of the board, therefore, enabling hardware reuse by
letting multiple algorithms run one after the other on the
system. Complex algorithms can be dealt with by partition-
ing them into smaller parts that fit the size of the available
FPGAs. After that, either multiple boards are used to carry
out the algorithm in a full parallel way, or a single board
is used to execute each one of the processing steps in se-

quence by having its FPGAs reprogrammed after each step.
Furthermore, these techniques can be combined by using
multiple boards and sequentially changing the programming
on some/all of them, thus achieving more performance than
with a single board but without the cost of the full parallel
solution. FPGA partial-reconfiguration techniques were not
used due to the reconfiguration-time-penalty that they incur.
To achieve some flexibility without sacrificing speed, weakly-
programmable optimized IP library blocks were developed.

This paper will focus on an example algorithm that re-
quires a single FlexFilm board to be implemented. This ex-
ample algorithm does not require the FPGAs to be repro-
grammed at run time because it does not need more than
the three available FlexWAFE FPGAs.

2.2. FlexWAFE reconfigurable architecture

The FPGAs are configured using macro components that
consist of local memory address generators (LMC) that sup-
port sophisticatedmemory pattern transformations and data
stream processing units (DPUs). Their sizes fit the typi-
cal FPGA blocks and they can be easily laid out as macro
blocks reaching a clock rate of 125MHz. They are param-
eterized in data word lengths, address lengths and sup-
ported address and data functions. The macros are pro-
grammed via address registers and function registers and
have small local sequencers to create a rich variety of ac-
cess patterns, including diagonal zigzagging and rotation.
The adapted LMCs are assigned to local FPGA RAMs that
serve as buffer and parameter memories. The macros are
programmed at run time via a small and, therefore, easy
to route control bus. A central algorithm controller (AC)
sends the control instructions to the macros controlling the
global algorithm sequence and synchronization. Program-
ming can be slow compared to processing as the macros run
local sequences independently. In effect, the macros oper-
ate as weakly-programmable coprocessors known from Mp-
SoCs such as VIPER [10]. This way, weak programmabil-
ity separates time-critical local control in the components
from non-time-critical global control. This approach ac-
counts for the large difference in global and local wire tim-
ing and routing cost. The result is similar to a local cache
that enables the local controllers to run very fast because all
critical paths are local. An example of this architecture is de-
picted in Figure 4. In this stream-oriented processing system,
the input data stream enters the chip on the left, is processed
by the DPUs along the datapath(s), and leaves the chip on
the right side of the figure. Between some of the DPUs are
LMC elements that act as simple scratch pads, FIFOs or re-
ordering buffers, depending on their program and configu-
ration. Some of the LMCs are used in a cache like fashion
for the larger external SDRAM. The access to this off-chip
memory is done via the CMC, which is described in detail
in Section 2.4. The algorithm controller changes some of the
parameters of the DPUs and LMCs at run time via the de-
picted parameter bus. The AC is (re-)configured by the con-
trol bus that connects it to the PCIe router FPGA (Figures
1 and 4).



4 EURASIP Journal on Embedded Systems

External DDR-SDRAM

CMC
FPGA

LMC LMC

LMC

LMC

DPU DPU

DPU DPU

Algorithm controller (AC)

Input
stream(s)

Control bus
to/from
host PC
via PCIe

Local controllers

Datapaths

Parameter bus

Output
stream(s)

Figure 4: FlexWAFE reconfigurable architecture.

2.2.1. Related work

The Imagine stream processor [11] uses a three-level hierar-
chical memory structure: small registers between processing
units, one 128KB stream register file, and external SDRAM.
It has eight arithmetic clusters each with six 32-bit FPUs
(floating point units) that execute VLIW instructions. Al-
though it is a stream-oriented processor, it does not achieve
the theoretical maximum performance due to stream con-
troller and kernel overhead.

Hunt engineering [12] provides an image processing
block library—imaging VHDL—with some similarities with
the FlexWAFE library, but their functionality is simpler
(window-based filtering and convolution only) than the one
presented in this paper.

Nallatech [13] developed the Dime-II (DSP and imaging
processing module for enhanced FPGAs) architecture that
provides local and remote functions for system control and
dynamic FPGA configuration. However, it is more complex
than FlexWAFE and requires more resources.

The SGI reconfigurable application-specific computing
(RASC) [14] program delivers scalable configurable comput-
ing elements for the Altix family of servers and superclusters.

The methodology presented by Park and Diniz [15] is fo-
cused on application level stream optimizations and ignores
architecture optimizations and memory prefetching.

Oxford Micro Devices’ A436 Video DSP Chip [16] oper-
ates like an ordinary RISC processor except that each instruc-
tion word controls the operations of both a scalar arithmetic
unit and multiple parallel arithmetic units. The program-
ming model consists of multiple identical operations that are
performed simultaneously on a parallel operand. It performs
one 64-point motion estimation per clock cycle and 3.2G
multiply accumulate operations (MAC) per second.

The leading Texas Instruments fixed-point TMS320C64x
DSP running at 1GHz [17] reaches 0.8Gop/s, and the lead-
ing Analog Devices TigerSHARC ADSP-TS201S DSP oper-
ates at 600MHz [18] and executes 4.8 Gop/s.

Motion estimation is the most computationally intensive
part of our example algorithm. Our proposed architecture
computes 155Gop/s in a bidirectional 256 point ME. The
Imagine running at 400MHz reaches 18Gop/s. The A436
Video DSP has 8 dedicated ME coprocessors, but it can only
calculate 64 point ME over standard resolution images.

Graphics processing units (GPUs) can also be used to do
ME, but known implementations [19] are slower and operate
with smaller images than our architecture. Nvidia introduced
a ME engine in their GeForce 6 chips, but it was not possible
to get details about its performance.

The new IBM cell processor [20] might be better suited
than a GPU, but it is rather optimized to floating point op-
erations. A comparable implementation is not known to the
authors.

2.3. Global data flow

Even if only operating at the low 2K resolution, one image
stream alone comes at a data rate of up to 3.1Gbit/s. With
the upcoming 4K resolution, one stream requires a net rate
of 12.4 Gbit/s. At the processing stage, this bandwidth rises
even higher, for example, because multiple frames are pro-
cessed at the same time (motion estimation) or the inter-
nal channel bit resolution increases to keep the desired ac-
curacy (required by filter stages such as DWT). Given the
fact that the complete algorithm has to be mapped to dif-
ferent FPGAs, data streams have to be transported between
the FPGAs and—in case of future multi-board solutions—
between boards. These data streams might differ greatly in
their characteristics such as bandwidth and latency require-
ments (e.g., image data and motion vectors), and it is re-
quired to transport multiple streams over one physical com-
munication channel. Minimum bandwidths and maximum
possible latencies must be guaranteed.

Therefore, it is obvious that the communication architec-
ture is a key point of the complete FlexFilm project. The first
decision was to abandon any bus structure communication
fabric, since due to their shared nature, the available effec-
tive bandwidth becomes too limited if many streams need
to be transported simultaneously. Furthermore, current bus
systems do not provide a quality of service management,
which is required for a communication scheduling. For this
reason, point-to-point channels were used for inter-FPGA
communication and PCI-Express was selected for board-to-
board communication. Currently, PCI-Express is only used
for stream input and output to a single FlexFilm board, how-
ever in the future multiple boards will be used.

It should be clarified that real-time does not always
means the full 24 (or more) FPS. If the available bandwidth
or processing power is insufficient, the system should func-
tion at a lesser frame rate. However, a smooth degradation is
required without large frame rate jitter or frame stalls.

Furthermore, the system is noncritical, which means that
under abnormal operating conditions such as short band-
width drops of the storage system a slight frame rate jitter is
allowed as long as this does not happen regularly. Nevertheless,
even in such abnormal situations the processing results have to
be correct. It has to be excluded that these conditions result in



Sven Heithecker et al. 5

1 2 3 1

TDMA cycle

(a) TDM with variable packet size, one
packet per cycle and stream.

1 2 1 3 1 3 1

TDMA cycle

Packet header

(b) TDMwith variable packet size, mul-
tiple packets per cycle and stream.

Figure 5: Chip-to-chip transmitter.

data losses due to buffer overflows or underruns or in a com-
plete desynchronization of multiple streams. This means that
back pressuring must exist to stop and restart data transmis-
sion and processing reliably.

2.3.1. FPGA-to-FPGA communication

As explained above, multiple streams must be conveyed reli-
ably over one physical channel. Latencies should be kept at a
minimum, since large latencies require large buffers which
have to be implemented inside the FlexWAFE FPGAs and
which are nothing but “dead weight.” Since the streams (cur-
rently) are periodic and their bandwidth is known at design
time, TDM1 (time division multiplex) scheduling is a suit-
able solution. TDMmeans that each stream is granted access
to the communication channel in slots at fixed intervals. The
slot assignment can be done in the following two ways: (a)
one slot per stream and TDM cycle, the assigned bandwith is
determined by the slot length (Figure 5(a)) and (b) multiple
slots at fixed length per stream and TDM cycle (Figure 5(b)).
Option (a) requires larger buffer FIFOs because larger pack-
ets have to be created, while option (b) might lead to a band-
width decrease due to possible packet header overhead.

For the board-level FPGA-to-FPGA communication, op-
tion (b) was used since no packet header exists. The commu-
nication channel works at a “packet size” of 64 bit. Figure 6
shows the communication transmit scheduler block dia-
gram. The incoming data streams which may differ in clock
rate and word size are first merged and zero-padded to 64-bit
raw words and then stored in the transmit FIFOs. Each clock
cycle, the scheduler selects one raw word from one FIFO
and forwards it to the raw transmitter. The TDM schedule is
stored in a ROM which is addressed by a counter. The TDM
schedule (ROM content) and the TDM cycle length (maxi-
mum counter value) are set at synthesis time. The communi-

1 Also referred as TDMA (time division multiple access).

Merging (opt.)

Transmit buffers

Scheduler

64 bit
at 125MHz

16bit
at 250MHz DDR

ts

ws ts

TDMA schedule
ROM

RAW
transmitter

Counter

ws

ts
Data stream

TDMA stream

Word sync. signal

Word sync. signal

Data valid and enable signals omitted for readabillity.

Figure 6: Chip-to-chip transmitter.

cation receiver is built up in an analogous way (demultiplex-
ing, buffering, demerging). To synchronize transmitter and
receiver, a synchronization signal is generated at TDM cycle
start and transmitted using one of the four sideband control
signals.

As explained in Section 2.1, the raw transmitter-receiver
pair transmits one 64-bit raw word per clock cycle
(125MHz) as four 16-bit words at the rising and falling edge
of the 250MHz transmit clock. For word synchronization, a
second sideband control signal is used.

The remaining two sideband signals are used to signal ar-
rival of a valid data word and for back pressuring (not shown
in Figure 6).

Table 1 shows an example TDM schedule (slot assign-
ment) with 3 streams, two 2K RGB streams at 3.1 Gbit/s with
a word size of 30 bit and one luminance stream at 1.03Gbit/s
with a word size of 10 bit. The stream clock rate fstream is a
fraction of the core clock rate f clk = 125MHz, which simply
means that not on every clock cycle one word is transmitted.
All streams are merged and zero-padded to 64-bit streams.
The resulting schedule length is 12 slots, and the allocated
bandwidth for the streams are 3.125Gbit/s and 1.25Gbit/s.

2.3.2. Board communication

Since PCI-Express can be operated as a TDM bus, the same
scheduling techniques apply as for the inter-FPGA commu-
nication. The only exception is that PCI-Express requires a
larger packet size of currently up to 512 bytes.2 The required
buffers however fit well into the IO-FPGA.

2 Limitation by the currently used Xilinx PCI-Express IP core.



6 EURASIP Journal on Embedded Systems

Table 1: TDM example schedule.

Stream
Requirements Merging + padding TDM scheduling Result

BW
(Gbit/s)

width
(bits)

fstream
(MHz)

nmerge
f64
(MHz)

nslots
fTDM
(MHz)

real BW
(Gbit/s)

Over-allocation

1 (RGB) 3.1 30 103.3 2 51.65 5 of 12 52.08 3.125 0.8%

2 (RGB) 3.1 30 103.3 2 51.65 5 of 12 52.08 3.125 0.8%

3 (Y) 1.03 10 103.3 6 17.22 2 of 12 20.8 1.25 21%

total 6 — — — — 12 — 7.5 —

TDM schedule: 1 2 1 2 1 3 2 1 2 1 2 3 .
TDM cycle length: 12 slots = 12 clock cycles; fslot = fsys/12 = 10.41MHz.
nmerge Merging factor, how many words are merged into one 64-bit RAW word.

Zero-padded to full 64 bit.
nslots Assigned TDM slots per stream.
fstream Required stream clock rate to achieve desired bandwidth at given word size.
f64 Required stream clock rate to achieve desired bandwidth at 64 bit.
fslot Frequency of one TDM slot.
fsys System clock frequency (125MHz).
fTDM Resulting effective stream clock rate at current TDM schedule: fTDM = nslots · fslot.

16 bit 250MHz DDR

TDMA
send
rec.

TDMA
rec.
send

FPGA
125MHz

FPGA
125MHz

2 3 2 2 3 2
FPGA schedule

Router 1 2 3

FlexWAFE core FPGAs

1 2 1 3 1 2

PCI-express schedule

Figure 7: Communication scheduling.

Figure 7 shows an inter-FPGA and a PCI-Express sched-
ule example.

2.4. Memory controller

As explained in the introduction, external SDRAMmemories
are required for storing image data. The 125MHz clocked
DDR-SDRAM reaches a peak performance per channel of
8Gbit per second. To avoid external memory access becom-
ing a bottleneck, an access optimizing scheduling memory

controller (CMC3) was developed which is able to handle
multiple, independent streams with different characteristics
(data rate, bit width). This section will present the memory
controller architecture.

2.4.1. Quality of service

In addition to the configurable logic, each of the four
XC2PV50-6 FPGAs FPGA contains two embedded PowerPC
processors, equipped with a 5-stage pipeline, data, and in-
struction caches of 16 KiByte each and running at a speed of
up to 300MHz. In the FlexFilm project, these processors are
used for low computation and control-dominant tasks such
as global control and parameter calculation. CPU code and
data are stored in the existing external memories which leads
to conflicts between processor accesses to code, to internal
data, and to shared image data on the one hand, and mem-
ory accesses of the data paths on the other hand. In princi-
ple, CPU code and data could be stored in separate dedicated
memories. However, the limited on-chip memory resources
and pin and board layout issues renders this approach too
costly and impractical. Multiple independent memories also
do not simplify access patterns since there are still shared
data between the data path and CPU. Therefore, the FlexFilm
project uses a shared memory system.

A closer look reveals that data paths and CPU generate
different access patterns as follows.

(a) Data paths: data paths generate a fixed access sequence,
possibly with a certain arrival jitter. Due to the real-
time requirement, the requested throughput has to
be guaranteed by the memory controller (minimum
memory throughput). The fixed address sequence al-
lows a deep prefetching and usage of FIFOs to increase

3 Central memory controller; historic name, emerged when it was supposed
to only have one external memory controller per FPGA.



Sven Heithecker et al. 7

the maximum allowed access latency—even beyond
the access period—and to compensate for access la-
tency jitter. Given a certain FIFO size, the maximum
access time must be constrained to avoid buffer over-
flow or underflow, but by adapting the buffer size, ar-
bitrary access times are acceptable.
The access sequences can be further subdivided into
periodic regular access sequences such as video I/O
and complex nonregular (but still fixed) access pat-
terns for complex image operations. The main dif-
ference is that the nonregular accesses cause a possi-
ble higher memory access latency jitter, which leads to
smaller limits for the maximum memory access times,
given the same buffer size.
A broad overview about generating optimized mem-
ory access schedules is given by [21].

(b) CPU: processor access, in particular cache miss ac-
cesses generated by nonstreaming, control-dominated
applications, shows a random behavior and are less
predictable. Prefetching and buffering are, therefore,
of limited use. Because the processor stalls on a mem-
ory read access or a cache read miss, memory ac-
cess time is the crucial parameter determining proces-
sor performance. On the other hand, (average) mem-
ory throughput is less significant. To minimize access
times, buffered and pipelined latencies must be mini-
mized.
Depending on the CPU task, access sequences can be
either hard or soft real-time. For hard real-time tasks,
a minimum throughput and maximum latencies must
be guaranteed.

Both access types have to be supported by the mem-
ory controller by quality of service (QoS) techniques. The
requirements above can be translated to the following two
types of QoS:

(i) guaranteed minimum throughput at guaranteed max-
imum latency

(ii) smallest possible latency; (at guaranteed minimum
throughput and maximum latency).

2.4.2. Further requirements

Simple, linear first-come first-served SDRAM memory ac-
cess can easily lead to a memory bandwith utilization of only
about 40%, which is not acceptable for the FlexFilm system.
By performing memory access optimization, that is by exe-
cuting and possibly reordering memory requests in an opti-
mized way to utilize the multibanked buffered parallel archi-
tecture of SDRAM architectures (bank interleaving [22, 23])
and to reduce stall cycles by minimizing bus tristate turn-
around cycles, an effectiveness of up to 80% and more can
be reached. A broad overview of these techniques is given in
[24].

Since the SDRAM controller does not contribute to the
required computations (although absolutely required) it can
be considered as “ballast” and should use as little resources
as possible, preferably less than 4% of total available FPGA

resources per instance. Compared to ASIC-based designs, at
the desired clock frequency of 125MHz the possible logic
complexity is less for FPGAs and, therefore, the possible ar-
bitration algorithms have to be carefully evaluated. Deep
pipelining to achieve higher clock rates is only possible to
a certain level leads to an increasing resource usage and is
contrary to the required minimum latency QoS requirement
explained above.

Another key issue is the required configurability at syn-
thesis time. Different applications require different setups,
for example, different number of read and write ports, client
port widths, address translation parameters, QoS settings,
and also different SDRAM layouts (32- or 64-bit channels).
Configuring by changing the code directly or defining con-
stants is not an option as this would have inhibited or at
least complicated instantiation of multiple CMCs with dif-
ferent configurations within one FPGA (as we will see later,
the motion estimation part of the example application needs
3 controllers with 2 different configurations). Therefore, the
requirement was to only use VHDL generics (VHDL language
constructs that allow parameterizing at compile-time) and
use coding techniques such as deeply nested if/for generate
statements procedures to calculate dependant parameters to
have the code self-adapt at synthesis-time.

2.4.3. Architecture

Figure 8 shows the controller block diagram (example con-
figuration with 2 low latency and 2 standard latency ports,
one read and one write port each and 4 SDRAM banks).
The memory controller accesses the SDRAM using auto
precharge mode and requests to the controller are always
done at full SDRAM bursts at a burst length of 8 words (4
clock cycles). The following sections will give a short intro-
duction into the controller architecture, a more detailed de-
scription can be found in [25, 26].

Address translation

After entering the read (r) or write (w) ports, memory
access requests first reach the address translation stage,
where the logical address is translated into the physical
bank/row/column triple needed by the SDRAM. To avoid ex-
cessive memory stalls due to SDRAM bank precharge and
activation latencies, SDRAM accesses have to be distributed
across all memory banks as evenly as possible to maximize
their parallel usage (known as bank interleaving). This can
be achieved by using low-order address bits as bank address
since they show a higher degree of entropy than high-order
bits. For the 4-bank FlexFilm memory system, address bits
3 and 4 are used as bank address bits; bits 0 to 2 cannot be
used since they specify the start word of the 8-word SDRAM
burst.

Data buffers

Concurrently, at the data buffers, the write request data is
stored until the request has been scheduled; for read requests
a buffer slot for the data read from SDRAM is reserved. To



8 EURASIP Journal on Embedded Systems

High priority:
• Reduced latency
• Unregular access
patterns

• CPU

Standard priority:
• Standard latency
• Regular access
patterns

• Data paths

R

W

R

W

AT

DB

AT

DB

AT

DB

AT
DB

RB

RB

RB

RB

Flow
control

2-stage
buffered
memory
scheduler

Access
controller

Data
I/O

D
D
R
-S
D
R
A
M

(e
xt
er
n
al
)

R/W data bus

Request
scheduler

Bank
buffer

Bank
scheduler

R Read port

W Write port

AT Address translation

RB Request buffer

DB Data buffer

High priority

Standard priority

Request flow

Data flow

Figure 8: Memory controller block diagram.

address the correct buffer slot later, a tag is created and at-
tached to the request. This technique reduces the significant
overhead needed if the write-data would be carried through
the complete buffer and scheduling stages and allows for
an easy adaption of the off-chip SDRAM data bus width to
the internal data paths due to possible usage of special two-
portedmemories. It also hides memory write latencies by let-
ting the write requests passing through the scheduling stages
while the data is arriving at the buffer.

For reads requests the data buffer is also responsible for
transaction reordering, since read requests from one port to
different addresses might be executed out-of-order due to
the optimization techniques applied. The application how-
ever expects reads to be completed in-order.

Request buffer and scheduler

The requests are then enqueued in the request buffer FI-
FOs which decouple the internal scheduling stages from the
clients. The first scheduler stage, the request scheduler, se-
lects requests from several request buffer FIFOs, one request
per two clock cycles, and forwards them to the bank buffer
FIFOs (flow control omitted for now). By applying a rotary
priority-based arbitration similar to [27], a minimum access
service level is guaranteed.

Bank buffer and scheduler

The bank buffer FIFOs store the requests sorted by bank.
The second scheduler stage, the bank scheduler, selects re-
quests from these FIFOs and forwards them to the tightly
coupled access controller for execution. In order to increase
bandwidth utilization, the bank scheduler performs bank in-
terleaving and request bundling. Bank interleaving reduces
memory stall times by accessing other memory banks if one
bank is busy; request bundling is used to minimize data bus
direction switch tristate latencies by rearranging changing

read and write request sequences to longer sequences of one
type.

Like with the request scheduler, by applying a rotary
priority-based arbitration a minimum access service level for
any bank is guaranteed.

Access controller

After one request has been selected, it is executed by the ac-
cess controller and the data transfer to (from) the according
data buffer is started. The access controller is also responsible
for creating SDRAM refresh commands in regular intervals
and performing SDRAM initialization upon power-up.

Quality of service

As explained above, for CPU access a low-latency access path
has to be provided. This was done by creating an extra access
pipeline for low-latency requests (separate request sched-
uler and bank buffer FIFOs). Whenever possible, the bank
scheduler selects low-latency requests, otherwise standard re-
quests.

This approach already leads to a noticeable latency reduc-
tion, however a high low-latency request rate causes stalls for
normal requests that must be avoided. This is done by the
flow control unit in the low-latency pipeline, which reduces
the maximum possible low-latency traffic. To allow a bursty
memory access,4 the flow control unit allows n request to
pass within a window of T clock cycles (known as “sliding
window” flow control in networking applications).

2.4.4. Configurability

The memory controller is configurable regarding SDRAM
timing and layout (bus widths, internal bank/row/column

4 Not to be confused with SDRAM bursts!



Sven Heithecker et al. 9

organization), application ports (number of ports, different
data, and address widths per port), address translation per
port, and QoS settings (prioritization and flow control).

As required, configuration is done almost solely via
VHDL generics. Only a few global configuration constants
specifying several maximum values (e.g., maximum port ad-
dress width, . . . ) are required, which do not, however, pro-
hibit instantiation of multiple controllers with different con-
figurations within one design.

2.4.5. Related work

The controllers by Lee et al. [28] and Sonics [29], and We-
ber [30] provide a three-level QoS: “reduced latency,” “high
throughput,” and “best effort.” The first two levels corre-
spond to the FlexFilm memory controller with the excep-
tion that the high throughput level is also bandwidth lim-
ited. Memory requests at the additional third level are only
scheduled if the memory controller is idle. The controllers
further provide a possibility to degrade high priority requests
to “best effort” if their bandwith limit is exceeded. This how-
ever can be dangerous, as it might happen in a highly loaded
system that a “reduced latency” request observes a massive
stall after possible degradation—longer than if the request
would have been backlogged until more “reduced latency”
bandwidth becomes available. For this reason, degradation
is not provided by the CMC. Both controllers provide an
access-optimizing memory backend controller.

The access-optimizing SDRAM controller framework
presented by Macián et al. [31] provides bandwidth limita-
tion by applying a token bucket filter, however they provide
no reduced latency memory access.

The multimedia VIPER MPSoC [10] chip uses a special-
ized 64-bit point-to-point interconnect which connects mul-
tiple custom IP cores and 2 processors to a single external
memory controller. The arbitration inside the memory con-
troller uses runtime programmable time-division multiplex-
ing with two priorities per slot. The higher priority guaran-
tees a maximum latency, the lower priority allows the left-
over bandwidth to be used by other clients (see [32]). While
the usage of TDM guarantees bandwidth requirements and a
maximum latency per client, this architecture does not pro-
vide a reduced latency access path for CPUs. Unfortunately,
the authors do not provide details on the memory backend
except that it performs access optimization (see [32, chap-
ter 4.6]). For the VIPER2 MPSoC (see [32, chapter 5]), the
point-to-point memory interconnect structure was replaced
by a pipelined packetized tree structure with up to three run-
time programmable arbitration stages. The possible arbitra-
tion methods are TDM, priorities, and round robin.

The memory arbitration scheme described by Harmsze
et al. [33] gives stream accesses a higher priority forM cycles
out of a service period of N cycles, while otherwise (R = N −
M cycles) CPU accesses have a higher priority. This arbitra-
tion scheme provides a short latency CPU access while it also
guarantees a minimum bandwidth for the stream accesses.
Multiple levels of arbitration are supported to obtain dedi-
cated services for multiple clients. Unfortunately, the authors

do not provide any information on the backend memory
controller and memory access optimization.

The “PrimeCellTM DynamicMemory Controller” [34] IP
core by ARM Ltd. is an access-optimizing memory controller
which provides optional reduced latency and maximum la-
tency QoS classes for reads (no QoS for writes). Different
from other controllers, the QoS class is specified per request
and not bound to certain clients. Furthermore, memory ac-
cess optimization supports out-of-order execution by giving
requests in the arbitration queue different priorities depend-
ing on QoS class and SDRAM state.

However, all of these controllers are targeted at ASICs and
are, therefore, not suited for the FlexFilm project (too com-
plex, lack of configurability).

Memory controllers from Xilinx (see [35]) do not pro-
vide QoS service and the desired flexible configurability.
They could be used as backend controllers, however they
were not available at time of development.

The memory controller presented by Henriss et al. [36]
provides access optimization and limited QoS capabilities,
but only at a low flexibility and with no configuration op-
tions.

3. A SOPHISTICATED NOISE REDUCER

To test this system architecture, a complex noise reduc-
tion algorithm depicted in Figures 9 and 10 based on 2.5-
dimensions discrete wavelet transformation (DWT will be
explained in Section 3.3) between consecutive motion com-
pensated images was implemented at 24 fps. The algorithm
begins by creating a motion compensated image using pix-
els from the previous and from the next image. Then it per-
forms a Haar filter between this image and the current image.
The two resulting images are then transformed into the 5/3
wavelet space, filtered with user selectable parameters, trans-
formed back to the normal space and filtered with the in-
verse Haar filter. The DWT operates only in the 2D space-
domain; but due to the motion-compensated pixel informa-
tion, the algorithm also uses information from the time do-
main; therefore, it is said to be a 2.5D filter. A full 3D fil-
ter would also use the 5/3 DWT in the time domain, there-
fore, requiring five consecutive images and the motion esti-
mation/compensation between them. The algorithm is pre-
sented in detail in [37].

3.1. Motion estimation

Motion estimation (ME) is used in many image process-
ing algorithms and many hardware implementations have
been proposed. The majority are based on block matching.
Of these, some use content dependent partial search. Others
search exhaustively in a data-independent manner. Exhaus-
tive search produces the best block matching results at the
expense of an increased number of computations.

A full-search block-matching ME operating in the lu-
minance channel and using the sum of absolute differences
(SAD), search metric was developed because it has pre-
dictable content-independent memory-access patterns and
can process one new pixel per clock cycle. The block size is



10 EURASIP Journal on Embedded Systems

Motion estimation Motion compensation

RGB→Y
Frame
buffer

FWD

BCKWD Frame
buffer

MC

Temporal
1D DWT

3 level 2D DWT
with noise reduction

3 level 2D DWT
with noise reduction

Haar

Temporal

1D DWT−1

Haar−1

Figure 9: Advanced noise-reduction algorithm.

2D DWT Noise reduction 2D DWT−1

2D DWT NR Sync 2D DWT−1

2D DWT NR Sync 2D DWT−1

H FIR

H FIR

V FIR

V FIR

V FIR

V FIR

HL NR

LH NR

LL NR

V FIR−1

V FIR−1

V FIR−1

V FIR−1

+

+

H FIR−1

H FIR−1

+

V FIR−1

V FIR−1

V FIR−1

V FIR−1

+

+

H FIR−1

H FIR−1

+

V FIR−1

V FIR−1

V FIR−1

V FIR−1

+

+

H FIR−1

H FIR−1

+

H FIR

H FIR

V FIR

V FIR

V FIR

V FIR

H FIR

H FIR

V FIR

V FIR

V FIR

V FIR

HL NR

LH NR

LL NR

HL NR

LH NR

LL NR

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

Figure 10: Three-level DWT-based 2D noise reduction.

16×16 pixels and the search vector interval is−8/+7. Its im-
plementation is based on [38]. Each of the 256 processing el-
ements (PE) performs a 10-bit difference, a comparison, and
a 18-bit accumulation. These operations and their local con-
trol was accommodated in 5 FPGA CLBs (configurable logic
blocks) as shown in Figure 11. As seen in the rightmost table
of that figure, the resource utilization within these 5 CLBs is
very high and even 75% of the LUTs use all of its four inputs.

This block was used as a relationally placed macro (RPM)
and evenly distributed on a rectangular area of the chip. Un-
fortunately each 5 CLBs only have 10 tristate buffers which
is not enough to multiplex the 18-bit SAD result. Therefore,
the PEs are accommodated in groups of 16 and use 5 extra
CLBs per group to multiplex the remaining 8 bits. Given the
cell-based nature of the processing elements, the timing is
preserved by this placement. To implement the 256 PEs with



Sven Heithecker et al. 11

Motion-estimation
processing element

Resource Utillization
Carry-chain 80%

Register 80%

Tristate 100%

LUT 100%∗

∗75% of which use all 4 inputs

Distributed
control

Tristate
(SAD bus)

Absolute/
18 bit accumulate

Search mux/
10 bit difference

ForwardMEDPU
(256 PEs)

Backward ME DPU
(256 PEs)

Data I/O

Data I/O

LMC

LMC

LMC

LMC

LMC

LMC

LMC

LMC

LMC

LMC

MC

C
M
C
0

C
M
C
1

C
M
C
2

Resource Usage Percentage

RAMB

Slices

TBUF

FF

62 out of 232

19.157 out of 23.616

5.408 out of 11.808

24.752 out of 47.232

26%

81%

45%

52%

• Bidirectional ME with block size 16× 16
• Bidirectional MC
• Search −8/ + 7 vector interval
• 24 fbs at 2048× 2048, 10 bpp (125MHz)
• 1024 net add/sub opreations/pixel
• 514 net comparations operations/pixel
• 155 net Goperations/s

Figure 11: Mapping and resource usage in a Xilinx XC2V50P device.

corresponding SAD bus, 1360 CLBs, and 59 extra CLBs are
required for distributed control and finding the minimum
SAD. On the edge of the images the motion vectors can only
have limited values, a fact that is used to reduce the initial
row latency of [38] from 256 to 0.

Bidirectional motion-estimation is achieved using two of
these blocks. The ME core-processing elements require that
the images be presented at its inputs in a column-major way,
but the images are transferred between FPGAs and stored
in SDRAM in a row-major order. Therefore, each of the
PE’s three inputs gets data from memory via a group of two
LMCs. The first hides the SDRAM latency by performing
prefetching as explained in [4], while the second transforms
the accesses from row-major to column-major order using a
small local blockRAM. When fed with the luminance com-
ponent of 2048 × 2048 pixels, 10 bit-per-pixel images at 24
frames per second, the core computational power (ignoring
control and data transfers) is 155Gop/s. The intra-PE band-
width is 1 Tbit/s.

3.2. Motion compensation

Motion compensation (MC) uses the block motion vectors
found by the ME to build an image that is visually similar
to the current image, but only contains pixels extracted in
a blockwise manner from the previous/next image. The cri-
terion to choose the image block from the previous or next
image is the SAD associated with that block, the image block
with the smallest SAD (and, therefore, more similar to the
current image block) of the two is chosen. On a scene cut, one
of the images will produce large SADs (because the contents
of it are from a different scene and most probably completely
different from the current image) and all blocks will be cho-
sen from the other image, the one that belongs to the same
scene. This has the advantage of making the noise reduction
algorithm immune to scene cuts.

3.3. Discrete wavelet transform

The discrete wavelet transform (DWT) transforms a signal
into a space where the base functions are wavelets [39], simi-
lar to the way Fourier transformation maps signals to a sine-
cosine-based space. The 5/3 wavelet was chosen for its in-
teger coefficients and invertibility (the property to convert
back to the original signal space without data loss). The 2D
wavelet transformation is achieved by filtering the row ma-
jor incoming stream with two FIR filters (one with 5, the
other with 3 coefficients) and then filtering the resulting two
signals columnwise using the same filter coefficients. The
four resulting streams can be transformed back to the orig-
inal stream by filtering and adding operations. The noise
reduction algorithm requires three levels of decomposition,
therefore, three of these blocks were cascaded and the noise
reduction DPUs added (Figure 10). To compensate the la-
tency of the higher decomposition levels, LMCs were used to
build FIFOs using internal FPGA RAM (mid sync FIFOs on
Figure 10) and using external SDRAM via a CMC (bottom
sync FIFOs on Figure 10). The resulting systemwas presented
in detail in [4].

The filter implementation uses polyphase decomposition
(horizontal) and coefficient folding (vertical). To maximize
throughput, the transformation operates line-by-line instead
of level-by-level [40]. This allows for all DPUs to operate in
parallel (no DPU is ever idle), minimizes memory require-
ments, and performs all calculations as soon as possible. Be-
cause the 2D images are a finite signal, some control was
added to achieve the symmetrical periodic extension (SPE)
[41] required to achieve invertibility. This creates a dynamic
datapath because the operations performed on the stream
depend on the data position within the stream. Almost all
multiply operations were implemented with shift-add oper-
ations because of the simplicity of the coefficients used. One
2D DWT FPGA executes 162 add operations on the direct
DWT, 198 add operations on the inverse DWT, and 513 extra



12 EURASIP Journal on Embedded Systems

Image
n

Image
n− 3

Image
n− 1

Image
n− 2

Advance of
read/write addresses
to form ring buffer

Incomming
data

Backward
search area
(prev. image)

Forward
search area
(next image)

Reference
(current image)

Figure 12: Frame buffer access sequence.

add operations to support the SPE, all between 10 and 36 bits
wide.

3.4. External memory

Figure 12 shows the required frame buffer access structure of
the motion estimation. As can be seen, three images are ac-
cessed simultaneously, one image as reference (n − 2), and
two images as backward and forward search area (n − 3 and
n− 1). The two search areas are read twice with different ad-
dresses. Besides that, the current incoming image (n) needs
to be buffered. Each of the two ME engines contains its own
frame buffer to store four full-size images of up to 4K × 4K
accessed via its respective CMC0 or CMC1 (Figure 11). Each
of the CMCs writes one stream to memory and reads three
streams. For ease of implementation, each pixel is stored us-
ing 16 bits (only 10-bit luminance per pixel are valid). This
translates to 1.5Gbit/s write and 4.1Gbit/s read bandwidth
to off-chip SDRAM, amounting to a total of 6.1 Gbit/s, which
is below themaximumpractical bandwidth of 6.4 Gbit/s. The
MC block operates in the RGB color space unlike the ME
block that uses the luminance only. It stores one RGB pixel
in a 32-bit word (10 bits per color component) and uses its
own memory controller (CMC2 on Figure 11). It uses a sim-
ilar ring-buffer scheme as CMC0 and 1 and is also capable
of storing four images of up to 4K × 4K resolution, but it
groups the two external memory banks and accesses them via
a 64-bit bus and is therefore capable of twice the troughput of
the ME’s CMCs. Due to the nature of SDRAM accesses, it is
only possible to access blocks of 16 pixels at addresses that are
multiples of 16 (memory alignment). This means that in the
worst case, two blocks of 16 pixels need to be fetched in order
to access a nonaligned group of 16 pixels to build the motion
compensated image. The MC block also needs to access the
current image in order to do intrablock pixel-by-pixel vali-
dation of the results. This leads to a worst-case bandwidth
of 3.0 Gbit/s write and 9.2Gbit/s read, which is below the
practical limit of 12.8Gbit/s. The area occupied by these 3

memory controllers is about 12% of the FPGA area, leaving
enough room for the stream processing units.

As explained in Section 3.3, the DWTs need synchro-
nization FIFOs to compensate the additional latency of the
higher level DWTs. The level 2 FIFOs completely fit into the
FPGA internal memory, so only for the level 1 FIFOs, exter-
nal SDRAM was required. Due to layout issues, two memory
controllers in a 64-bit configuration were used for separate
buffering of the red channel and the green/blue channels.

The ME/MC-FPGA requires 3 CMCs in 2 different con-
figurations; the DWTs each require 2 controllers in 2 config-
urations. Together with the 2 controllers in the router FPGA,
9 memory controllers in 5 configurations were used all to-
gether.

Since in this application the PowerPC and therefore the
QoS features are not (yet) used, these features were separately
tested; see Section 4.

3.5. Mapping and communication

The complete algorithm was mapped onto the three
FlexWAFE image processing FPGAs of a single FlexFilm
board. Stream input and output is done via the router FPGA
and the PCI-Express host network. The second PCI-Express
port remains unused. Input and output streams require a net
bandwidth of 3Gbit/s each, which can be easily handled by
the X4 PCI-Express interface. Since only single streams are
transmitted, no TDM scheduling is necessary. The packetiz-
ing and depacketizing of the data, as well as system jitter com-
pensation, are done by double-buffering the incoming and
outgoing images in the external RAM.

Figure 13 shows the mapping solution (router FPGA
omitted). The first FlexWAFE FPGA contains the motion es-
timation and compensation, the second FPGA the Haar and
inverse Haar filters and one 2D DWT noise reduction block,
the third FPGA contains the other 2D DWT noise reduction
block.

As can be seen, between the first and the second
FPGA two independent image streams—the original and
the motion compensated images—with a total bandwidth
of 6Gbit/s need to be transported over one physical chan-
nel. The word size of both streams is 30 bit (10 bit RGB). For
transport, always two words of each stream were merged and
zero-padded to form a 64-bit word. The TDM scheduler was
programmed with (in this case a simple) sequence of 1-2,
which means that the 64-bit words were transmitted in an
alternating way. Due to the small TDM packet size of two
words, no external SDRAM is required for buffers.

Due to the mapping onto different SDRAM channels as
explained in Section 3.4, the maximum effective bandwidth
per SDRAM channel of 6.4 Gbit/s (12.8Gbit/s for a 64-bit
combined channel, respectively) was not an issue.

3.6. Implementation

Each building block has been programmed in VHDL us-
ing an extensive number of generics to increase the flexibility
and reuse. The sequence of run-time programmable param-
eters for the LMCs image transfers (the contents of the AC



Sven Heithecker et al. 13

MC
390Mibit

DWT FIFO red
1280Kibit

DWT FIFO red
1280Kibit

ME
160Mibit

ME
160Mibit

DWT FIFO gr/bl
2560Kibit

DWT FIFO gr/bl
2560Kibit

3 9 0.75 0.75 0.75 0.75

3 1 3 1

3

3

3

3

3

3

3

X Data rate in Gbit/s

FlexWAFE FPGA 1

Motion
estemation

compensation

87% slice usage
1.4Mibit BRAM usage

FlexWAFE FPGA 2

Haar
2D DWT + NR

Haar−1

85% slice usage
3.1Mibit BRAM usage

FlexWAFE FPGA 3

2D DWT + NR

83% slice usage
3.0Mibit BRAM usage

1.5 1.5 1.5 1.5

Figure 13: Algorithm mapping.

memory) were described in XML and transformed to VHDL
via a PHP script. In the future, it is planned to use even more
scripts and XML based high-level system descriptions. Each
block was behaviorally simulated individually using Model-
sim 6.2d and synthesized using Xilinx ISE 7.1i SP4 (because
ISE 8.xi 9.1i had regressions). All blocks except the motion
compensation have been tested in hardware and the desired
functionality and speed were achieved.

Currently, the ME and MC are being integrated in a sin-
gle chip (Figure 11), and due to the large resource utilization
(81% of the FPGA slices are used) floorplanning is necessary
to achieve the required speed. So far the Xilinx Floorplanner
and PlanAhead 8.2.2 have been used, but in the future it is
planned to use Synplicity Premier 8.6.3 with Design Planner.

3.7. Outlook

Currently, the 56 filter parameters used by the DWT filter are
static. However, in [37] it is shown that the results can be
significantly improved by run-time adapting the filter coef-
ficients depending on the image. The required calculations
will be done by a PowerPC which will have to access parts of
the images in the motion compensation FPGA frame mem-
ory, thus requiring the QoS service features of the memory
controller.

4. SDRAMQOS

In [25, 26], a complex simulator setup was used before avail-
ability of the FlexFilm board to evaluate the CMCQoS archi-
tecture. However, due to lack of a cycle-accurate instruction
set simulator for the embedded PowerPC 405 core, these re-
sults were inaccurate. Therefore, a real test environment was
created, consisting of the PowerPC, two SDRAM controllers,
two load generators, and the required PowerPC-CMC inter-
faces (Figure 14).

DDR-SDRAM
4 banks 64 bit

DDR-SDRAM
4 banks 64 bit

SDRAM controller 1 (CMC 1) CMC 2

Load
generator
write

Load
generator

read

Interface
PPC-CMC
line buffer

Interface
PPC-CMC
line buffer

PLB

I$ D$

CPU
powerPCPLB = processor local bus

Figure 14: CMC QoS test environment.

The load generators (one read and one write) created
memory access streams with linear address patterns similar
to the DWT filters and a programmable period. Requests to
the SDRAMwere done at 64 bit and a burst length of 8 words,
which means the maximum possible period is 8 clock cycles.
Since one SDRAM data transfer takes 4 clock cycles (8 words
at 64 bits, 2 words per clock cycle), two load generators run-
ning at a period of 8 clocks would have created a theoretical
SDRAM load of 100%. However, due to memory stall cycles
(refresh cycles, bus switching stall cycles), a maximum period
of 10/9 (or 9/10) was possible resulting in a bandwidth uti-
lization of 72%. If the period is too small, the load generators
start losing memory requests (they cannot operate in real-
time any more).



14 EURASIP Journal on Embedded Systems

Table 2: SDRAM controller test results. Flow control T/n: n requests within T clock cycles.

Number Pri. CPU access Flow control T/n
Load gen. period

CPU exec. time (ms)
Lost requests

Read Write Read Write

1.1 No Deactivated 12 12 2195 0 0

1.2 No Deactivated 12 11 2217 0 0

1.3 No Deactivated 11 11 2263 5 7

2.1 Yes Deactivated 12 12 2119 258 175

2.2 Yes Deactivated 12 11 2121 4324 7598

2.3 Yes Deactivated 11 11 2121 25872 25871

3.1 Yes 32/1 12 12 2144 0 0

3.2 Yes 61/2 12 12 2123 0 0

3.3 Yes 45/1 12 11 2169 0 0

3.4 Yes 93/2 12 11 2163 0 0

3.5 Yes 57/1 11 11 2209 0 0

3.6 Yes 113/2 11 11 2193 0 0

The PowerPC was clocked at 250MHz and executed
an adapted version of the JPEG decompression program
from the MiBench benchmark suite [42] (we have chosen a
real application rather than artificial benchmarks like SPEC
for more realistic results). Code and data were completely
mapped to the first memory controller. Since the original
program accessed the harddisk to read and write data, in our
environment the Xilinx Memory-FileSystem was used which
was mapped to the second memory controller. Both PPC in-
struction and data caches (16K each) were activated, at a
cache miss 4 words at 64 bits were read and/or written to
the memory. Since one memory access burst reads or writes
8 words at 64 bits, the PowerPC-CMC interface contains an
additional line buffer (1-burst-cache).

CPU accesses to the first memory controller were option-
ally priorized and flow controlled. Table 2 shows the test re-
sults.

With the CPU activated, but without prioritization (and
flow control) the load generators start losing requests (that
means missing the deadline) at periods of 11/11 (no. 1.1 to
1.3). Activating CPU priorities leads to a noticeable CPU
speedup, however the load generators start losing requests
very quickly, with results getting worse at periods of 11/11
(no. 2.1 to 2.3). With flow control enabled, there is still a
CPU speedup compared to the nonpriorized test; however,
this time the load generators are fully operational again (no.
3.1 to 3.6). Moreover, results 3.5 and 3.6 show that with CPU
and traffic shaping enabled load periods of 11/11 are pos-
sible, which is not the case without any QoS service (1.3).
Activating complex traffic shaping patterns shows a positive
albeit very small effect.

5. CONCLUSION

A record performance reconfigurable HW/SW platform for
digital film applications was presented. The combination
of programmable and parameterized macros that can eas-
ily be handled in floorplanning and decentralized weak pro-
grammability with noncritical timing was key to a high de-
signer productivity.

We have also shown that the scheduling memory con-
troller with QoS support helps to improve the overall system
performance.

The FPGA resource utilization is very satisfactory includ-
ing memory and routing resources. The FlexWAFE architec-
ture is part of a larger project towards an extendible PCI-
Express-based real-time film processing system.

In the future, we plan to test and explore other algorithms
to further validate the proposed architectures.

ACKNOWLEDGMENT

This work was funded in part by the German Federal Min-
istry of Education and Research (BMBF).

REFERENCES

[1] Quantel, http://www.quantel.com/.
[2] Discreet, http://www.discreet.com/.
[3] FlexFilm, http://www.flexfilm.org/.
[4] A. do Carmo Lucas and R. Ernst, “An image processor for dig-

ital film,” in Proceedings of the 16th IEEE International Confer-
ence on Application-Specific Systems, Architectures, and Proces-
sors (ASAP ’05), pp. 219–224, Samos, Greece, July 2005.

[5] A. do Carmo Lucas, S. Heithecker, P. Rüfer, et al., “A recon-
figurable HW/SW platform for computation intensive high-
resolution real-time digital film applications,” in Proceedings
of the Conference on Design, Automation and Test in Europe
(DATE ’06), vol. 1, pp. 194–199, Munich, Germany, March
2006.

[6] Xilinx, http://www.xilinx.com/.
[7] PCI-SIG, PCI-Express Base Specification Revision 1.0, July

2002.
[8] PCI-SIG, http://www.pcisig.com/.
[9] IEC 60027-2: Letter symbols to be used in electrical technology—

part 2: telecommunications and electronics. IEC, 3.0 edition,
August 2005.

[10] S. Dutta, R. Jensen, and A. Rieckmann, “Viper: a multipro-
cessor SOC for advanced set-top box and digital TV systems,”
IEEE Design and Test of Computers, vol. 18, no. 5, pp. 21–31,
2001.

http://www.quantel.com/
http://www.discreet.com/
http://www.flexfilm.org/
http://www.xilinx.com/
http://www.pcisig.com/


Sven Heithecker et al. 15

[11] J. H. Ahn, W. J. Dally, B. Khailany, U. J. Kapasi, and A. Das,
“Evaluating the imagine stream architecture,” ACM SIGARCH
Computer Architecture News, vol. 32, no. 2, p. 14, 2004.

[12] Hunt Engineering, http://www.hunteng.co.uk/.
[13] Nallatech, http://www.nallatech.com/.
[14] SGI, http://www.sgi.com/products/rasc/.
[15] J. Park and P. C. Diniz, “Synthesis of pipelined memory ac-

cess controllers for streamed data applications on FPGA-based
computing engines,” in Proceedings of the 14th International
Symposium on System Synthesis (ISSS ’01), pp. 221–226, Mon-
treal, Quebec, Canada, September-October 2001.

[16] Oxford Micro Devices, http://www.omdi.com/.
[17] Texas Instruments, http://www.ti.com/.
[18] Analog Devices, http://www.analog.com/.
[19] R. Strzodka and C. Garbe, “Real-time motion estimation and

visualization on graphics cards,” in Proceedings of the 15th
IEEE Visualization Conference (VIS ’04), pp. 545–552, Austin,
Tex, USA, October 2004.

[20] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer, and D. Shippy, “Introduction to the cell multiproces-
sor,” IBM Journal of Research and Development, vol. 49, no. 4-5,
pp. 589–604, 2005.

[21] P. R. Panda, F. Catthoor, N. D. Dutt, et al., “Data and mem-
ory optimization techniques for embedded systems,” ACM
Transactions on Design Automation of Electronic Systems, vol. 6,
no. 2, pp. 149–206, 2001.

[22] V. Cuppu, B. Jacob, B. Davis, and T. Mudge, “High-
performance DRAMs in workstation environments,” IEEE
Transactions on Computers, vol. 50, no. 11, pp. 1133–1153,
2001.

[23] V. Cuppu, B. Jacob, B. Davis, and T. Mudge, “A performance
comparison of contemporary DRAM architectures,” in Pro-
ceedings of the 26th International Symposium on Computer Ar-
chitecture (ISCA ’99), pp. 222–233, Atlanta, Ga, USA, May
1999.

[24] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory access scheduling,” in Proceedings of the 27th Inter-
national Symposium on Computer Architecture (ISCA ’00), pp.
128–138, Vancouver, BC, Canada, June 2000.

[25] S. Heithecker, A. do Carmo Lucas, and R. Ernst, “A mixed QoS
SDRAM controller for FPGA-based high-end image process-
ing,” in Proceedings of the IEEE Workshop on Signal Processing
Systems (SIPS ’03), pp. 322–327, Seoul, Korea, August 2003.

[26] S. Heithecker and R. Ernst, “Traffic shaping for an FPGA-
based SDRAM controller with complex QoS requirements,”
in Proceedings of the 42nd Design Automation Conference
(DAC ’05), pp. 575–578, Anaheim, Calif, USA, 2005.

[27] M. Weber, “Arbiters: design ideas and coding styles,” In
Synopsys Users Group (SNUG), Boston, Mass, USA, 2001.
http://www.snug-universal.org/cgi-bin/search/search.cgi?
Boston,+2001.

[28] K.-B. Lee, T.-C. Lin, and C.-W. Jen, “An efficient quality-
aware memory controller for multimedia platform SOC,”
IEEE Transactions on Circuits and Systems for Video Technol-
ogy, vol. 15, no. 5, pp. 620–633, 2005.

[29] Sonics, Sonics MemMax 2.0 Multi-threaded DRAM Access
Scheduler, Data sheet, Sonics, 2005. http://www.sonicsinc.
com/.

[30] W.-D. Weber, “Efficient Shared DRAM Subsystems for SOCs,”
InMicroprocessor Forum, 2001.

[31] C. Macián, S. Dharmapurikar, and J. Lockwood, “Beyond per-
formance: secure and fair memory management for multiple
systems on a chip,” in Proceedings of the IEEE International

Conference on Field-Programmable Technology (FPT ’03), pp.
348–351, Tokyo, Japan, December 2003.

[32] K. Goossens, O. P. Gangwal, J. Röver, and A. P. Niranjan, “In-
terconnect and memory organization in SOCs for advanced
set-top boxes and TV,” in Interconnect-Centric Design for Ad-
vanced SOC and NOC, chapter 16, Springer, New York, NY,
USA, 2004.

[33] F. Harmsze, A. Timmer, and J. van Meerbergen, “Memory ar-
bitration and cache management in stream-based systems,” in
Proceedings of the Conference on Design, Automation and Test
in Europe (DATE ’00), pp. 257–262, Paris, France, March 2000.

[34] ARM. PrimeCell Dynamic Memory Controller (PL340). ARM,
2005.

[35] Xilinx, Xilinx Memory Solutions, http://www.xilinx.com/
products/design resources/mem corner/index.htm.

[36] K. Henriss, P. Rüffer, and R. Ernst, “A reconfigurable hard-
ware platform for digital real-time signal processing in tele-
vision studios,” in Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM ’00), p.
285, Napa Valley, Calif, USA, April 2000.

[37] S. Eichner, G. Scheller, U. Wessely, H. Rückert, and R. Hedtke,
“Motion compensated spatial-temporal reduction of film
grain noise in the wavelet domain,” in Proceedings of the Society
of Motion Picture and Television Engineers Technical Conference
(SMPTE ’05), New York, NY, USA, November 2005.

[38] C. Sanz, M. J. Garrido, and J. M. Meneses, “VLSI architecture
for motion estimation using the block-matching algorithm,”
in Proceedings of the European conference on Design and Test
(EDTC ’96), pp. 310–314, Paris, France, March 1996.

[39] S. Rout, “Orthogonal vs. biorthogonal wavelets for image
compression,” M.S. thesis, Virginia Polytechnic Institute and
State University, Blacksburg, Va, USA, 2003.

[40] N. D. Zervas, G. P. Anagnostopoulos, V. Spiliotopoulos, Y. An-
dreopoulos, and C. E. Goutis, “Evaluation of design alterna-
tives for the 2-D-discrete wavelet transform,” IEEE Transac-
tions on Circuits and Systems for Video Technology, vol. 11,
no. 12, pp. 1246–1262, 2001.

[41] C. M. Brislawn, “Classification of nonexpansive symmetric
extension transforms for multirate filter banks,” Applied and
Computational Harmonic Analysis, vol. 3, no. 4, pp. 337–357,
1996.

[42] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.
Mudge, and R. B. Brown, “MiBench: a free, commercially rep-
resentative embedded benchmark suite,” in Proceedings of the
4th Annual IEEE International Workshop on Workload Charac-
terization (WWC-4’01), pp. 3–14, Austin, Tex, USA, December
2001.

http://www.hunteng.co.uk/
http://www.nallatech.com/
http://www.sgi.com/products/rasc/
http://www.omdi.com/
http://www.ti.com/
http://www.analog.com/
http://www.snug-universal.org/cgi-bin/search/search.cgi?Boston,+2001
http://www.snug-universal.org/cgi-bin/search/search.cgi?Boston,+2001
http://www.sonicsinc.com/
http://www.sonicsinc.com/
http://www.xilinx.com/products/design_resources/mem_corner/index.htm
http://www.xilinx.com/products/design_resources/mem_corner/index.htm

	1. INTRODUCTION
	1.1. Technology status

	2. FLEXFILM ARCHITECTURE
	2.1. System architecture
	2.2. FlexWAFE reconfigurable architecture
	2.2.1. Related work

	2.3. Global data flow
	2.3.1. FPGA-to-FPGA communication
	2.3.2. Board communication

	2.4. Memory controller
	2.4.1. Quality of service
	2.4.2. Further requirements
	2.4.3. Architecture
	2.4.4. Configurability
	2.4.5. Related work


	3. A SOPHISTICATED NOISE REDUCER
	3.1. Motion estimation
	3.2. Motion compensation
	3.3. Discrete wavelet transform
	3.4. External memory
	3.5. Mapping and communication
	3.6. Implementation
	3.7. Outlook

	4. SDRAMQOS
	5. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

