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We focus on architectures for streaming DSP applications such as wireless baseband processing and image processing. We aim at
a single generic architecture that is capable of dealing with different DSP applications. This architecture has to be energy efficient
and fault tolerant. We introduce a heterogeneous tiled architecture and present the details of a domain-specific reconfigurable tile
processor called Montium. This reconfigurable processor has a small footprint (1.8mm2 in a 130 nm process), is power efficient
and exploits the locality of reference principle. Reconfiguring the device is very fast, for example, loading the coefficients for a 200
tap FIR filter is done within 80 clock cycles. The tiles on the tiled architecture are connected to a Network-on-Chip (NoC) via a
network interface (NI). Two NoCs have been developed: a packet-switched and a circuit-switched version. Both provide two types
of services: guaranteed throughput (GT) and best effort (BE). For both NoCs estimates of power consumption are presented. The
NI synchronizes data transfers, configures and starts/stops the tile processor. For dynamically mapping applications onto the tiled
architecture, we introduce a run-time mapping tool.
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1. INTRODUCTION

Streaming DSP algorithms are becoming more common in
portable embedded systems and require an efficient process-
ing architecture. Typical streaming DSP examples are found
in signal processing for phased array antennas (for radar and
radio astronomy), wireless baseband processing (for Hiper-
LAN/2, WiMax, DAB, DRM, DVB, UMTS [1, 2]), multime-
dia processing (encoding/decoding), MPEG/TV, medical im-
age processing, and sensor processing (e.g., remote surveil-
lance cameras and automotive). Streaming DSP algorithms
(sometimes modeled as synchronous dataflow programs) ex-
press computation as a dataflow graph with streams of data
items (the edges) flowing between computation kernels (the
nodes). Most signal processing applications can be naturally
expressed in this style [3].

Analyzing the common characteristics of typical stream-
ing DSP applications, we made the following observations.

(i) These applications are characterized by relatively sim-
ple local processing on a huge amount of data. The
trend is that energy costs for data communication
dominate the energy costs of processing.

(ii) Data blocks arrive at nodes at a fixed rate, which causes
periodic data transfers between successive processing
elements. The rate at which blocks arrive is application
dependent, for example, 4 µs for HiperLAN/2 and 20
milliseconds for DRM.

(iii) The size of the data blocks transported over the edges is
application dependent, for example, 14-bit samples for
a sensor system, 64 32-bit words for HiperLAN/2 [1]
OFDM symbols or 1,024 × 768 × 24 bit frames for a
video application. The required communication band-
width for the edges is also application dependent so a
large variety in communication bandwidth is needed.

(iv) Data flows through the successive nodes in a pipelined
fashion. Nodes work in parallel on parallel processors
or can be time multiplexed on one or more processors.
Thus, streaming applications show a predictable tem-
poral and spatial behavior.

(v) For our application domains, throughput guarantees
(in data items per second) are typically required for
the communication as well as for the processing.

(vi) In general, the amount of processing is fixed for each
sample, however, in some applications the amount of
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processing per sample is data dependent (nonmani-
fest) [4].

(vii) The lifetime of a communication stream is semi-static,
which means that a stream is fixed for a relatively long
time.

In the examples mentioned above, streaming DSP algo-
rithms dominate the use of the processing and communica-
tion resources.

This paper focuses on our research activities concern-
ing efficient architectures for streaming DSP applications. In
Section 2, we present our vision on the design of architec-
tures and deduct the design paradigms. Our ideas have led
to a heterogeneous tiled architecture resulting in a System-
on-Chip (SoC) named Annabelle (see Section 3). One part
of this architecture is a domain specific reconfigurable Core
(DSRC) which is described in Section 4. The Network-on-
Chip (NoC) interconnects the different parts of the tiled ar-
chitecture and is described in Section 5. A network interface
connects the DSRC to the NoC (see Section 6). Section 7 re-
flects our ideas on mapping applications onto a tiled archi-
tecture.

2. REQUIREMENTS ANDDESIGN PARADIGMS

In our vision, architectures for streaming DSP applications
have to satisfy the following requirements.

(i) A single architecture has to be capable of dealing with
multiple DSP applications efficiently.

(ii) The architecture has to be fault tolerant.
(iii) The architecture has to be energy efficient.

Based on these requirements, we developed paradigms
for the design of a SoC for streaming DSP applications.
Below we elaborate on the requirements and the design
paradigms in more detail.

2.1. Capable of dealingwithmultiple DSP applications

The set of applications that will run on a future processing
architecture is not fixed but changes over time. The architec-
ture has to be reconfigurable to allow different mixtures of
applications without realizing all possible mixtures in hard-
ware.

In streaming DSP applications, parts of the applica-
tion may be executed in parallel which implies that an ar-
chitecture may consist of multiple processing cores. Be-
cause we aim to support a wide variety of DSP applica-
tions in an efficient way, we need a heterogeneous archi-
tecture where most processing cores require configurabil-
ity/programmability. Some parts of an application run more
efficiently on bit-level reconfigurable architectures (e.g., PN-
code generation), some on general purpose architectures and
some perform optimal on word-level reconfigurable plat-
forms (e.g., FIR filters or FFT algorithms). For the design of
processing architectures for streaming DSP applications, it is
crucial that multiple processing cores (tiles) are present on
one SoC to enable parallel execution of different parts of the
application and that these tiles show different levels of con-

figurability/programmability and granularity. This results in
a tiled heterogeneous SoC where the tiles are interconnected
via an NoC (see also [5]).

There are basically two timescales for reconfiguration:
long term and short term. Long term reconfiguration eases
upgrading a system with a new or enhanced application or
standard. Short-term (or dynamic) reconfiguration refers to
the ability of a system to adapt dynamically to changing
environmental conditions. Short-term reconfiguration can,
for example, be applied in RAKE receivers where, depend-
ing on the radio channel conditions, the receiver switches to
different configurations [6]. Dynamic reconfiguration poses
more stringent requirements and requires a run-time map-
ping tool which is described in Section 7.

2.2. Fault tolerant

The processing architecture has to be fault tolerant to im-
prove the yield of the production process and to extend the
lifetime of the system once operational. Faults in one tile
should not lead to a malfunctioning SoC device but should
only lead to limited performance of a functionally correct de-
vice (graceful degradation). An example of a fault-tolerant
reconfigurable architecture can be found in [7].

When one of the tiles on a tiled heterogeneous SoC is dis-
covered to be defect (either due to a manufacturing fault or
discovered at operating time by built-in-diagnosis) this de-
fective tile can be switched off and isolated. The dataflow can
be rerouted to another tile which can take over the tasks of
the faulty tile. Also for graceful degradation, a runtime map-
ping of tasks to tiles is required. A tiled approach also eases
verification of an integrated circuit design since the design of
identical tiles only has to be verified once.

2.3. Energy efficiency

Portable devices very often run streaming DSP applications,
for example, for wireless baseband ormultimedia processing.
Portable devices rely on batteries; the functionality of these
devices is strictly limited by the energy consumption. There is
an exponential increase in demand for streaming communi-
cation and computation for wireless protocol processing and
multimedia applications, but the energy content of batteries
is only increasing 10% per year. Also for high-performance
computing, there is a need for energy-efficient architectures
to reduce the cost for cooling and packaging.

In addition to that, there are also environmental concerns
that urge for more efficient architectures in particular for sys-
tems that run 24 hours per day such as wireless base stations
and server clusters (e.g., Google has an annual energy budget
of 50 million dollars).

General purpose processors (GPPs) are in general not
suitable for applications that require energy efficiency be-
cause of the need to fetch every instruction from memory
and because of the extra hardware overhead to improve per-
formance. Even though digital signal processors (DSPs) are
tailored towards executing the algorithms of streaming ap-
plications, their energy efficiency is limited because they also
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Figure 1: Blockdiagram of the Annabelle chip.

have to fetch and decode every instruction from memory.
Field programmable gate arrays (FPGAs) do not need to
fetch instructions but the bit-level programmability causes
the word-level operations of streaming applications to be-
come relatively inefficient.

In general, to reduce power consumption of a processor,
the off-chip access to, for example, main memory should be
reduced. Even on-chip data transfer should be limited: trans-
porting a signal over a 1mm wire in a 50 nm technology will
require more than 50 times the energy of a 32-bit operation
in the same technology (the off-chip interconnect will con-
sume more than a 1000 times the energy of a 32-bit opera-
tion!) [8]. Since references to memory in streaming applica-
tions typically display a high degree of temporal and spatial
locality, a tiled architecture where each tile contains its own
local memory exploits the locality of reference principle and
improves the energy efficiency.

Energy is also saved by simply switching off tiles that are
not being used. This also helps to reduce the static power
consumption. Moreover, a tile processor might not need to
run at full clock speed to achieve the required QoS at a par-
ticular moment in time, also reducing power consumption.

The requirements and design paradigms have led to an
architecture for streaming DSP applications which is pre-
sented in the next section.

3. HETEROGENEOUS TILED ARCHITECTURES

Recently, a number of heterogeneous, reconfigurable SoC ar-
chitectures have been proposed for the streaming DSP ap-
plication domain. Examples are the Avispa [9]; the PACT-
XPP [10]; the Maya chip from Berkeley [3, 11], and the
Chameleon/Montium architecture from the University of
Twente/Recore Systems [12]. For an overview we refer to
[13].

In the 4S project [14], we have developed a prototype
chip, called Annabelle, for streaming DSP applications (see
Figure 1).

It consists of an ARM926 processor with a 5-layer AMBA
bus, 4 Montium TPs (Montium tile processors), a Viterbi
decoder, two digital down converters (DDCs), memory and

external connections. The Montium TPs are connected to
a Network on Chip (NoC) via a network interface (NI).
The SoC is fabricated in 130 nm CMOS technology and oc-
cupies 50mm2. The size of the 4 Montium TPs (without
SRAM), the 4 NIs, and the NoC is 12mm2. The layout of
the Annabelle chip has been finalized and we expect the first
prototype chips to be delivered in spring 2007.

We focus on the design of the Montium TP DSRC. Be-
sides the development of the Montium TP, we discuss the
design of the NoC and the NI and briefly address our activi-
ties concerning the mapping of applications onto a heteroge-
neous tiled architecture.

4. THEMONTIUM TP

The key issue in the design of future streaming applications
is to find a good balance between flexibility and high process-
ing power on one side and area and energy efficiency of the
implementation on the other side. Our effort to find such a
balance resulted in the Montium architecture. The Montium
is described in detail in [13] and in this section, we only dis-
cuss its general structure. The Montium architecture is an
example of a domain specific reconfigurable core (DSRC).
It is a parameterizable architecture, described in a hardware
description language where, for example, memory depth and
width of the data paths are important parameters which have
to be fixed just before fabrication. A single Montium pro-
cessing tile, including network interface (NI) is depicted in
Figure 2.

The lower part of Figure 2 shows the NI which deals with
the off-tile communication and configuration of the upper
part, the reconfigurable tile processor (TP). The definition of
the NI depends on the interconnect technology that is used
in the SoC (see Section 6).

The TP is the computing part that can be dynamically
reconfigured to implement a particular algorithm. At first
glance the TP has a VLIW structure. However, the control
structure of the Montium is very different. For (energy) ef-
ficiency it is imperative to minimize the control overhead.
This is, for example, accomplished by scheduling instruc-
tions statically at compile time. A relatively simple sequencer
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Figure 2: The Montium tile processor and network interface.

controls the entire tile processor. The sequencer selects con-
figurable tile instructions that are stored in the instruction
decoding block (see Figure 2).

Furthermore, we see multiple ALUs (ALU1, . . . , ALU5)
and multiple memories (M01, . . . ,M10). A single ALU has
four inputs (A, B, C, D). Each input has a private input regis-
ter file that can store up to four operands. The input register
file cannot be bypassed, that is, an operand is always read
from an input register. Input registers can be written by vari-
ous sources via a flexible interconnect. An ALU has two out-
puts (OUT1, OUT2), which are connected to the intercon-
nect. The ALU is entirely combinational and consequently
there are no pipeline registers within the ALU. Neighboring
ALUs can also communicate directly: the west output (W) of
an ALU connects to the east input (E) of the ALU neighbor-
ing on the left.

The ALUs support both signed integer and signed fixed-
point arithmetic. The five identical ALUs in a tile can ex-
ploit spatial concurrency to enhance performance. This par-
allelism demands a very high memory bandwidth, which is
obtained by having 10 local memories in parallel.

An address generation unit (AGU, not shown in Figure 2)
accompanies each memory. The AGU can generate the typ-
ical memory access patterns found in common DSP al-
gorithms, for example, incremental, decremental, and bit-
reversal addressing. It is also possible to use the memory as a

lookup table for complicated functions which cannot be cal-
culated using an ALU such as sine or division with one con-
stant. Amemory can be used for both integer and fixed-point
lookups.

The reconfigurable elements within the Montium are the
sequencer, the instruction decoding block, and the AGUs.
Their functionality can be changed at run-time. The Mon-
tium is programmed in two steps. In the first step, the AGUs
are configured and a limited set of instructions is defined by
configuring the instruction decoding block. The sequencer
is then instructed to sequentially select the required instruc-
tions. A predefined instruction set is available using an as-
sembly type of mnemonics (Montium assembly). A compiler
has been constructed to convert a Montium assembly pro-
gram into configuration data for both the instruction decod-
ing block and the sequencer.

4.1. Implementation results

The ASIC synthesis of the Montium TP was performed using
a 130 nmCMOS process technology. The figures given in this
section are from [13] and are based on a different technol-
ogy than the figures for the Annabelle chip (see Section 3),
although the feature size is equal. For the local data memo-
ries and sequencer instruction memory of the Montium TP,
embedded SRAMs are used. Since the Montium targets the
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16-bit digital signal processing domain, the width of the data
paths of the ALUs is set to 16-bits. Each local memory is 16-
bit wide and has a depth of 1024 positions, which adds up to
a storage capacity of 16 Kbit per local memory.

For ASIC synthesis, worst case military conditions are as-
sumed. In particular, the supply voltage is 1.1 V and the tem-
perature is 125◦C. Results obtained with the synthesis are the
following.

(i) The area of the Montium TP is about 1.8mm2.
(ii) With Philips tools we estimated that the Montium

TP ASIC realization can implement an FIR filter at
about 140MHz or an FFT at 100MHz. The maxi-
mum frequencies differ for different applications be-
cause each application leads to a specific configuration
of the ALUs which results in different lengths of critical
paths.

4.1.1. Average power consumption

Figure 3 depicts an energy comparison between various ar-
chitectures (see [15–17]) executing FFT butterflies. The fig-
ures are normalized to 1MHz clock rate and one FFT but-
terfly per clock cycle. The average absolute dynamic power
consumption of a particular architecture can be obtained by
multiplying the normalized average power with the clock fre-
quency (in MHz). The results can also be found in [13].

This figure clearly shows the energy advantage of coarse-
grain reconfigurable architectures. Note that this can also be
observed from the Xilinx Virtex-II Pro implementations. The
use of the coarse-grain multiplier blocks (see Figure 3, design
A) improves the energy consumption of the FFT computa-
tion considerably compared to an implementation without
coarse-grain multiplier blocks (see Figure 3, design B).

4.1.2. Locality of reference

Exploiting locality of reference is an important design
paradigm. The Montium therefore contains 10 local mem-
ories. These memories are used to limit the number of off-
tile memory operations. Table 1 gives the amount of mem-
ory operations local to the tile processors (on-tile operations)
and the amount of off-tile operations.

These figures are algorithm dependent. Therefore, we
chose in this table three algorithms in the streaming DSP ap-
plication domain: a 1024 point FFT, a 200 tap FIR filter, and
a part of a turbo decoder (SISO algorithm [18]). The results
show that for these algorithms most memory references are
local (within a tile) because of the presence of 10 local mem-
ories.

4.1.3. Differential reconfiguration

In a tiled SoC, each individual tile can be reconfigured while
the other tiles are operational. In the Montium, the con-
figuration memory is organized as RAM. This means that
to reconfigure the tile, not the entire configuration mem-
ory needs to be written but only the parts that are changed,
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Figure 3: Average dynamic power consumption when FFT butter-
flies are computed at a rate of 1MHz.

facilitating differential reconfiguration. Before reconfigura-
tion, the NI freezes the program counter of the sequencer.
The configuration memories are updated and the NI starts
the sequencer again. Furthermore, because the Montium has
a coarse-grained reconfigurable architecture, the configura-
tion memory is relatively small (2.6 Kbytes). So, completely
reconfiguring a Montium requires less than 1350 clock cycles
using 16-bit reconfiguration words. A typical reconfiguration
file contains 1 Kbytes. Table 2 gives some examples of recon-
figurations.

To reconfigure a Montium from executing a 1024 point
FFT to executing a 1024 point inverse FFT requires updat-
ing the scaling and twiddle factors. Updating these factors
requires less than 522 clock cycles in total. To change the co-
efficients of a 200 tap FIR filter requires less than 80 clock
cycles.

5. NETWORK-ON-CHIP

A tiled architecture for streaming DSP applications has to
be supported by a predictable Network-on-Chip (NoC). In
a NoC, each processing tile is connected to a router. Routers
of different processing tiles are interconnected. Commu-
nication between two processing tiles involves at least the
two routers of the corresponding processing tiles but other
routers might be involved as well. A NoC that routes data
items has a higher bandwidth than an on-chip bus, as it
supports multiple concurrent communications. The well-
controlled electrical parameters of an on-chip interconnec-
tion network enable the use of high-performance circuits
that result in significantly lower power dissipation, higher
propagation velocity, and higher bandwidth than is possible
with a bus (see also [19]). To describe the network traffic in a
system, we adopt the notation used in [20]. According to the
type of services required, the following types of traffic can be
distinguished in the network.
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Table 1: On-tile and off-tile memory operations per execution of an algorithm.

Algorithm
On-tile memory ops. no. Off-tile memory ops. no.

Read Write Total Read Write Total

1024p FFT 30720 20480 51200 2048 2048 4096

200 tap FIR 400 5 405 1 1 2

SISO alg.
(N softbits)

10∗N 8∗N 18∗N 2∗N N 3∗N

Table 2: Reconfiguration of algorithms on the Montium.

Algorithm Change Size
Cycles
no.

1024p FFT
to inverse FFT

Scaling factors ≤ 10∗15 = 150 bits ≤ 10

Twiddle factors 2∗512∗16 = 16384 bits 512

200 tap FIR Filter coefficients ≤ 200∗16 = 3200 bits ≤ 80

(i) Guaranteed throughput (GT) is the part of the traffic
for which the network has to give real-time guarantees
(i.e., guaranteed bandwidth, bounded latency).

(ii) Best effort (BE) is the part of the traffic for which the
network guarantees only fairness but does not give any
bandwidth and timing guarantees.

For streaming DSP applications most traffic is in the GT
category. Besides the main stream of GT communication we
foresee aminor part (assumed to be less then 5%) of BE com-
munications, for example, control, interrupts, and configu-
ration data.

For the NoC we first defined a virtual channel wormhole
router packet-switched network [21] and later we developed
a circuit-switched network [22] with a separate best-effort
network [23]. Both NoCs support GT traffic as well as BE
traffic. For the GT traffic, guaranteed latencies are supported.

First, we discuss the effects of varying load on GT and
BE traffic for the packet-switched network in a 6 × 6 con-
figuration. Second, we underpin our decision to develop a
circuit-switched network and third we present simulation re-
sults concerning power consumption for both the packet-
switched and circuit-switched NoCs.

5.1. Packet-switched NoC

In the context of our work on heterogeneous reconfigurable
SoC architectures, we developed a predictable virtual channel
wormhole router packet-switched NoC [21]. This NoC sup-
ports both GT traffic as well as BE traffic. For the GT traffic,
guaranteed latencies are supported. Figure 4 presents simu-
lation results for a 6× 6 NoC.

The graph shows how the latency of the GT and BE mes-
sages depends on the offered BE load. For the GT traffic, the
mean and themaximal latency of packets are given.When the
offered BE load is low, the latency of the GT packets is lower
than the guaranteed (or allowed) latency. The reason is that
the GT traffic utilizes the bandwidth unused by the BE traf-
fic. The latency of the GT packets is higher than the latency
of the BE traffic because the GT packets are larger (256 bytes
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Figure 4: Message delay of the GT and BE traffic versus BE load for
6-by-6 network.

against 10 bytes for BE packets). With the increase of the BE
load, the latency of the GT traffic increases too until the max-
imum delay reaches the guarantee. Further increase of the BE
load increases the GTmean latency but the GTmaximum la-
tency never exceeds the guaranteed latency.

5.2. Circuit-switched NoC

The streaming applications, as mentioned in Section 1, show
that the amount of expected GT traffic is much larger than
the amount of BE traffic. Fundamentally, sharing resources
and giving guarantees are conflicting, and efficiently com-
bining guaranteed traffic with best-effort traffic is hard [24].
Using dedicated techniques for both types of traffic, we aim
for reducing the total area and power consumption by means
of a circuit-switched NoC.

As mentioned, we defined a circuit-switched NoC after
we developed a packet-switched NoC. The reasons for re-
considering circuit switching are that the flexibility of packet
switching is not needed, because a connection between two
tiles will remain open for a long period (e.g., seconds or
longer). This in contrast with connections in a local area
network. Furthermore, large amounts of the traffic between
tiles will need a guaranteed throughput, which is easier to
guarantee in a circuit-switched connection. Circuit switching
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Table 3: Scenario definitions.

No. No. of streams Comment

1 0 The router is idle

2 1 Stream from and to other router

3 1 Stream from other router to processing tile

4 1 Stream processing tile to other router

5 2 Combination of 3 and 4

6 3 Combination of 2, 3, and 4

7 5 Combination of 5 and three times 2

8 10 Two times the number of streams of 7

9 15 Three times the number of streams of 7

10 20 All the lanes/virtual channels are occupied

also eases the implementation of asynchronous communica-
tion techniques, because data and control can be separated
and circuit switching has a minimal amount of control in
the data path (e.g., no arbitration). This increases the energy
efficiency per transported bit and the maximum through-
put. Further, we see some benefits of a circuit-switched NoC
when GT traffic has to be scheduled. Scheduling commu-
nication streams over nontime multiplexed channels is eas-
ier because, by definition, a stream will not have collisions
with other communication streams. The Æthereal [25] and
SoCBUS [26] routers have large interaction between data
streams (both have to guarantee contention free paths). De-
termining the static time slots table for these systems requires
considerable effort. Because data streams are physically sepa-
rated in a circuit-switched NoC, collisions in the crossbar do
not occur. Therefore, we do not need buffering and arbitra-
tion in the individual router. An established physical channel
can always be used. Because of the above reasons we used a
circuit-switched NoC in the Annabelle chip, which was in-
troduced in Section 3.

5.3. Powermeasurements

For both NoCs, we analyzed the power consumption under
variable network loads. We defined a set of test scenarios
for traffic patterns. We used random data with 50%bit-flips.
Furthermore, to vary the amount of traffic which concur-
rently traverses the router of a processing tile, we defined ten
scenarios. The scenarios have a variable number of concur-
rent data streams with a variable load between 0% and 100%.
The ten scenarios are listed in Table 3.

The first scenario is a situation where no data traverses
the router during the time of the simulation. This gives the
static offset in the dynamic power consumption. The other
scenarios simulate one or more concurrent data streams.

Power estimation of the packet-switched and circuit-
switched networks is performed by modeling the designs in
VHDL. The synthesized VHDL design is then annotated via a
set of test scenarios. We can estimate the power consumption
per scenario using Synopsis power compiler and the anno-
tated design. For both network solutions all 10 scenarios are
applied. In each scenario, the data streams use the guaranteed
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Figure 5: Energy consumption of routers for typical data (random
data with 50%bit-flips).

throughput protocol of the router. The power consumption
of the router is measured over 20 kB of data that is offered to
the router in a variable time interval. The variable interval is
used to change the average load of the link. We measured the
power consumption per MHz [µW/MHz] for each scenario
and different load.

The left graph of Figure 5 depicts the dynamic power
consumption of the packet-switched network depending
on the offered load for typical data. The middle graph of
Figure 5 depicts the dynamic power consumption of the
circuit-switched network + best-effort router depending on
the offered load for typical data. The power consumption
of the extra required best-effort network is measured with
a separate testbench [23]. The power consumption of this
small extra router varied between 8.4 and 12.3 µW/MHz. In
this paper, we use the measurement of the GT traffic and
added the worst-case power consumption of the BE network
(12.3 µW/MHz) to find the worst-case power consumption
of the combination. We noticed a relatively high offset in the
dynamic power consumption. This could be reduced by in-
cluding clock gating to switch off the inactive lanes. This re-
sulted in the right graph of Figure 5, where the remaining
offset is mainly determined by the best-effort network.

6. HYDRA NETWORK INTERFACE

A tile that is connected to a NoC requires a customized net-
work interface (NI) that provides a footprint that exactly fits
the NoC (see Figure 1). The Hydra is a NI, developed to serve
the Montium within the Annabelle chip [27].

The Montium tiles in the Annabelle chip operate inde-
pendently so they need to be controlled separately. Since the
tile processors can be operated at different clock frequencies,
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the NIs synchronize the data transfers between the tile pro-
cessors and the NoC.

The Hydra uses a light-weight message protocol that in-
cludes the functionality to configure the Montium, to man-
age the memories by means of direct memory access (DMA),
and to start/wait/reset the computation of the configured al-
gorithm.

6.1. Communicationmodes

We distinguish two mechanisms for transferring data be-
tween the circuit-switched NoC and the Montium: block
mode and streaming mode. Some applications require all the
input data to be stored in the local memories before the exe-
cution can be started. This operation mode is called block
mode. Typically, a block-mode operation is performed in
three stages: the input data is loaded into the local memo-
ries (DMA load), the process is executed, and the result is
fetched from the local memories (DMA retrieve) and sent to
another tile processor. During the data transfers, the tile pro-
cessor is halted to make sure the execution is not started until
all data are valid. Some tile processors support reading input
data and writing output data while they are processing, using
the network interface as a slave for performing data transfers.
This operation mode is called streaming mode.

Dependent on the application, we can use block-mode
communication or we may have to use streaming-mode
communication because the blocks get too large to fit in the
local memories. Due to the semistatic behavior of streaming
applications (see Section 2), the connections for the input
data and output data remain open during their execution.
This is an advantage for both the sender and receiver, since
there is no overhead during the communication for packag-
ing of data (assembly or reassembly of packets).

Whether block-mode or streaming-mode is used is de-
termined by the application programmer by properly con-
figuring the Hydra NI. Clearly, this strongly depends on the
characteristics of the application process. When the appli-
cation operates in block mode, no computation and com-
munication can be done at the same time. This increases
the ease of programming at process level, but gives some
overhead at application level. For streaming-mode commu-
nication, however, the application designer has to embed the
communication patterns inside the instructions such that the
Montium controls the NI to take care of the data flow from
and to the NoC. In streaming mode, the communication
pattern is part of the instructions that are programmed in
the Montium and, therefore, directly related to the program
flow.

6.2. Implementation results

In the implementation of the Hydra NI on the Annabelle
chip, at most four 16-bit input streams and four 16-bit out-
put streams can be handled in parallel. So, four 16-bit words
can be read from the network and four 16-bit words can be
written to the network simultaneously at the rate of theMon-
tium clock.

For the synthesis of the Hydra, we used the same ASIC
technology as mentioned before. To be sure that the Hydra
would not become a bottleneck in clock frequency, the max-
imum clock frequency for the synthesis was constrained to
200MHz. With this constraint, the area is 0.106mm2, which
is less than 6% of the area of the Montium.

7. RUNTIMEMAPPING OF STREAMS TO
ARCHITECTURE

Ultimately, we target a dynamically reconfigurable heteroge-
neous SoC architecture that is flexible enough to run differ-
ent applications (within a certain application domain). How-
ever, mapping an application to such a heterogeneous SoC
is more difficult than mapping to a homogeneous architec-
ture [28, 29]. Today, it is common practice to map the ap-
plications to the architecture at design time. An alternative
approach is to map applications at run time. In [30], a run-
time partitioning system is introduced, aiming at the run-
time hardware/software partitioning andmapping of a single
application (thread). In [31], run-time scheduling of multi-
ple threads onto reconfigurable hardware is presented. In our
approach we also want to address spatial mapping.

Currently, we are ramping up our research efforts on run-
time mapping and as reported in [32] the first results are
promising. In this section we describe our plans on how to
perform the mapping at run time.

Run-time mapping offers a number of advantages over
design-time mapping. It offers, for example, the possibility
to adapt to the available resources. If we allow applications to
run simultaneously and if we allow adaptation of algorithms
to the environment or QoS parameters set by the user or the
applications (e.g., video frame rate, screen size), the required
resources may vary over time. Then, only at run time the re-
quired resources are known and to optimally use the available
resources, we need a run-time mapping algorithm.

Furthermore, run-time mapping offers the possibility to
increase yield. The yield of an SoC can be improved when
the run-time mapping tool is able to avoid faulty parts of the
chip. Also aging can lead to faulty parts that are unforeseeable
at design time.

In our approach, the mapping algorithm maps applica-
tions to a heterogeneous SoC architecture at run time.We as-
sume that the mapping algorithm runs as a software process
on a central coordination node (CCN). This CCN also gen-
erates the routes in the NoC and does the (re)configuration
of the processing tiles. The mapping algorithm requires a de-
scription of the streaming applications, a library of process
implementations, a description of the architecture and the
current status of the system.

The objective of the run-time mapping algorithm is to
determine at run time a mapping of the application(s) to
the architecture using the library of process implementations
and the current status of the system. The mapping algorithm
should minimize the energy consumption and has to satisfy
all the constraints of the application and the architecture, for
example, real-time guarantees or bandwidth constraints. The
considered problem is a combination of several optimization
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problems (which, on their own, are already hard) that has to
be solved by light-weighted methods.

The problems we consider differ from multiprocessor
scheduling or load-balancing mechanisms [33] because:

(1) besides processing, we also consider inter-tile commu-
nication. Inter-tile communication is becoming a ma-
jor source of energy consumption, and by optimizing
the inter-tile communications (i.e., placing frequently
communicating processes close together) considerable
energy can be saved,

(2) we target at heterogeneous architectures and not just
at homogeneous multiprocessors,

(3) we optimize for energy and not just for (time) perfor-
mance. As a consequence, often-used scheduling tech-
niques such as ILP, branch and bound/price, and dy-
namic programming [20, 28], are not applicable and
for existing heuristics such as priority rules and local
search, we carefully have to evaluate whether they are
adaptable for solving at least some of the sub problems
of the overall problem.

8. CONCLUSION

This paper addresses the design issues of a reconfigurable
SoC platform and the supporting software tools for stream-
ing DSP applications. Streaming DSP applications can be
modeled as a dataflow graph with streams of data items (the
edges) flowing between computation kernels (the nodes).
Typical examples of streaming DSP applications are wireless
baseband processing, multimedia processing, medical im-
age processing, and sensor processing. These application do-
mains need flexible and energy-efficient architectures. This
can be realized with a tiled architecture, in which tiles are
interconnected by a Network-on-Chip (NoC). Energy effi-
ciency is realized with locality of reference and dynamic re-
configurations. To keep the design manageable, we have a
NoC that supports both guaranteed throughput traffic (GT)
as well as best effort traffic (BE). Furthermore, future oper-
ating systems have to support runtime mapping of streaming
tasks onto a tiled SoC.
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