
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2007, Article ID 65751, 9 pages
doi:10.1155/2007/65751

Research Article
Supporting Symmetric 128-bit AES in Networked
Embedded Systems: An Elliptic Curve Key Establishment
Protocol-on-Chip

Roshan Duraisamy,1 Zoran Salcic,1 Maurizio Adriano Strangio,2 andMiguel Morales-Sandoval3

1Department of Electrical and Computer Engineering, The University of Auckland, Auckland 1142, New Zealand
2Department of Information, Systems and Production, University of Rome “Tor Vergata”, 00173 Rome, Italy
3Computer Science Department, National Institute for Astrophysics, Optics and Electronics, 72840 Puebla, Mexico

Received 14 July 2006; Revised 2 November 2006; Accepted 12 December 2006

Recommended by Sandro Bartolini

The secure establishment of cryptographic keys for symmetric encryption via key agreement protocols enables nodes in a network
of embedded systems and remote agents to communicate securely in an insecure environment. In this paper, we propose a pure
hardware implementation of a key agreement protocol, which uses the elliptic curve Diffie-Hellmann and digital signature al-
gorithms and enables two parties, a remote agent and a networked embedded system, to establish a 128-bit symmetric key for
encryption of all transmitted data via the advanced encryption scheme (AES). The resulting implementation is a protocol-on-chip
that supports full 128-bit equivalent security (PoC-128). The PoC-128 has been implemented in an FPGA, but it can also be used
as an IP within different embedded applications. As 128-bit security is conjectured valid for the foreseeable future, the PoC-128
goes well beyond the state of art in securing networked embedded devices.

Copyright © 2007 Roshan Duraisamy et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Securing communications between low-power, low-resource
embedded systems is a relatively new challenge that has
arisen with the rapid proliferation of Internet-enabled and
other networked devices. Encryption of all transmitted data
between networked embedded systems and remote agents,
which connect to them for monitoring or remote control
purposes, provides a strong means of establishing commu-
nication security. However, data encryption presupposes the
establishment of secure cryptographic keys, which must be
substantially large to reduce opportunities for an attacker
with significant computing power to break via brute force or
differential attacks. At the same time, embedded devices pos-
sess relatively fewer resources to manage large cryptographic
keys.

To address this tradeoff between resource usage and cryp-
tographic security, elliptic curve cryptography (ECC) has
been proposed as a public key (PK) scheme to enable com-
municating systems establish keys of relatively small size
for an equivalent level of security when compared with PK

schemes like RSA [1]. According to [2], 163-bit ECC is
known to provide 80-bit equivalent security, similar to 1024-
bit RSA, which corresponds to 280 rounds of brute force
computation required to break the scheme. Recent research
records that even 139-bit ECC can provide 80-bit security
[3]. However, the current state-of-art 80-bit requirements
are considered secure only until 2010 [1], and only 112-bit
and above security will be viable until 2035. For 2036 and
beyond, 128-bit security is therefore recommended and will
likely become the state of art, according to the current NIST
forecasts of microprocessor ability to break cryptographic
schemes cited in [1].

Key-agreement protocols are vital to securely establishing
encryption keys. To set up the secret key, public key cryp-
tography (Diffie-Hellman key exchange [4]) is used and en-
tity authentication is achieved via digital certificates (X.509).
The use of a certificate authority- (CA-) based structure over-
comes the vulnerability of basic (unauthenticated) Diffie-
Hellman key exchange to man-in-the-middle attacks as all
communicating nodes in the network are issued digital cer-
tificates. In general, the (complexity-theoretic) security of



2 EURASIP Journal on Embedded Systems

Diffie-Hellman key exchange schemes derives from the in-
tractability of the computational Diffie-Hellman (CDH) and
the decisional Diffie-Hellman (DDH) problems in the un-
derlying mathematical groups. The elliptic curve analogue
of the Diffie-Hellman key agreement algorithms (ECDH) is
comparatively more convenient than other groups since it al-
lows efficient storage and implementations. ECDH protocols
have been standardized in ANSI X9.63 [5], IEEE-1363-2000
[6], and ISO 15946-3 [7]. For ECC-based systems, the ellip-
tic curve digital signature algorithm (ECDSA) [8] offers the
ability to securely sign and verify data that can be used in
such certificate-based authentication schemes.

However, key-agreement protocols still need to address a
number of security attributes, which would otherwise enable
attackers to break the protocol and compromise the estab-
lished session key. These security attributes include known
key security, forward secrecy, key-compromise imperson-
ation resilience, unknown key-share resilience, and key con-
trol resilience [9].

Encryption and decryption of data is achieved by sym-
metric cryptographic schemes. ECC-based methods use a
key derivation function (KDF) such as the KDF-1 specified
in the IEEE P1363 [6] to derive the session key mask from
the elliptic curve session key and perform encryption or de-
cryption via an XOR operation between the mask and the
plaintext or ciphertext, respectively. The potential for key or
data compromise through known plaintext attacks can be al-
leviated by using enhanced modes of operation (e.g., cipher
block chaining—CBC). The advanced encryption standard
(AES) [10] also provides strong symmetric encryption, and
is fast becoming a standard encryption scheme of choice.

Merging these different concepts into a comprehensive
and secure protocol that can be used in networked embed-
ded devices is a challenge that needs to be addressed. Recent
research in this field has for the most part been built upon
software-based microprocessor schemes [3, 11–13], and do
not always provide integrated support for symmetric encryp-
tion such as AES. More recently, a full hardware protocol-on-
chip (PoC), which performs secure ECDH operations using
ECDSA-based certificates, was developed to meet the current
state-of-art 80-bit equivalent security requirements [14]. In
this implementation, a 163-bit binary field was used for ECC,
and SHA-1 was used as the hashing algorithm both for the
KDF and for the generation and verification of messages that
are signed and verified via an ECDSA scheme.

However, a system is only as secure as its weakest link, and
as the PoC only implements components that have a max-
imum security of 80 bits, a more comprehensive key agree-
ment solution, which addresses the future 128-bit minimum
security requirements, is necessary. In addition, this PoC
does not fully address all the security attributes conjectured
valid for a protocol attack. Full forward secrecy, for instance,
is not guaranteed when embedded devices are being accessed
by remote agents.

This paper presents a new implementation of a PoC that
supports all security attributes using the elliptic curve key ex-
change ECKE-2 protocol, a modified version of the ECKE-1
protocol originally proposed in [9], which has been shown

to fully address all security attributes. In addition, the elliptic
curve components of the PoC have been upgraded to work
on a 277-bit binary finite field, which provides equivalent
128-bit security [2]. The hashing algorithm used is an SHA-
256module, which is 128-bit collision resistant and therefore
stronger than the 80-bit SHA-1. Symmetric encryption em-
ploys 128-bit AES for encryption and decryption of data in-
stead of a pure XOR operation with the result of the ECC
KDF-1 specified in [6]. While this system does use more
hardware area than the original PoC, the resource usage has
been optimized through sharing finite field units in the el-
liptic curve components. The level of resource requirements
will certainly be affordable for future embedded systems that
need to be 128-bit secure.

The rest of this paper is organized as follows: Section 2
provides a short overview of elliptic curve cryptography
(ECC). Section 3 presents a brief review of the original PoC
developed in [14]. Section 4 reviews the ECKE-1 protocol
and the modified version ECKE-2 used in the new 128-bit
PoC (PoC-128) as well as the security conjectures that this
protocol addresses. Section 5 details the various functional
modules of the PoC-128. Section 6 compares the timing and
synthesis results of the original PoC with the PoC-128, and
includes a comparison of both systems with recent related
protocol implementations that secure networked embedded
devices. Finally, Section 7 concludes this paper with a sum-
mary of contributions.

2. REVIEWOF ELLIPTIC CURVE CRYPTOGRAPHY

Elliptic curves over binary fields F2m or prime fields Fq can be
represented by one of the following equations:

y2 + xy = x3 + a2x
2 + a6, (1)

y2 + y = x3 + a4x + a6. (2)

Elliptic curve arithmetic can be performed using either poly-
nomial basis arithmetic or normal basis arithmetic [15]. A
hardware polynomial basis implementation over the curve in
(1) was used in this research. Points on an elliptic curve are
expressed in terms of their coordinates P(x, y). Elliptic curve
arithmetic involves addition of two points on a curve to yield
another point on the curve:

x3 =
(
y2 − y1
x2 − x1

)2
+
(
y2 − y1
x2 − x1

)
+ x1 + x2 + a2, (3)

y3 =
(
y2 − y1
x2 − x1

)(
x1 + x3

)− y1, (4)

and doubling of a point to yield another point:

x3 =
(
x1 +

y1
x1

)2
+
(
x1 +

y1
x1

)
+ a2, (5)

y3 = x3

(
x1 +

y1
x1

+ 1
)
+ x21 . (6)

Scalar-point multiplication refers to the multiplication of a
point P on the curve by a scalar value k to yield another
point R = kP on the curve; it is achieved by a combination of



Roshan Duraisamy et al. 3

the point addition and point doubling operations over the fi-
nite field until the multiplication is complete. The inverse of
scalar-point multiplication is said to be intractable for a rel-
atively small finite field size, thus making elliptic curve cryp-
tography very suitable for asymmetric public key systems.

The elliptic curve variant of the Diffie-Hellmann proto-
col (ECDH) makes use of the intractability of this operation
in the underlying group (which by analogy to multiplicative
groups is also called the discrete log (DL) problem), and is
used to establish a shared secret between two communicating
parties. It is assumed that an attacker knows the domain pa-
rameters (a2, a6,P(x, y),n). Two honest parties A and B with
their respective secrets wA and wB compute public keys WA

andWB which they exchange in order to establish the shared
secret,

A :WA = wAP(x, y), (7)

B :WB = wBP(x, y), (8)

A : KAB = wAWB = wAwBP(x, y) = wBwAP(x, y), (9)

B : KBA = wBWA = wBwAP(x, y) = wAwBP(x, y). (10)

A passive attacker only sees WA andWB but is unable to de-
termine either wA or wB due to the intractability of the DL
problem nor can she compute the shared secret KAB because
of the intractability of the ECDH problem.

The elliptic curve digital signature algorithm (ECDSA)
can be used by one party (the recipient) to verify the authen-
ticity of a message sent by another party (the signer) using
the latter’s public key. To sign a message, party A with public-
private key pair (WA,wA) performs the following steps over
the elliptic curve (a2, a6,P(x, y),n):

(1) generate random value r;
(2) compute the random point R(xR, yR) = rP;
(3) compute the hash of the message h = H(message);
(4) signature s1 = xR (modn);
(5) signature s2 = ((h + s1wA)/r) (modn).

The signature pair (s1, s2) is transferred across to party B,
who then uses A’s public key WA to verify that the message
was signed by A as follows:

(1) compute the hash of the message h/ = H(message);
(2) compute u = (h//s2) (modn) and v = (s1/s2) (modn);
(3) compute the point on the elliptic curve: K(xk, yk) =

uP + vWA;
(4) if xk (modn) = s1, then the signature has been verified.

3. REVIEWOF A PREVIOUS ELLIPTIC
CURVE PROTOCOL-ON-CHIP

The original PoC developed in [14] resides at the network
interfaces of embedded devices. Remote agents can connect
to these devices provided they have issued certificates by a
CA server that the devices can use to authenticate incoming
agents. The CA server also functions as a security manager
that designates specific nodes that can communicate with
one another. Each node in a network possesses a long-term
public-private ECC key pair. In ECC, a private key is typically
a scalar value in the elliptic curve finite field, and the corre-

sponding public key is a point on the chosen elliptic curve,
which is generated by multiplying the private key by a cho-
sen base point on the curve.

When a remote node initiates communication with an
embedded device, the remote node first generates a random
ephemeral secret, from which an ephemeral public key is
computed. The ephemeral public key is signed together with
the remote node identity using the remote node’s long-term
private key via ECDSA, using SHA-1 as the hash function.
The signature, remote node identity, and the ephemeral pub-
lic key are transferred across the communications channel to
the embedded device. The signature of the ephemeral public
key and the remote node’s identity are verified by the PoC us-
ing the remote node’s certificate, and the PoC then generates
its own ephemeral keys and signatures. A common session
key is established via the traditional ECDH process. From
this session key, a shared secret key mask is derived using the
KDF-1 [6], which uses SHA-1 for key derivation. Symmetric
encryption and decryption involves an XOR operation with
the key mask. It is also possible for a PoC to establish a secure
connection with a remote node as described, except that the
PoC now functions as the initiator and the remote node as
the responder.

The PoC can also establish special communication ses-
sions with the bound CA server, which can be configured
to periodically request regeneration of new certificates. Each
certificate comprises of the node identity and the node’s
long-term public key. The CA server maintains a database
of all node certificates and a special “CA counter” for each
node which assists in synchronizing all communications be-
tween the CA server and each node when certificate regener-
ation is required. Each node also maintains a corresponding
“CA counter.” The counter is used as part of the ECDSA sig-
nature generation and verification routines when nodes are
being periodically reconfigured with new certificates by the
CA server. This periodic reconfiguration is required to track
certificate expiry.

4. THE ECKE-2 PROTOCOL

The ECKE-1 protocol [9] was designed to address all the se-
curity attributes of known key security, forward secrecy, key-
compromise impersonation resilience, unknown key-share
resilience, and key control. The protocol enables two parties
to exchange ephemeral public keys as in the normal ECDH
protocol; however, the generation of the ephemeral secrets
and the session keys involve arithmetic operations that en-
sure an attacker cannot circumvent the conjectured secu-
rity attributes merely from transcripts of the data exchanged.
Figure 1 depicts the ECKE-2 protocol, which improves the
original implementation in [9] for the new PoC-128, to-
gether with ECDSA signature generation (SGEN) and veri-
fication (SVER) functions for authenticating the ephemeral
data transferred.

Strictly speaking, the ECKE-2 key agreement protocol
is designed to provide implicit key authentication (IKA),
meaning that in a run of the protocol only the two uncor-
rupted parties involved in the communication should be able



4 EURASIP Journal on Embedded Systems

A B
rA ← [1,n− 1] rB ← [1,n− 1]

eA ← φ(wAWB , idA, idB) eB ← φ(wBWA, idB , idA)
QA ← (rA + eAwA)P QB ← (rB + eBwB)P

hA ← φ(QA, idA, [c]) hB ← φ(QB , idB , [c])
(sA1, sA2)← SGEN(hA,wA) (sB1, sB2)← SGEN(hB ,wB)

QA, (sA1, sA2)−−−−−−−−−→
QB , (sB1, sB2)←−−−−−−−−

h
′
B ← φ(QB , idB , [c]) h

′
A ← φ(QA, idA, [c])

SVER(h
′
B ,WB) SVER(h

′
A,WA)

TA ← (rA + eAwA)QB TB ← (rB + eBwB)QA

sk ← ψ(TAx) sk ← ψ(TBx)

Figure 1: The ECKE-2 protocol.

to establish the session key (since computation of this key
by each party requires knowledge of their long-term private
keys). The whole point about this key-based authentication
mechanism is that it allows the design of efficient protocols.
However, in some situations a stronger requirement may be
mandated to prevent arbitrary modifications of the proto-
col flow by an active adversary (e.g., man-in-the-middle at-
tacks cited earlier). For this reason, protocol ECKE-2 makes
use of digital signatures (ECDSA) to (explicitly) authenticate
the message flows although this results in additional com-
putation (three scalar multiplications are required on each
side).

Consider two parties A and B with public-private key
pairs WA, wA and WB, wB, respectively. Such key pairs are
associated with a set of domain parameters (a2, a6,P(x, y),
n,h,FR, q) which describe an elliptic curve E(Fq) (with coef-
ficients a, b) over a finite field Fq, a base point P of order n,
the cofactor h = #E(Fq)/n and an indication FR of the rep-
resentation used for field elements. The parameters should
be appropriately chosen so that no efficient algorithm exists
that solves the DL problem in the subgroup 〈P〉. The domain
parameters must undergo a validation process proving the
elliptic curve has the claimed security attributes [15]. In the
protocol, each side also uses a hash function φ(·) to produce
the long-term shared secret values eA and eB and generates
a random number to compute the ephemeral keys QA and
QB, which are signed and exchanged with the signatures, as
shown in Figure 1. In protocol ECKE-1, the values eA = φ
(rA,wA, idA) and eB = φ (rB,wB, idB) are ephemeral session-
specific data while in protocol ECKE-2 they are long-term
static keys and therefore may be used across subsequent in-
dependent runs (with one less scalar multiplication).

The message digest to be signed at each node is com-
posed of its ephemeral public key, its identity, and an op-
tional CA server counter c, if the PoC is communicating with

a CA server. After signature verification, the shared session
keys TA and TB are generated as per the ECDH process. The
shared secret key for symmetric encryption is derived via a
KDF that uses the SHA-256 for hashing.

The signature-based ECKE-2 protocol addresses all secu-
rity attributes as follows.

Known-key security

An attacker with access to previously established session keys
(by honest parties) cannot obtain the session keys of future
protocol runs. Indeed, keys established in a run of the proto-
col are unique unless the same players generate identical ran-
dom nonces in two different sessions. However, the probabil-
ity of such an event is negligible (in the order of s2/n, where
s is an upper bound on the number of sessions observed by
the adversary).

Forward secrecy

Assuming an adversary possesses either one or both the pri-
vate keys wA and wB, deriving the session keys from previ-
ous runs of the protocol requires knowledge of the random
ephemeral keys rA and rB. Given the intractability of the DL
problem on the underlying EC group, it is computationally
infeasible to obtain these values. Furthermore, even if the
adversary is able to obtain this session-specific data, com-
promise of the long-term private keys wA, wB may be hard
in practice (e.g., if they are stored in a tamper-proof secu-
rity module). Thus, the protocol maintains full forward se-
crecy. Observe that protocol ECKE-2 becomes resistant to
the stronger version of forward secrecy against active adver-
saries (as opposed to passive adversaries that are allowed to
corrupt the parties only after the protocol has completed its
run).

Unknown key-share resilience

An adversary posing as E cannot deceive A into believing that
messages received from E were actually issued by B. Again,
this is because although E may have been able to obtain a
valid certificate, A can easily verify the identity of E. With-
out a valid certificate in the first place, which is established
when a CA server designates communicating nodes, A will
not participate in the protocol.

Key-compromise impersonation resilience

If A’s private key wA is compromised, an adversary E can eas-
ily impersonate A to any other party. In passing we note that,
contrary to the claims of the author, protocol ECKE-1 is vul-
nerable to KCI attacks. Indeed, an adversary E knowing wA

may replace the response message of B (QB) with QE = rEP
(for some random nonce rE) and have A accept a known ses-
sion key derived from rEQA+dAWB. By making use of signa-
tures protocol ECKE-2 is not affected by such a vulnerability
since the adversary must obtain wB (to sign in place of B) or
must be able to forge a signature from B.



Roshan Duraisamy et al. 5

AES-128 core

Symmetric key

KDF FSM

Key derivation
function

SGEN FSM
Generate signatures

SVER FSM

Verify signatures

KGEN FSM

Generate public/session
keys using ECKE-1

MUX

Top-level
control unit

FSM

HASH
SHA-256

277-bit ALU
Mod. arith/
logic unit

ECC-277
Scalar mult.

Point addition

PMU
Parameter

memory unit

PRNG

Out data

Out data ready
Server key ready

Node key ready
Error code

In
da
ta

In
it
.

cl
k

In
da
ta
re
ad
y

E
n
cr
yp
t

D
ec
ry
pt

C
om

m
s
in
it
.

Te
rm

in
at
e

Figure 2: Functional modules of the PoC-128.

Key-control resilience

Key agreement protocols rely on the assumption (which is
often implicit) that robust primitives are available for gener-
ating random numbers. In some protocols, one of the princi-
pals may have a slight advantage in predetermining the value
of a random nonce. However, in a run of the ECKE-2 pro-
tocol the initiator may be able to select a limited number of
bits in its nonce since, in practice, the precomputation must
be done before the responder times out.

Identity assurance

The signature-based authentication scheme (with ECDSA)
ensures that each node can corroborate the purported iden-
tity of any other node it is in communication with, by verify-
ing the authenticity of the associated digital certificates.

5. PoC-128

The functional layout of the PoC-128 is depicted in Figure 2.
The entire structure uses a hierarchical finite-state ma-
chine (FSM) as in the previous implementation of the PoC,
whereby a top-level FSM initiates individual FSMs of the
functional modules of the protocol. The ECKE-2 protocol is
coordinated by the key generation (KGEN) module, which
generates both the ephemeral public-private key pairs and
the elliptic curve session key. This session key is then used by
the KDF FSM in conjunction with the SHA-256 core to pro-

duce a 128-bit symmetric key which is made available to the
AES-128 module. The top-level FSM coordinates the signing
of the PoC-generated ephemeral keys and the verification of
incoming ephemeral keys. Then, the ECDSA signature gener-
ation (SGEN) and signature verification (SVER) FSM mod-
ules are initiated as appropriate. These, in turn, make use of
the SHA-256, ECC-277, and ALU-277 computational mod-
ules accordingly.

As with the previous PoC implementation, a parameter
memory unit (PMU) is used to store all node configuration
data as well as temporary protocol data. The entire datapath
is managed by the top-level FSM and a multiplexer (MUX)
that enables resource-sharing of the functional units.

AES core

The AES-128 algorithm consists of 10 rounds of compu-
tation. Each round transforms a 128-bit input into a 128-
bit output, and uses a round key that is derived from the
original key. There are four basic stages for the first nine
rounds—ByteSub (BS), ShiftRow (SR), MixColumn (MC),
and AddRoundKey (ARK). The tenth round does not use the
MC stage. Each of these four stages is invertible for decryp-
tion.

A pipelined implementation of the AES-128 core is
shown in Figure 3. The inputs to the core are 32-bit words,
which are sequentially serialized on the clock into an in-
put register in groups of 4 words and a null 32-bit word.



6 EURASIP Journal on Embedded Systems

Done

Init.

AES single
FWD round

10-round
counter

Round
index

AES single
FWD round

M
U
X

clk AES round
key unit

AES single
INV round

Output
data

Input
data

R1(128) R2(128)
AES single
INV round

Encrypt/decrypt

Figure 3: AES-128-pipelined core.

The null word is not encrypted, but serves merely to delimit
the 4-word input. The null word is ignored by the encryp-
tion/decryption core but allows for adding parity informa-
tion or other error-checking codes, if necessary. The AES core
with two rounds per clock cycle ensures that a single encryp-
tion or decryption takes 5 clock cycles to complete. While en-
cryption is performed on the register R2, the input words are
serialized into the input register R1. In this manner, encryp-
tion/decryption takes place in a reasonably pipelined fashion,
and supports a 32-bit interface. This ensures the structure is
adaptable to the top-level PoC, which itself assumes an exter-
nal 32-bit interface for working with a 32-bit microprocessor
in the main embedded device application being secured by
the PoC.

SHA-256 core

A nonpipelined SHA-256 functional unit, with a block dia-
gram shown in Figure 4, was developed for providing 128-
bit secure hashing functionality. Eight registers A–H are used
for the temporary SHA-256 variables. The control unit main-
tains a counter for the round index value which ranges from
0 to 63. The round constant table is implemented as a ROM-
unit that selects one of the 64 SHA-256 round-table constants
depending on the round index input.

The word generator module provides one of the 16 seg-
ments of the input word while the round index is between
0 and 15 inclusive. However, for higher values of the round
index, a different combination of the original word segments
is used and provided at the output. The X0 and X1 blocks
are combinational functional blocks that are described in
Figure 4.

The X0 block uses the registers A, B, and C as inputs. The
X1 block combines registers E, F, and G together with the
round constant RC and the message word segment MW for
that particular round. The register A then obtains the value
X0 + X1, and the register E obtains the value D + X1. The
other registers are updated as shown. The final result from
the A–E registers is then accumulated in registers h0–h7 after
64 rounds of computation.

Table 1: Comparison of resource usage between original PoC and
the new PoC-128.

PoC PoC-128

Device family Stratix II Stratix II

Device name EP2S90F1020C3 EP2S130F1020C4

Combinational
functions

34 914 53 246

Registers
(flipflops)

19 130 19 456

ALUTs 40 234/72 768 (55%) 58 782/106 032 (55%)

Maximum
frequency

78.84MHz 47.44MHz

Memory bits 49 152/4 520 448 (1%) 73 728/6 747 840 (1%)

ECC core

The original 163-bit elliptic curve multiplier/adder module
shown in Figure 5(a) is highly parameterized, and there-
fore changing the finite field size in the module to 277 bits
is straightforward. However, when synthesized, the 277-bit
unit uses a significant number of resources. Sharing of the
277-bit finite field arithmetic units (Fm

2 multiplier, divider
and squarer) across the adding and doubling units within the
module reduces the total number of resources by over 5 000
adaptive look-up tables (ALUTs), a reduction of almost 27%.
A 277-bit multiplier/adder without resource sharing requires
19 049 ALUTs on an EP2S60F1020C3 Stratix II FPGA. This
platform provides a total of 48 352 ALUTs, which is equiva-
lent to 60 440 logic elements [16].

This resource sharing is depicted in Figure 5(b). The FSM
at the top level of the ECC multiplier/adder module deter-
mines whether the ECC adder or the ECC doubler exclusively
uses the Fm

2 arithmetic units. At an operating frequency of
90MHz, this increases overall execution time of the unit by
only 0.73milliseconds (the total time for a scalar multiplica-
tion is 2.4milliseconds).

6. RESULTS ANDDISCUSSION

The PoC-128 synthesizes successfully on an FPGA Stratix
II chip, occupying 58 782 ALUTs as opposed to the 40 234
ALUTs of the original PoC (Table 1). The PoC-128 oper-
ates at a lower maximum frequency of 47.44MHz, compared
with the 78.84MHz of the original PoC. The highest latency
is exhibited by the SHA-256 unit at 50MHz, followed by
the AES-128 core at 65MHz. With a clock-generator specif-
ically for the SHA-256, therefore, the maximum operating
frequency of the PoC-128 can be taken up to almost 65MHz.

Table 2 compares the operation times for both PoC im-
plementations at clock speeds close to their maximum op-
erating frequencies. The PoC-128 takes 61milliseconds for
a complete ECKE-2 protocol run, while the original PoC
takes 10milliseconds with its simple, authenticated ECDH
protocol. These results illustrate that with a 46% increase



Roshan Duraisamy et al. 7

A B C D E F G H Input word

X0

X1
Word

generator

Round
constant

Control
unit

A B C D E F G H

h0 h1 h2 h3 h4 h5 h6 h7

SHA-256 result

A B C

E F G H

AND AND AND

XOR
XOR

XOR XOR

ROTR 2 ROTR 13 ROTR 22

+

X0ROTR = rotate right

AND ANDNOT RC

MWXOR

XORXOR

ROTR 6 ROTR 11 ROTR 25

+

X1RC = round constant
MW =message word

Figure 4: SHA-256 computational module.

Table 2: Comparison of the protocol times in milliseconds for the
original PoC and the new PoC-128.

Operation
PoC at
75MHz

PoC-128
at 45MHz

Protocol 10 61

Signature generation 1.3 7.3

Signature verification 1.8 11.5

ECC scalar multiplication 0.7 4.8

ECC point addition 0.004 0.012

ALU modulo multiplication 0.37 1.57

ALU modulo division 0.21 0.87

in hardware area, and 51milliseconds increase in protocol
execution run time (using maximum frequencies of both
platforms), 128-bit security can be fully ascertained in a se-
cure protocol on a single chip that supports full symmet-
ric encryption with AES. Despite the performance reduction
compared to the original PoC, the tradeoff is clearly in in-
creased security.

A comparison of the original PoC and the new PoC-128
against other recent protocol implementations for support-
ing symmetric encryption is presented in Table 3. As can
be observed, of all six implementations, the PoC-128 is the
only one that uses the more advanced AES-128 as its mode
of symmetric encryption and SHA-256 for all hashing pur-

poses. Thus, the PoC-128 is the only one that provides the re-
quired 128 bits security, which is estimated sufficient for the
foreseeable future. All other protocol implementations use
SHA-1 for hashing and 80-bit equivalent public key schemes,
and they may or may not themselves support symmetric en-
cryption. Although [12] does use AES, its implementation
involves SHA-1 and uses ECC-132 optimal extension fields
which have a maximum equivalent security of only 80 bits,
and hence its total security is only 80-bit equivalent. More-
over, all the elliptic curve implementations apart from the
PoC-128 use only 80-bit equivalent elliptic curve operations,
and thus cannot meet the 128-bit symmetric security re-
quirements of [1]. Consequently, the PoC-128 is a signifi-
cant step forward in the development of protocol implemen-
tations for securing networked embedded systems as it goes
well beyond the current state of art requirements and caters
to embedded systems security of the future.

7. CONCLUDING REMARKS

Symmetric encryption of data exchanged between two em-
bedded nodes in a network is an important part of securing
such nodes. In a network of embedded systems accessed by
remote agents, the challenge of establishing a cryptographic
key for symmetric encryption can be addressed by strong
public key mechanisms. In this paper, we have proposed
an elliptic curve-based protocol-on-chip using elliptic curve



8 EURASIP Journal on Embedded Systems

Table 3: Comparison of protocol performance and features.

Protocol [3] [11] [12] [13] PoC PoC-128

Cryptosystem
ECC 160
prime

ECC 132 optimal
extension

ECC 160 prime RSA 1024
ECC 163
binary

ECC 277
binary

Total time (ms) 140 3000 760 > 14 500 11 61

Implementation Software Software Software Software Hardware Hardware

Certificate usage Yes No Yes No Yes Yes

Number of transactions 4 4 5 2 2 2

Symmetric encryption None 3DES
AES or MSR (modular
square root)

None ECES AES-128

Hash function SHA-1 None SHA-1 None SHA-1 SHA-256

P1
P2

ECC-adder ECC-doubler

M
U
X

Fm2 multiplier Fm2 multiplier

Fm2 inverter Fm2 inverter

Fm2 squarer Fm2 squarer

FSM FSM

FSM FSM

FSM FSMFSM
Init.
clk

P3

(a)

P1
P2

ECC-adder ECC-doubler

M
U
X

Fm2 multiplier Fm2 multiplier

Fm2 inverter Fm2 inverter

Fm2 squarer Fm2 squarer

FSM FSM

FSM FSM

FSM FSMFSM
Init.
clk

P3

(b)

Figure 5: (a) Original 163-bit core, (b) 277-bit core with resource
sharing.

components that have been extended to operate on a 277-bit
polynomial basis field to provide 128-bit equivalent security.
Certificates issued by a special CA server enable nodes to au-
thenticate one another. Signing and verifying of exchanged
data is accomplished at each node using ECDSA over a 277-
bit field, which employs SHA-256 as the hashing algorithm.
The ECKE-2 protocol, a signature-based version of the orig-
inal ECKE-1, enables secure establishment of a 277-bit ECC
session key between two nodes. This is used to derive a 128-

bit symmetric key (using the SHA-256 component), which
can be used by the nodes to encrypt and decrypt all ex-
changed data via AES-128. All components thereby provide
a total of 128 bits of security, thus ensuring that the entire
system is secure, according to current forecasts, well beyond
2036. While we envisage software versions of the protocol
being used in remote agents and on the network CA server,
shortest key agreement execution time of 61milliseconds can
be achieved via a full hardware implementation. With this in
consideration, the entire system has been described and im-
plemented as a complete hardware module, a protocol-on-
chip (PoC) for use at the network interfaces of the embedded
devices.

REFERENCES

[1] J. Krasner, “Using Elliptic Curve Cryptography (ECC) for En-
hanced Embedded Security: Financial Advantages of ECC over
RSA or Diffie-Hellmann (DH),” Embedded Market Forecast-
ers, American Technology, 2004.

[2] P. Panjwani and Y. Poeluev, “Additional ECC Groups For IKE,”
IPSec Working Group, INTERNET-DRAFT, 1999.

[3] M. Aydos, T. Yanik, and Ç. K. Koç, “High-speed implemen-
tation of an ECC-based wireless authentication protocol on
an ARM microprocessor,” IEE Proceedings: Communications,
vol. 148, no. 5, pp. 273–279, 2001.

[4] W. Diffie and M. E. Hellman, “New directions in cryptogra-
phy,” IEEE Transactions on Information Theory, vol. 22, no. 6,
pp. 644–654, 1976.

[5] ANSI X9.63, “Public Key Cryptography for the Financial Ser-
vices: Key Agreement and Key Transport using Elliptic Curve
Cryptogrphy,” American National Standards Institute, 2001.

[6] IEEE-P1363-2000, “Standard Specifications for Public Key
Cryptography,” Institute of Electrical and Electronics Engi-
neers, 2000.

[7] ISO/IEC-15946-3, “Information Technology-Security Tech-
niques—Cryptographic Techniques based on Elliptic Curves-
Part 3: Key Establishment,” International Standards Organiza-
tion, 2002.

[8] ANSI-X9.62-1998, “Public Key Cryptography for the Finan-
cial Services: The Elliptic Curve Digital Signature Algorithm,”
American National Standards Institute, 1999.

[9] M. A. Strangio, “Efficient Diffie-Hellmann two-party key
agreement protocols based on elliptic curves,” in Proceedings
of the 20th Annual ACM Symposium on Applied Computing
(SAC ’05), vol. 1, pp. 324–331, Santa Fe, NM, USA, March
2005.



Roshan Duraisamy et al. 9

[10] J. Daemen and V. Rijmen, “AES Proposal: Rijndael,” National
Institute of Standards and Technology, 1999.

[11] S. Kumar, M. Girimondo, A. Weimerskirch, C. Paar, A. Pa-
tel, and A. S. Wander, “Embedded end-to-end wireless se-
curity with ECDH key exchange,” in Proceedings of the 46th
IEEE International Midwest Symposium on Circuits and Sys-
tems (MWSCAS ’03), vol. 2, pp. 786–789, Cairo, Egypt, De-
cember 2003.

[12] Q. Huang, J. Cukier, H. Kobayashi, B. Liu, and J. Zhang, “Fast
authenticated key establishment protocols for self-organizing
sensor networks,” in Proceedings of the 2nd ACM Interna-
tional Workshop on Wireless Sensor Networks and Applications
(WSNA ’03), pp. 141–150, San Diego, Calif, USA, September
2003.

[13] R. Watro, D. Kong, S.-F. Cuti, C. Gardiner, C. Lynn, and P.
Kruus, “TinyPK: securing sensor networks with public key
technology,” in Proceedings of the 2nd ACM Workshop on Se-
curity of Ad Hoc and Sensor Networks (SASN ’04), pp. 59–64,
Washington, DC, USA, October 2004.

[14] R. Duraisamy, Z. Salcic, M. Morales-Sandoval, and C.
Feregrino-Uribe, “A fast elliptic curve based key agreement
protocol-on-chip (PoC) for securing networked embedded
systems,” in Proceedings of the 12th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA ’06), pp. 154–161, Sydney, Australia, August
2006.

[15] D. Hankerson, A. Menezes, and S. Vanstone, Guide to El-
liptic Curve Cryptography, Springer Professional Computing,
Springer, New York, NY, USA, 2004.

[16] “Stratix II Device Handbook, Volume 1,” Altera, 2006.


	Introduction
	Review of elliptic curve cryptography
	Review of a previous elliptic curve protocol-on-chip
	The ECKE-2 protocol
	Known-key security
	Forward secrecy
	Unknown key-share resilience
	Key-compromise impersonation resilience
	Key-control resilience
	Identity assurance


	PoC-128
	AES core
	SHA-256 core
	ECC core


	Results and discussion
	Concluding Remarks
	REFERENCES

