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This paper describes the design of a scalable high-performance vision system which is used in the application area of optical print
inspection. The system is able to process hundreds of megabytes of image data per second coming from several high-speed/high-
resolution cameras. Due to performance requirements, some functionality has been implemented on dedicated hardware based
on a field programmable gate array (FPGA), which is coupled to a high-end digital signal processor (DSP). The paper discusses
design considerations like partitioning of image processing algorithms between hardware and software. The main chapters focus
on functionality implemented on the FPGA, including low-level image processing algorithms (flat-field correction, image pyramid
generation, neighborhood operations) and advanced processing units (programmable arithmetic unit, geometry unit). Verifica-
tion issues for the complex system are also addressed. The paper concludes with a summary of the FPGA resource usage and some
performance results.
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1. INTRODUCTION

Industrial printing houses, especially companies producing
prints which include techniques against counterfeiting (for,
e.g., banknote or postal stamps), strive to emit flawless prod-
ucts. Contemporary requirements include, among others,
examination of fine details of the print, high throughput,
and image acquisition from different views and in different
spectral bands, for example, color, infrared, and ultraviolet.
Therefore, an optical inspection system for such tasks has to
be equipped with several high-speed/high-resolution cam-
eras, each producingmegabytes of data. Figure 1 shows ama-
chine for quality inspection of printed sheets [1]. The me-
chanical part consists of a loading station (A), a separator
(B), several conveyor belts (C), a switch for sorting (D), as
well as trays for sheets which have passed the inspection sys-
tem (E) and sheets which have been rejected (F). Along the
conveyor belt, there are two camera stations (G) and (H) to
inspect the front side and the back side of the sheets. With re-
gard to high-speed transportation of the sheets (several me-

ters per second), each camera station is made up of several
high-speed line-scan cameras, operating at line rates above
50 kHz and resolutions of at least 1024 pixels, which is nec-
essary to identify the fine details of the print. The cameras
differ in spectral sensitivity and they are arranged to observe
the same scene from distinctive viewpoints. Typical camera
stations contain six to nine cameras. The information pro-
cessing part consists of a machine control unit (I), a process-
ing system (J), and a machine service server (K) with some
clients for user interaction attached to it. The machine con-
trol unit serves as an interface to sensors and actuators of
the machine, for example, camera triggers, and keeps track of
each sheet in the system. During operation of the machine,
the server continuously downloads measurement results and
raw image data from the processing system, stores the data,
and provides them for the clients. On the other hand, the
server offers additional services for controlling the process-
ing system. The processing system collects and provides data,
computes a quality decision, and triggers the switch accord-
ingly.
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Figure 1: Print inspection system example.

The machine is fed with printed sheets and automatically
separates faulty sheets from top-grade products according to
user-defined rules (inspection setup). During the process of
inspection, several sheets are simultaneously processed at dif-
ferent positions in the machine. This leads to the following
requirements which must be handled by the real-time pro-
cessing system:

(i) tens of sheets simultaneously processed by the ma-
chine at different stages,

(ii) feeding rates up to 50 sheets per second,
(iii) more than a gigabyte of input data per second,
(iv) computation of complex image processing tasks, in-

cluding neighborhood operations, generation of im-
age pyramids, affine transformations, point correla-
tions, and projections.

A vision system for this task has been developed by the ARC
Seibersdorf Research GmbH (ARCsr). The system design was
significantly influenced by a new generation of high-end field
programmable gate arrays (FPGA), which enable implemen-
tation of complex system on programmable chip solutions.
For this reason, the ARCsr was supported by the Institute of
Computer Technology at the Vienna University of Technol-
ogy and byOregano Systems - Design and Consulting GmbH
who contributed their long-term experience in the design of
complex electronic systems and their expert knowledge in
VLSI (very large scale integration) circuits design. This pa-
per deals with design considerations for the image processing
system and mainly focuses on system parts which have been
implemented on FPGAs.

2. SYSTEMDESIGN CONSIDERATIONS

The problem of embedding vision in real-time processing
systems has been solved for many times. Typically, these solu-
tions are tailored to the specific application needs. Probably,
there are hundreds of architectures which have been consid-
ered for this purpose, all having some degree of parallelism
[2]. The considered application requires rather complex im-
age processing algorithms to implement a wide range of in-
spection capabilities. The inspected features include, among
others, the detection of pale smears, dirt, fine soiling by
splashes of ink, and misalignment of printing phases.

Moreover, system design is a rather complex task, because
a lot of optimization parameters (accuracy, robustness, reli-
ability, speed, etc.) and interdependencies between many of
these parameters have to be considered and optimized. Ad-
ditionally, an important constraint for economically relevant
solutions is the cost of the system components. Therefore, the
algorithms have to be selected with respect to the required
constraints in the multidimensional parameter space.

A dedicated image processing system based onDSPs (dig-
ital signal processors) would require very complex data shar-
ing mechanisms among many DSPs, because a single DSP
cannot manage the enormous data volume in real time [3].
Common parallel architectures based on DSPs and/or dedi-
cated hardware components are often either limited to a spe-
cial application or they are implemented in a general way,
which means a large overhead on functionality. Therefore,
the system cannot be implemented economically. On the
other hand, FPGA-based systems promise to enable suitable
solutions for the particular application [4]. However, from
the author’s viewpoint, many attempts did not optimally uti-
lize the FPGA potentials due to generality of the approach, or
the solutions are too specialized that they, again, could only
be used for a single application.

The analysis of the requirements led to the conclusion
that it was not possible to build an image processing sys-
tem based on off-the-shelf components. Consequently, a new
architecture, which can be fine-tuned for different applica-
tions, had to be developed [5, 6]. The key issue for the design
of high-performance real-time image processing systems is to
match algorithms and architecture [2]. Consequently, it is es-
sential to use common hardware/software codesign method-
ologies to find a balance between algorithms implemented
in hardware and algorithms running as software tasks. This
principle is not new, however, because of today’s high-end
FPGAs, featuring thousands of logic elements, reasonable
on-chip memory, and a lot more on-chip resources which
speed up signal processing tasks, former paradigms for the
design of embedded vision systems have been changed.

For image processing FPGAs offer several essential ad-
vantages as follows.

(i) Dedicated hardware resources on the FPGA, for exam-
ple, wide multiplication units, support high-speed ex-
ecution for common operations.
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Figure 2: Typical processing sequence, which is well adapted to being implemented as a pipelined image processing system.

(ii) Numerous logic elements available on high-end de-
vices enable multiple instances of complex processing
units to be implemented on the same chip.

(iii) Due to parallel hardware structures, FPGAs can handle
enormous data transfer rates.

(iv) The possibility of FPGA reconfiguration, even at run-
time, is the basis for systems which can be adapted
to different needs. Consequently, one hardware plat-
form can be used for several, basically different, appli-
cations.

The disadvantages include the following statements.

(i) Compared to high-end DSPs in mass production,
high-end FPGAs are a lot more expensive.

(ii) The design flow is typically more time-consuming.
(iii) Poor processing power for sequential (one-dimen-

sional) computations. Due to the general architec-
ture of FPGAs, they are considerably slower for such
tasks than dedicated and optimized processor cores
(as long as single execution threads are considered).
On-chip CPU hardcores and softcores cannot com-
pete with dedicated DSPs. High-end DSPs, like the
TMS320C6400 (C64x) series from Texas Instruments,
which exploit fine grain parallelism through very large
instruction set architectures and operation frequen-
cies up to 1GHz, enable timely computation of very
complex algorithms [7] at low cost. In addition, the
DSP has advantages concerning large portions of fast
SRAM-based memory which is available on-chip.

The basic approach presented herein makes use of the bene-
fits of both FPGAs and DSPs while reducing the deficiencies.
However, there are several difficulties for the partitioning of
tasks between the FPGA and the DSP, which must be over-
come.

Some important design questions are the following.

(i) Which unit does control the processing flow?
(ii) How could one balance processing load?
(iii) Where could one partition processing tasks between

execution on dedicated FPGA units and software pro-
cesses running on the DSP?

(iv) What kind of coupling between DSP and FPGA is nec-
essary?

The goal for the proposed hardware driven image process-
ing (HDIP) architecture was a flexible and economically rea-
sonable solution for these problems. Enabled by contempo-
rary FPGA devices, the original contribution of the HDIP
approach is the practical application of design principles for

high-speed real-time image processing systems like (i) par-
allel processing, (ii) pipelining, and (iii) multiport memory
concepts (see [8]) to build flexible inspection systems based
on simple building blocks implemented on FPGAs. Result-
ing systems should be scalable in terms of the number of at-
tached cameras (20 or more) and scalable to arbitrary pro-
cessing power. Thereby, a wide range of applications can be
covered.

2.1. Parallel processing

Parallelization is the most promising keyword for boost-
ing processing performance in context of image processing.
There are two main approaches to parallel processing [2]: (i)
data is split up into multiple streams, which are processed by
several processing units, (ii) the computational task (func-
tionality) is split up to be processed by several units in par-
allel. The first approach is referred to as data parallelism,
which can be utilized for many image processing tasks. Data
parallelism is heavily used in the HDIP FPGA design (see
Section 4). For example, as shown in Figure 6, camera data
fed into the HDIP module is split up into three paths, each
going through three identical acquisition units (ACQ). The
second approach is also known as algorithmic parallelism.
Algorithmic parallelism can be successfully exploited in the
form of pipelined processing systems. As described later in
Section 4, the concept of algorithmic parallelism (pipelining)
is applied to the HDIP design as well.

In complex image processing systems, several levels of
parallel processing have to be considered. For example, fine
grain parallelism can be exploited by multiple processing
units on a DSP, while coarse grain parallelism involves multi-
ple modules at a higher level of processing (e.g., two identical
systems, one for each side of the sheet, considering the print
inspection system described in Section 1).

2.2. Pipeline processing

For the particular inspection application, a number of im-
ages must be processed for every single sheet. The image
data is fed into the processing system, where it passes sev-
eral processing stages as depicted in Figure 2. This sequen-
tial processing can be seen as a pipeline where each stage
is related to specific (image) processing tasks. The acquisi-
tion stage implements several preprocessing steps, for ex-
ample, flat field correction, camera calibration, and some
other low-level image processing algorithms. Low-level im-
age processing (neighborhood operations like, e.g., Gaussian,
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differences of Gaussian or Sobel) is continued in the feature
stage. In the examination stage, several high-level image pro-
cessing algorithms are carried out, including computation of
image statistics over arbitrary shaped image regions based on
affine backward transformations. The final analysis leads to
the quality decision for the processed sheet. The implemen-
tation of the pipeline stages as suggested in Figure 2 may in-
volve dedicated units on the FPGA, and/or processing on the
DSP. Typically, it is a combination of both.

Pipelining is a very effective strategy to speed up process-
ing. However, the speed of the pipeline is determined by the
slowest stage. Therefore, the tasks should be partitioned for
evenly distributed processing time. In addition, the pipelined
system must be designed in accordance with worst-case tim-
ing scenarios. To decouple the tasks, buffer memories can be
introduced between the stages. As a matter of fact, pipelining
introduces latency of results which is related to the number
of the stages.

In this context, several kinds of pipelining have to be dis-
tinguished.

(i) Cycle pipelining

That is, pipelining based on the cycle time of the production
process which means pipelining as described above. For the
aimed application, a minimum cycle time Tc is defined, that
is, the feeding rate for the sheets is limited. Consequently,
the acquisition with line-scan cameras takes most of the cy-
cle time (minus a small blanking time between successive
sheets). Therefore, the maximum time for a pipeline stage
is related to the process cycle time.

(ii) Processing pipelining on the FPGA

The same concept can be applied for processing at the pixel
level, that is, replacement of the complex pipeline tasks from
Figure 2 by simple image processing stages. For example, a
pipeline containing a stage for applying a pixel offset and
scaling, followed by two stages implementing different neigh-
borhood operations (e.g., Gaussian filter, Sobel filter), and
finally a binarization stage. This pipeline can be fed with a
stream of pixel data producing an output pixel at every clock
cycle. This results in an average processing rate for the se-
quence of all stages of one clock cycle per pixel. As images
typically consist of many pixels, overhead for loading and
unloading of the pipeline can be neglected. Obviously, this
concept is not limited to data representing pixel values. For
this reason we, call such pipelines feature pipelines, or stream-
ing path.

(iii) Software pipelining

This is a very effective way to speed up loops by exploiting al-
gorithmic parallelism through special utilization of multiple
execution units available on the DSP [7].

2.3. Multiport memory concept

In the area of image processing, there is usually a demand
for huge amounts of volatile memory (RAM) for storage of

image data. Today’s RAM chips come in two basic types:
SRAM (static random access memory) and DRAM (dynamic
random access memory) [9]. Large SRAM memories in the
range above decades of megabytes are much more expen-
sive than DRAMmemories at equal size. On the other hand,
accessing DRAM is much more complicated than accessing
SRAM due to the internal physical structure of DRAMmem-
ories. In contrast to SRAM, internal DRAM address registers
must be initialized prior to read or write accesses. Address
registers must be reinitialized on changes of the DRAM row
address. Moreover, the content of the DRAM memory cells
must be refreshed periodically [10].

Complete images, which do not fit into the FPGA in-
ternal SRAM memories, have to be stored temporarily, for
example, to implement buffer memories between pipeline
stages. For this reason, large external DDR-SDRAM (double
data rate synchronous dynamic RAM) modules are a reason-
able choice. ADDR-SDRAM controller core implemented on
the FPGA handles the complex aspects of using the DRAM.
It initializes the memory devices, manages SDRAM banks,
and keeps the device refreshed at appropriate intervals. The
core translates read and write requests from the local (FPGA-
internal) interface into all necessary SDRAM command sig-
nals.

Common SDRAM controllers usually support an inter-
face which can be accessed by only one unit (e.g., a CPU).
However, since several processing units on the FPGA need
access to the DDR-SDRAM memories, a multiport mem-
ory concept offers a lot of advantages. For example, a mul-
tiport memory interface consists of a number of write ports
to transfer data from FPGA processing units to the DDR-
SDRAMmemory (via the SDRAM controller and some kind
of arbitration logic), and a number of read ports in or-
der to read data back from the memory. Hence, the mul-
tiport memory interface allows multiple data streams to be
stored and loaded simultaneously from/to SDRAM memory
and can be interpreted as an array of direct memory access
(DMA) controllers.

The conceptual idea of an image processing systemwhich
implements a multiport memory concept is to stream data
from an external memory through a feature pipeline and
back to a (possibly different) memory location. The image
processing task has to be split up into various runs through
different feature pipelines. The advantages are twofold. First,
once a single data stream has been set up, there is no need for
further interaction. This works similar to a CPU which can
continue code execution while the DMA controller transfers
data independently from code execution. Second, a number
of simultaneous active streaming paths may be implemented.
In fact, this number is only limited by hardware resources
available on the FPGA.

3. SYSTEMOVERVIEW

With the particular application in mind, the first decision
concerned one of the most important characteristics for the
processing system—to be scalable to an (almost) arbitrary
number of cameras (refer to Figure 1). Starting from this
perspective, the typical processing system consists of several
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processingmodules (PM), which are interconnected in a ring
topology as shown in Figure 3. This arrangement is backed
up by successful applications of the ring topology for multi-
sensor image processing systems [11, 12]. The ring topol-
ogy allows a simple extension of the system, where the actual
number of PMs depends on the application. For example,
the input provided by three different cameras may be pro-
cessed by one PM. Other special image processing features
which need additional processing power, for example, char-
acter recognition, may require an additional PM. The system
has been designed to match worst case scenarios, therefore,
no dynamic load balancing is implemented at the moment.
However, static load balancing can be fine tuned by choos-
ing a number of PMs with appropriate capabilities as will be
outlined below. Typically, one PM implements the physical
interface to the machine control unit and, therefore, it con-
trols the whole processing flow. In this context, this partic-
ular PM serves as a master to the other modules. (Direct)
communication between the machine service server and the
PMs is established via a Gigabit Ethernet (GBE) interface.

Figure 4 shows the main modules implemented on a sin-
gle PM. According to the HDIP approach, a PM basically
consists of an FPGA module and a DSP module. However,
a PM can be equipped either with a standalone FPGA, or
with a standalone DSP, respectively. Additionally, the printed

circuit board can be equipped with different devices, for ex-
ample, varying speed grade or complexity for the FPGA, and
different clock speeds for the DSP. This introduces a flexible
way for selecting the appropriate processing power needed
for the specific task. For example, the master PM contains the
DSP part only and, instead of the FPGA, it is equipped with
additional interfacing capabilities for communication to the
machine control unit. However, usually a PM is equipped as
shown in Figure 4. Both processing units, the FPGA and the
DSP, are interconnected to a switching fabric. The high-speed
link provides bidirectional data transmission between the
FPGA and the DSP. The input link and the output link used
to build the ring topology are also connected to a switching
fabric (ring node). Consequently, data transmission between
any PM in the overall system is possible. For specific applica-
tion reasons, it is necessary to store a number of raw images
acquired by the cameras for later usage. Hence, the machine
service server may download data (e.g., the raw images) at
any time via the high-speed link. This download must not
interfere with real-time behavior of the system.

For the particular application, the DSP serves as a mas-
ter to the FPGA and controls the processing flow. However,
this is not a general rule, rather it is the result from the hard-
ware/software codesign process for the specific application.
Other strategies may be implemented as well without any
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changes of the hardware, which is an important advantage of
the approach. Here, the DSP is also heavily involved in com-
puting complex high-level image analysis algorithms. There-
fore, the analysis stage (Figure 2) is implemented as software
task on the DSP. Low order image processing and intermedi-
ate order image processing is done by the FPGA (including
acquisition stage, feature stage, and examination stage). In
order to minimize the amount of data to be transferred be-
tween the DSP and the FPGA, advanced data reduction based
on image analysis takes place on the FPGA.

4. IMPLEMENTATION DETAILS

The FPGA design (also referenced as the HDIP FPGA design)
has been implemented using VHDL (very high-speed inte-
grated circuits hardware description language) and is there-
fore independent from the target technology, for example,
FPGA or application specific integrated circuit (ASIC). How-
ever, some technology-dependent resources available on the
chosen Altera StratixTM device have been used, for exam-
ple, memory blocks and DSP blocks [13]. The same ap-
plies for intellectual property (IP) cores supplied by Al-
tera (NiosTM softcore CPU, DDR-SDRAM controller). These
modules have to be adapted according to the underlying
technology.

Figure 5 shows the main units implemented on the
FPGA. All external interfaces (camera interface, DSP inter-
face, and GBE interface) are based on the link concept men-
tioned in Section 3. The camera interface is linked to the
camera node, which, in turn, is connected to the DSP node
and the actual image processing module (HDIP module).
The separation of the DSP node and the camera node is due
to the high data volume (data from several cameras), which
is passed to the HDIP module. Nevertheless, it is possible to
redirect image data to other PMs available in the ring. The
DSP interface and the on-chip CPU module are connected
to the DSP node, whereas the GBE interface has its own node
linked to the HDIPmodule. Two external DDR-SDRAMs are

attached to the HDIP module via an Altera DDR-SDRAM IP
core [14].

In order to control the image processing flow, the exter-
nal DSP sends sequences of command scripts to the on-chip
CPU. The CPU executes these scripts and sends results back
to the DSP. The execution of the scripts involves a lot of in-
teraction between the CPU and the HDIP module. Keeping
these interactions locally on the FPGA reduces communica-
tion between FPGA and DSP. Moreover, the local processing
does not utilize the DSP to handle the fine details of the im-
age processing task. As a result, more time can be spent on
the DSP for number crunching tasks, where its VLIW archi-
tecture can be exploited.

Figure 6 shows details concerning the HDIPmodule. The
camera data fed into the module is split into three paths,
each going through identical acquisition (ACQ) units, which
are linked to the multiport memory A. The geometry (GEO)
unit and the feature (FEA) unit reside between the two mul-
tiport memories. A second geometry unit is linked to mul-
tiport memory B only. The ACQ unit implements the gen-
eration of image pyramids [15]. Image pyramids result from
consecutive application of a Gaussian filter followed by a re-
duction of resolution which leads to the next pyramid level
(denoted as G0 for the highest level, G1, . . . , Gn). There are
5× 5 Gaussian kernels in use, as well as a reduction of width
and height by a factor of 1/2. Each acquisition unit has three
interfaces which are linked to memory A, referring to three
pyramid levels which can be generated and stored to the
memory in parallel. The feedback path from memory A en-
ables generation of pyramids of arbitrary height. In addi-
tion, the ACQ unit can contain processing elements for flat
field correction or lens distortion correction. The geometry
unit (for a detailed description refer to [16]) can be used to
compute image statistics over arbitrary shaped image regions
based on affine backward transformations with interpola-
tion, which are required for operations like point correlation
[17] and projections. The feature unit is capable of combin-
ing the data from different paths. For the combination op-
eration, a programmable arithmetic and logic unit has been
implemented. The paths through the FEA unit can be config-
ured to pass several neighborhood operations, for example,
Gaussian, differences of Gaussian, and Sobel. Moreover, im-
ages can be shrunk or expanded. All units (except the camera,
DSP and GBE interface blocks) are connected to the on-chip
CPU. These interfaces are not shown in Figure 6 for clarity
reasons. The CPU can also access the external DDR-SDRAM
memories via a dual-ported memory (DPM) unit. For high
speed data transfers from the memories to the external DSP,
both multiport memories are connected to the DSP node.
Transfers in the opposite direction (DSP to external mem-
ory) require interaction of the CPU, which stores data from
the DSP into the external memory via the DPM unit.

Data can be transferred from all read and write ports of
the multiport memory in parallel. For this purpose, a sched-
uler controls transfers between the ports and the (single-
ported) DDR-SDRAM memory via the SDRAM controller.
In addition, the ports implement a small SRAM-based buffer
memory. If, for example, a write port asserts a request for
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a data transfer while another transfer is already in progress,
the new transfer is delayed. Data for the write port will then
be temporarily stored to the buffer. When the first transfer
is finished, the scheduler grants access to the delayed write
port, which then transfers its data stored in the buffer to the
DDR-SDRAM memory. That way, transfer requests from all
read and write ports can be performed concurrently almost
without any delays. Like a DMA controller, configurable ad-
dress generation is part of the multiport memory controller.
Transfers are set up by the on-chip CPU, which can also de-
tect their completion.

For the particular application, four processing cycles (as
suggested in Figure 2) have been introduced. The first three
cycles are executed on the FPGA. Hence, 75 percent of the
total processing time is spent for FPGA processing, which in-
dicates the importance of the proposed approach. For the ac-
quisition cycle, the three ACQ units are used concurrently.
The feature cycle is executed on the FEA unit, whereas both
GEO units are utilized during the examination cycle. Finally,
the DSP is busy during the analysis cycle. Figure 7 shows how
the processing units are processing data from different sheets
which are fed into the machine. After the pipeline is filled,
four different sheets are inspected concurrently. However, the
sheets are processed in different stages. The latency intro-
duced by the pipeline processing requires the switch (refer
to Figure 1) to be located in an appropriate distance from the
last camera, which is provided by the mechanical design of
the machine.

5. VERIFICATION

The verification process of such a large system as presented
herein containing hardware and software blocks and even
mechanical parts (Figure 1) was, of course, a challenge for

the whole project team. In the case of ASICs, it is common for
verification teams to spend 70 percent andmore of their time
in verification and debugging [18]. For FPGAs, where design
errors are not so penalized as a design respin is a matter of
hours notmonths, there is, nevertheless, still an obvious need
for efficient debug methodologies which enable design teams
to identify and fix errors early in the design process.

Several approaches for the verification of the inspection
system were used to cover different levels of system complex-
ity.

(i) Most important was the usage of hardware/software
coverification techniques. For verification of the im-
age processing module (refer to Figure 4), a software
library for emulation of functional hardware behav-
ior was implemented. Hence, a set of images acquired
for a single sheet can be processed (of course at much
slower speeds than on the actual hardware) via soft-
ware on the PC. Output data at the several process-
ing stages from the hardware implementation as well
as the corresponding results from the emulation can
be compared automatically which is important for re-
gression testing.

(ii) Verification for all subunits of the FPGA design was
done by the use of VHDL testbenches. Some simula-
tion models, for example, the external DDR-SDRAMs
and the external interfaces (written in VHDL, Verilog,
and ANSI C) were used in order to set up top-level
simulations for the whole FPGA design.

(iii) FPGA prototyping was important for two main rea-
sons. First, it helps to speed up verification since a
VHDL-based simulation for a single 1024 × 768 pixel
image requires minutes of simulation time, while on
the prototyping hardware several images are processed
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Figure 7: Pipelined operation of FPGA units and DSP software tasks.

Table 1: FPGA resource usage.

Processing unit
Single instance

Instances
All instances

Logic resources SRAM DSP blocks Logic resources SRAM DSP blocks

ACQ (acquisition) unit 3% 7% 11% 3 9% 21% 33%

FEA (feature) unit 9% 5% 17% 1 9% 5% 17%

GEO (geometry) unit 9% 6% 22% 2 18% 12% 44%

DDR-SDRAM core 2% — — 2 4% — —

Single port of the multiport memory 1% 1% — 27 27% 27% —

Nios subsystem 9% 8% — 1 9% 8% —

Interfaces, networking, etc. 27% 18% — 1 27% 18% —

Total — — — — 93% 91% 94%

in fractions of a second. Furthermore, most FPGA pro-
cessing elements can be verified very easily by observ-
ing the processed images in real time on the screen.

(iv) Boundary Scan JTAG (joint test action group)-based
testing supported by the EDA backend tool (altera sig-
nal tap) was used to observe internal signals of the
FPGA design without the need of changing the VHDL
code. This was very helpful to detect external timing
problems around the DDR-SDRAMmemories.

(v) Finally, the FPGA internal CPU turned out to be a
valuable resource for setup of complex test cases and
to verify the (immediate) results for a large number of
verification runs during the verification and design cy-
cle of the system.

6. RESULTS

The HDIP FPGA design shown in Figure 6 has been imple-
mented on an Altera StratixTM 1S60 FPGA device, which was
one of the most complex FPGAs at the time of the design
kick-off. The design team spent several man years only on
the FPGA design, not including the design of the PCB board,
DSP software, and so forth.

The required resources (logic and DSP blocks, as well as
SRAM) for the individual processing units as reported by the
EDA tools (FPGA synthesis, place, and route) are summa-
rized in Table 1. The design consumes about 93% of the logic
resources, 91% of the internal SRAM memories, and about
94% of the FPGAs DSP blocks.

System clock frequency for the image processing mod-
ules is 133MHz, while the Nios CPU module is clocked at
100MHz. Both external DDR-SDRAMmodules are running
at 133MHz (i.e., 64 bits are transferred on both, the rising
and the falling clock edge), which provides a raw memory
bandwidth of about 2GBytes/s (133MHz ∗ 64Bit ∗ 2 =
1.7 ∗ 1010 Bit/s ≈ 2GByte/s) per multiport memory mod-
ule. Data transfers from all read and write ports are inter-
laced by the control logic of the multiport memory. Hence,
almost the maximum memory bandwidth of 2GByte/s (mi-
nus a few percentage of performance due to DDR-SDRAM
address reinitialization on DDR-SDRAM bank or row ad-
dress changes and refresh cycles) is available for the read
and write ports. The multiport memory performance was
verified during the test and verification phase by running
several dedicated performance test programs on the Nios
CPU.
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Table 2: Typical FPGA and DSP processing times.

Processing unit DSP [ns/pixel] HDIP [ns/pixel]

ACQ (acquisition) unit 0.8 7.5

FEA (feature) unit 9.0 3.0

GEO (geometry) unit 4.0 10.0

In typical applications, high-speed line-scan cameras
with resolutions of at least 1024 pixels, operating at line rates
from 50 kHz to 100 kHz, are used (here, a pixel is represented
by an 8 bit intensity value). For support of three cameras,
the PM is equipped with three acquisition units (clocked at
133MHz). Hence, the PM is able to cope with three input
data streams of up to 133MPixels/s resulting in a total input
data rate of about 400MByte/s. The camera data (pyramid
level G0) is directly fed into its ACQ unit, where two new
pyramid levels (G1, G2) are generated in parallel (refer to
Figure 6) and are continuously stored into the external mem-
ory A. Consequently, the feature pipeline (see Section 2.2)
for generation of pyramid image G1 processes a new input
pixel every clock cycle which is equivalent to an average pro-
cessing time of 7.5 ns/pixel (note that an output pixel is pro-
duced only every fourth clock cycle as width and height of the
image are reduced for every pyramid level). A correspond-
ing DSP implementation (C641x)—exclusively running this
task requires about 0.8 ns/pixel (using software pipelining in
highly optimized assembler code as described in [7]). Addi-
tional tasks have to share processing units, as well as memory
bandwidth.

Performance analysis for other image processing blocks
of the HDIP FPGA module is much more complex, because
streaming pipelines in the GEO unit and the FEA unit are
typically used in multiple configurations, resulting in differ-
ent measures for total throughput. Thus, Table 2 summarizes
typical processing times measured for practical application
of the HDIP units compared to their functional counter-
parts implemented for C641xDSPs (1GHz). Detailed perfor-
mance analysis is beyond the scope of this paper and, there-
fore, is subject of further publications (e.g., [16]).

The DSP outperforms the FPGA implementation inmost
situations, except for the complex processing sequence im-
plemented in the FEA unit, where many processing steps can
be implemented in parallel. On a subfunction basis (i.e., por-
tions of code where the DSP can operate on its internal mem-
ory or cache memory), the advantage of the DSP can be even
greater. For example, Table 2 reveals that the calculation of a
single pyramid level takes 0.8 ns per pixel on the DSP, com-
pared to 7.5 ns for the FPGA.

However, the FPGA implementation has important ad-
vantages compared to a single DSP solution due to the fol-
lowing reasons.

(i) The DSP is limited in handling the enormous input
data rate of the considered application, while the FPGA ben-
efits from its parallelism. For example, on the C641x, the
external memory interface EMIF-B can be used for camera
acquisition, because the external memory (SDRAM) has to
be connected to the EMIF-A as image processing algorithms
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Figure 8: External transfer rates for the C641x DSP.

typically need high memory bandwidth. Figure 8 shows that
the nominal value for EMIF-B transfer rate is about
266MBytes/s. Practically, an overhead of up to 20% has to
be taken into account (e.g., arbitration overhead, communi-
cation overhead, etc.), leading to a bandwidth of not much
more than 200MByte/s available for data transfers. Assum-
ing the same memory interface type, speed and technology
for both DSP and FPGA, the FPGA enables implementa-
tion of more memory interfaces or wider memory interfaces
to overcome bandwidth limitations. For the HDIP design,
two 64 bit memory ports have been used, compared to the
16 bit EMIF-B port of the DSP. Moreover, calculation of im-
age pyramids is only a part of the image processing algorithm
(refer to Figure 2). Hence, for implementation of the HDIP
functionality using DSPs only, several DSPs are necessary.
Consequently, less than 100MByte/s can be used for image
acquisition, as data (e.g., pyramid images) has to be trans-
ferred to other DSPs (also using EMIF-B). Thus the available
bandwidth on a single DSP is only approximately a quarter
of the 400MPixel/s of the HDIP approach.

(ii) Heavy data transfers degrade DSP performance even
more because the CPU is interrupted more often (e.g., by
the DMA controller) and it is more likely that the CPU has
to wait longer for completion of data transfers. This con-
text switching can be implemented more efficient (i.e., re-
sulting in higher throughput) in hardware, as discussed in
Section 2.3.

(iii) In contrast to sequential execution order on the DSP,
multiple instances of a processing unit can be implemented
on the FPGA in parallel. For example, three instances of the
ACQ unit result in an average time of 2.5 ns/pixel for the
FPGA implementation; two GEO units lead to an average
time of 5 ns/pixel. All these functions can be implemented on
a single chip! A comparable DSP-based system would require
several DSP devices. Not counting the bandwidth limitation,
at least three: one for the acquisition, one for the feature cal-
culation, and one for the geometry based tasks. This results
in extra hardware costs. For the HDIP approach, data access
over shared memories is elegantly implemented as multiport
memory interface to external DDR-SDRAMs requiring only
a single FPGA.

(iv) The FPGA provides a high degree of scalability while
the DSP has a fixed architecture. For a particular applica-
tion, processing units can be either added to the FPGA or
exchanged against processing units which are not used for
that specific application.
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(v) Combination of several subfunctions increases the
amount of exploited parallelism. Linked to a feature pipeline,
substantially higher performance can be achieved, as evident
from the results of the FEA unit.

7. CONCLUSION

The proposed hardware-driven image processing architec-
ture takes advantage of contemporary high-end FPGA de-
vices. Despite the fact that a DSP is much faster for most
single aspects of a complex algorithm, the proposed architec-
ture is superior, thanks to the advantage of algorithmic paral-
lelism and data parallelism enabled by the FPGA. The archi-
tecture offers flexibility to adapt the actual processing flow
to specific application demands by implementing appropri-
ate processing units. A future enhancement will simplify the
construction of processing modules by simply choosing ap-
propriate processing elements from a library and linking
them together according to the actual image processing al-
gorithm. This provides design reuse and short development
times.

Due to image processing on the FPGA, there is no need
for an image processing system based on parallel DSP archi-
tectures at the processing module level. Instead, the paral-
lelism of multiple DSPs is introduced at the processing sys-
tem level, where the scalable arrangement of multiple pro-
cessing modules in a ring topology has proven to be suit-
able for demanding image processing applications. On the
other hand, caused by system complexity, the implementa-
tion of the processing elements was accompanied by high
effort for design verification. In addition, some cuts to the
original universality of the approach were made to evade
FPGA constraints resulting in slower system frequencies as
expected during the specification phase. In the future, a com-
plete processing module may be implemented within a sin-
gle FPGA, which enables further integration of a process-
ing module into the housing of a camera. Consequently, a
prospective image processing system consists only of inter-
connected camera modules. However, this goal can only be
achieved if the performance of CPU cores available on FP-
GAs will be substantially improved in future devices.
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[5] P. Rössler, C. Eckel, H. Nachtnebel, J. Fürtler, and G. Cadek,
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