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This paper aims to develop a GPS, low-cost IMU, and onboard vehicle sensors integrated land vehicle positioning system at low
cost and with high (cm level) accuracy. Using a centralized Kalman filter, the integration strategies and algorithms are discussed.
A mechanism is proposed for detecting and alleviating the violation of the lateral nonholonomic constraint on the wheel speed
sensors that is widely used in previous research. With post-mission and real-time tests, the benefits gained from onboard vehicle
sensors and the side slip detection and alleviation mechanism in terms of the horizontal positioning accuracy are analyzed. It is
illustrated by all the tests that GPS plays a dominant role in determining the absolute positioning accuracy of the system when GPS
is fully available. The integration of onboard vehicle sensors can improve the horizontal positioning accuracy during GPS outages.
With respect to GPS and low-cost IMU integrated system, the percentage improvements from the wheel speed sensor are 90.4% for
the open-sky test and 56.0% for suburban area real-time test. By integrating all sensors to detect and alleviate the violation of the
lateral nonholonomic constraint, the percentage improvements over GPS and low-cost IMU integrated system can be enhanced to
92.6% for open-sky test and 65.1% for the real-time test in suburban area.
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1. INTRODUCTION

In recent years, significantattention has been paid to intelli-
gent vehicle systems. Among them are antilock brake systems
(ABS), traction control (TC), vehicle stability control (VSC),
vehicle safety control such as forward-collision avoidance, to
name a few [1]. In these systems, numerous sensors are being
employed, and the positioning accuracy and system redun-
dancy have crucial impacts on their performance [2]. Due
to the complementary features, GPS/INS integrated systems
have been widely used for vehicular positioning and naviga-
tion [3–5]. With respect to GPS positioning, centimeter-level
accuracies can be achieved by using carrier phase measure-
ments in a double difference approach whereby the integer
ambiguities are resolved correctly. However, difficulties arise
during significant shading from obstacles such as buildings,
overpasses, and trees. To bridge GPS gaps and reduce the INS
error growth, many auxiliary sensors, such as compasses, in-
clinometers, tilt meters, and odometers have been used to
provide further external aiding [6, 7]. Typically, the wheel
speed sensors are fundamental components of an ABS which
is standard equipment on nearly all vehicles [8]. Therefore
the integration of the wheel speed senor with GPS/INS has
been extensively studied [9–11].

Since the wheel speed sensor can be used to estimate the
vehicle’s velocity in the forward direction, most of the pre-
vious research related to the integration of wheel speed sen-
sor information with GPS/INS applied two nonholonomic
constraints on the lateral and vertical directions. These non-
holonomic constraints are effective only when the vehicle op-
erates on a flat road and no side slip occurs [12, 13]. The
nonholonomic constraints are no longer valid when the ve-
hicle runs off road or on an icy or bumpy road where a larger
side slip angle can occur. In a land vehicle positioning sys-
tem, the violation of the nonholonomic constraints is always
accompanied by larger side slip angles [13]. Side slip is a very
complicated phenomenon associated with road conditions
and high vehicle dynamics (e.g., fast driving, sharp turning
as well as high pitch and roll angular rates). It is not easily
modeled and estimated. Reference [14] investigated a model-
based Kalman filter with GPS velocity measurements to esti-
mate side slip. However, its estimation accuracy relies heavily
on the correctness of the model.

As a commonly used system for a land vehicle positioning
system, a GPS/INS integrated system harnesses either a tac-
tical grade or low-cost IMU. The high cost of a tactical grade
IMU constitutes its main limitation to commercial deploy-
ment. The performance of a low-cost IMU degrades quickly
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over a short time interval of GPS outages. A larger error drift
is not well suited to such a land vehicle positioning system
that has a strict requirement on positioning accuracy as the
intelligent or autonomous vehicle control system. To meet
the requirement of the low-cost and high positioning accu-
racy for the land vehicle positioning system, a GPS receiver,
low-cost IMU, and onboard vehicle sensors are integrated
into a land vehicle positioning system. The onboard vehicle
sensors come from the vehicle stability control system, in-
cluding two horizontal G sensors (accelerometers) and yaw
rate sensor (i.e., a two-dimensional automotive grade iner-
tial unit) as well as wheel speed sensors. After describing the
integration strategy, a mechanism is proposed for the com-
putation of the side slip angle as well as the detection and
compensation of the violation of the lateral nonholonomic
constraint. The tests for the post-mission and the real-time
were conducted. The benefits after integrating the onboard
vehicle sensors and using the side slip detection mechanism
in terms of the horizontal positioning accuracy are analyzed.

2. COORDINATE FRAME DEFINITIONS FOR
ONBOARD VEHICLE SENSORS AND THE
LOW-COST IMU

The MEMS low-cost IMU consists of three triads of ac-
celerometers as well as three triads of gyros, which, respec-
tively, measure three-dimensional specific forces and angu-
lar rates with respect to the IMU body frame. The low-cost
IMU body frame represents the orientation of the IMU axes.
The origin of the body frame is at the center of the IMU.
The IMU axes are assumed to be approximately coincident
with the moving platform upon which the IMU sensors are
mounted with the Y-axis pointing towards the front, the X-
axis pointing toward the right, and the Z-axis being orthog-
onal to the X and Y axes to complete a right-handed frame.
The low-cost IMU is mechanized in ECEF (earth-centered
earth-fixed) frame (e frame) herein although any convenient
frame could be used.

The onboard vehicle sensors discussed in this paper in-
clude: two rear and two front wheel speed sensors, two G sen-
sors, and a yaw rate sensor. The wheel speed sensors (WSS)
are attached to the wheels of the vehicle and provide esti-
mates of the forward velocity in vehicle frame that are sus-
ceptible to the change in actual rolling tire radius and the tire
longitudinal slip. The vehicle frame is attached to the vehicle
at its center of gravity to represent the orientation of the ve-
hicle. The X-axis points towards the right side of the vehicle.
The Y-axis points towards the forward direction of the vehi-
cle. The Z-axis is orthogonal to the X and Y axes to complete
a right-handed frame. The wheel speed sensormeasurements
are represented in the vehicle frame.

The G sensors and yaw rate sensor that are placed on the
chassis of the vehicle actually constitute a two-dimensional
automotive grade inertial unit. The G sensors measure the
lateral and longitudinal specific forces, and the yaw rate sen-
sor measures angular rate with respect to the vertical direc-
tion of the G sensors/yaw rate sensor unit (GL/YRS). The G

sensors and yaw rate sensor (GL/YRS) body frame follows the
same definition of the low-cost IMU.

It is an ideal case that the IMU body frame coincides to
the vehicle frame. However, due to installation “error” of the
IMU, the bore sight of the IMU is misaligned with the vehicle
frame in most cases. The tilt angles between the IMU body
frame and the vehicle frame will result in some errors when
the position or velocity is transformed from one frame to an-
other without taking into account the tilt angles. As such, a
calibration algorithm for estimating the tilt angles between
the IMU body frame and the vehicle frame is implemented
in this paper.

For simplicity, the low-cost IMU and the GL/YRS unit
body frames, however, are assumed to be aligned despite tilt
angles that may actually exist between these two frames. The-
oretically, the tilt angles will lead to constant biases of the
accelerometer measurements [15]. In the land vehicle posi-
tioning system with a relatively small attitude change rate,
this assumption holds in most cases with the biases of IMU
and GL/YRS measurements being estimated by the Kalman
filter.

3. GPS/LOW-COST IMU/ONBOARD VEHICLE SENSOR
INTEGRATION STRATEGY

Figure 1 describes the GPS, low-cost IMU, WSS and GL/YRS
integration strategy, which consists of two basic modules,
GPS/INS/WSS and GPS/INS/GL/YRS as well as a combined
module of GPS/INS/WSS/GL/YRS. All available sensor mea-
surements are combined using a tight coupling strategy
at each epoch to obtain a globally optimal solution using
one centralized Kalman filter [16]. For the equipment used,
the IMU data rate is 100Hz, and its mechanization equa-
tion output rate is set to 10Hz. The GPS measurements
used herein are double-differenced carrier phase, double-
differenced Doppler, and double-differenced pseudorange at
a 1Hz rate. The onboard vehicle sensors are sampled at
100Hz. To make a tradeoff between the system accuracy and
the computational load in the real-time test, the vehicle sen-
sor data are thinned to 1Hz for the update of the central-
ized Kalman filter. The position, velocity, and attitude infor-
mation of the integrated system are given by implementing
the mechanization equation of the low-cost MEMS IMU in
ECEF frame.

Due to the centralized processing approach, the satellite
measurements are estimated by using the integrated position
and velocity. The raw GPS measurements and the estimated
satellite measurements are compared to derive the GPS mea-
surement misclosures in the centralized Kalman filter. When
the ambiguities need to be fixed, the float double differenced
ambiguities are added to the state vector and estimated in
the centralized Kalman filter. The integer ambiguities are re-
solved using the LAMBDA [17] method with the real-valued
ambiguities and their corresponding estimated covariance
matrix from the Kalman filter.

The forward-direction velocity in the vehicle frame can
be determined from the WSS, while two nonholonomic con-
straints are applied to the vertical and lateral directions of the
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vehicle frame. The wheel speed sensor provides the absolute
velocity information to update the centralized Kalman filter.
During GPS outages, the nonholonomic constraints, as well
as the absolute velocity information, can constrain the veloc-
ity and consequently the position drift of the stand-alone INS
system.

The nonholonomic constraints imply that the vehicle
does not move in the vertical or the lateral directions. The
nonholonomic constraints hold only when the vehicle runs
on flat road with small side slip. On the bumpy road with a
larger side slip, the assumption of nonholonomic constraints
is no longer valid.

The wheel speed sensors used in this research are of the
passive type. The number of pulses per rotation is measured
with the sensor teeth going through a passive magnetic field.
The wheel speed is consequently correlated with the number
pulses per rotation as well as the radius of the wheel tire. In
practical use, the tire size is sensitive to many factors such as
a payload, the driving conditions, temperature, air pressure,
and the tread wear. Additionally, the IMU body frame does
not always coincide with the vehicle frame. Thus, the scale
factor of the wheel speed sensor and the tilt angles between
the vehicle and body frames are augmented into the state vec-
tor of the centralized Kalman filter, as described in Figure 1.

Instead of providing the absolute velocity as the WSS
does, the GL/YRS unit derives the lateral and longitudi-
nal velocity with the initial velocity being provided from
the integrated system. GL/YRS unit performs a velocity up-
date in its body frame by computing the measurement mis-
closures (also termed as “innovations”) between the inte-
grated velocity (being transformed from ECEF frame into
the body frame) and lateral/longitudinal velocity computed
from GL/YRS. Similarly to the low-cost MEMS IMU, the bi-
ases of the G sensors and yaw rate sensor are augmented into
the state vector of the centralized Kalman filter.

As illustrated in Figure 1, the centralized Kalman filter
is a closed loop type. It indicates that the relationship be-
tween the centralized Kalman filter and the velocity update
from either wheel speed sensor or GL/YRS unit are bidirec-
tional. In one way, the GPS update provides an external aid-
ing to limit the INS drift error when GPS is available. Dur-
ing GPS outages, WSS and GL/YRS will continue to update
the centralized Kalman filter and bridge GPS data gap. In
another way, the estimated error states feedback to the in-
tegrated solutions as well as the low-cost IMU, WSS, and
GL/YRS measurements. With the feedback information, the
integrated position, velocity, and the attitude angles can be
corrected by the estimated error states of position, velocity,
and the misalignment angles. Also, the estimated accelerom-
eter and gyro biases, WSS scale factor and GL/YRS biases can
rectify the IMU and onboard vehicle sensor measurements,
respectively.

It has been verified by [11] that the WSS with two non-
holonomic constraints can significantly improve the posi-
tioning accuracy during GPS outages. The lateral nonholo-
nomic constraint is very close to a real condition with a small
side slip, and it is violated with a larger side slip. This consti-
tutes a weak point of GPS/INS/WSS integration module.

The quality of automotive grade GL/YRS is similar to that
of the low-cost IMU. Thus, its error will drift at the same rate
as the low-cost IMU during GPS outages, and the improve-
ment on the positioning accuracy gained fromGL/YRS is less
significant than fromWSS.

Based on the above analysis, Figure 2 describes this inter-
active relationship between WSS and GL/YRS. The absolute
velocity update from the WSS measurements limits the lon-
gitudinal velocity drift error. Consequently, the accuracy of
the initial longitudinal velocity for GL/YRS is increased. On
another hand, the side slip angle can be calculated from the
lateral and longitudinal velocities. The side slip angle infor-
mation provides a way to detect and alleviate the violation of
the lateral nonholonomic constraint. When the side slip an-
gle is smaller than a threshold, it means that the lateral con-
straint is most likely valid. However, when the side slip angle
goes beyond a specific threshold, it indicates that the lateral
nonholonomic constraint is violated. To compensate the vi-
olation of the lateral nonholonomic constraints, one possi-
ble way is to make use of the lateral velocity calculated from
the GL/YRS to replace the lateral nonholonomic constraint
as will be discussed later.

4. INTEGRATION ALGORITHMS

The development of the integration algorithms includes the
derivations of the dynamic and measurement models used
in the Kalman filter, as well as the computation of side
slip angle, and the mechanism for detecting and alleviat-
ing the violation of the nonholonomic constraints used in
GPS/INS/WSS/GL/YRS integration strategy.

The error states estimated by GPS/INS centralized
Kalman filter include position errors, velocity errors, mis-
alignment angles, the accelerometer and gyro biases, as well
as the double-differenced ambiguities (Δ∇N), when nec-
essary. The dynamic model for the GPS/INS centralized
Kalman filter is given by [3]:
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δḃb

δḋb
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(1)

where δre is the position error vector, δve is the velocity er-
ror vector, εe is the misalignment angle error vector, δbb is
the vector of the accelerometer bias errors, δdb is the vector
of the gyro bias errors, all of aforementioned error states are
3× 1 vectors, Δ∇N is the vector of double difference carrier
phase ambiguities, wf is the accelerometers noise, ww is the
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gyro noise, diag(αi) is the diagonal matrix of the time con-
stant reciprocals for the accelerometer bias model, diag(βi) is
the diagonal matrix of the time constant reciprocals for the
gyro bias models, wb is the driving noise for the accelerome-
ter biases, wd is the driving noise for the gyro biases, Re

b is the
direction cosine matrix between b frame and e frame, Fe is
the skew-symmetric matrix of specific force in e frame, Ne is
the tensor of the gravity gradients,Ωe

ie is the skew-symmetric
matrix of the Earth rotation rate with respect to e frame, δx is
the error states vector, and FGPS/INS is the dynamic matrix for
GPS/INS integration strategy, GGPS/INS is the shaping matrix
of the driving noise, and w is the noise matrix.

Equation (1) implies that the bias states for accelerom-
eters and gyros are modeled as first-order Gauss-Markov
processes, although any suitable models could be used in-
stead. In terms of the integration strategy shown in Figure 1,
the scale factor of WSS and the tilt angle between b and v
frames modeled as random constants, as well as the biases
of GL/YRS modeled as first-order Gauss-Markov process,
are augmented into the error state vector of the centralized
Kalman filter to construct the dynamic model, as shown in
(2):
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δṠ
ε̇b−v
δḃGL
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(2)

where FGPS/INS/WSS/GL/YRS is the dynamic matrix for GPS/INS/
WSS/GL/YRS integration strategy, GGPS/INS/WSS/GL/YRS is the
shaping matrix, δS is the wheel speed sensor scale factor er-
ror state, and εb−v = [δα δβ δγ]T is the error vector of the
tilt angles between the body frame and the vehicle frame cor-
responding to the X , Y , and Z axes respectively, δbGL is the
error vector of the G sensor biases (2 × 1), δdYRS is the er-
ror vector of the yaw rate sensor bias (1× 1). βGL (2× 1) and
βYRS (1×1) are the time constant reciprocals of the first-order
Gauss-Markov process model for the GL and YRS biases, re-
spectively,wGL andwYRS are the driving noises for the GL and
YRS biases, respectively.

The measurement model in the Kalman filter is generally
expressed by (3):

z = h(x) + ωm, (3)

where z is raw measurement, x is estimated state, h(x) is the
estimated measurement, and ωm is the measurement noise.

Most measurement models are nonlinear, and the lin-
earization is needed for the implementation of an extended
Kalman filter by (4):

z +
∂z

∂x

∣∣∣∣
x=x0

· δx = h
(
x0
)
+
∂h

∂x

∣∣∣∣
x=x0

· δx + ωm, (4)

where x0 is the value of the estimated state, δx is the esti-
mated error state, δz = ∂z/∂x|x=x0 · δx is the perturbation of
the raw measurement, and δh = ∂h/∂x|x=x0 · δx is the per-
turbation of the estimated measurement.

By defining the measurement misclosure as (5),

Wz = z − h
(
x0
)
, (5)

equation (4) can be rearranged by (6):

Wz = δh− δz + ωm =
(
∂h

∂x

∣∣∣∣
x=x0

− ∂z

∂x

∣∣∣∣
x=x0

)
· δx + ωm

= H · δx + ωm,
(6)

where H is the design matrix.
Since the wheel speed is, by definition, in the vehicle

frame and the velocities in the integrated system are parame-
terized in ECEF frame, the WSS update can be either carried
out in the e frame by transforming the WSS measurement
into the e frame or carried out in the v frame by transform-
ing the integrated velocities into the v frame. In this research,
the WSS update is carried out in the v frame. The velocity in
the Y direction of the vehicle frame is given by averaging the
two rear wheel speed sensormeasurements in (7):

vWSS =
(
VRL +VRR

)

2
, (7)

where VRR is the rear right wheel speed sensor measurement,
VRL is the rear left wheel speed sensor measurement, and
vWSS is the average of the rear wheel speed sensor measure-
ments.
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The measurement equation is expressed in (8) with two
nonholonomic constraints being applied into the X and Z
axes of the vehicle frame:

⎡
⎢⎣

0
S · vWSS

0

⎤
⎥⎦ = Rv

b ·
(
Re
b

)T · ve +wm, (8)

where vWSS is the wheel speed sensor measurement given by
(7), S is the wheel speed sensor scale factor, and Rv

b is the
direction cosine matrix between b and v frames calculated by
the following:

Rv
b = R3(γ) · R1(α) · R2(β), (9)

where α, β, γ are the tilt angles between the b and v frames
with respect to the X , Y , and Z axes, respectively.

The perturbation of the left-hand side of (8) is expressed
by (10):

δ
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⎤
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where VWSS = [0 vWSS 0]T is the measurement used for
WSS update. It is a 3× 1 vector.

The perturbation of right-hand side of (8) is show in
(11):

δ
(
Rv
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)

= Rv
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(
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b

)T · δve + Rv
b ·
(
Re
b

)T ·VE · εe −VV · εb−v,
(11)

where ve is the velocity in the integrated system in e frame,
and vv = Rv

b · (Re
b)

T · ve is the integrated velocity in v frame,
VE is the skew-symmetric matrix of the integrated velocity
in e frame ve, and VV is the skew-symmetric matrix of the
integrated velocity expressed in v frame vv.

From (5) and (8), the measurement misclosure is shown
in (12):

Wz =
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⎤
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b ·
(
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b

)T · ve. (12)

From (6), (10), and (11), the design matrix is derived from
(13):
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)T · δve + Rv
b ·
(
Re
b

)T ·VE · εe −VV · εb−v
−VWSS · δS + ωm = HWSS · δx + ωm.

(13)

Thus, the design matrix HWSS is summarized by (14):

HWSS

=[O3×3 Q Q′ O3×3 O3×3 O3×AR −VWSS −VV O3×2 O3×1
]
,

where Q = Rv
b ·
(
Re
b

)T
, Q′ = Rv

b ·
(
Re
b

)T ·VE.
(14)

Equation (14) is a hyper matrix with each submatrix corre-
sponding to the error states defined in (2). O is a zero matrix
with the subscripted dimensions and AR is the number of
float ambiguities and is equal to zero when all the ambigui-
ties are fixed.

When using the G sensors and yaw rate sensor, the equa-
tion of motion in the body frame is shown in (15) [12, 13].
Since the nonholonomic constraint is applied in the vertical
direction, the vertical velocity is only coupled with gravity,

V̇ b
x =

(
fx − bGL1

)−Vy ·
(
r − dYRS

)
+ gbx ,

V̇ b
y =

(
fy − bGL2

)
+Vx ·

(
r − dYRS

)
+ gby ,

V̇ b
z = gbz ,

(15)

where fx and fy are the specific force measurements from
the G sensors, γ is the yaw rate measurement, Vb

x , V
b
y , V

b
z are

the velocities in the b frame, and gbx , g
b
y , g

b
z are the gravity

elements in the b frame, bGL = [bGL1 bGL2 0]T and dYRS are
the biases of G sensors and yaw rate sensor, respectively.

The gravity vector in (15) is derived from the gravity vec-
tor in the e frame by (16):

gb = (Re
b

)T · ge, (16)

where ge and gb are the gravity vector in e and b frame, re-
spectively.

By defining

M =
⎡
⎢⎣
1 0 0
0 1 0
0 0 0

⎤
⎥⎦ , f =

⎡
⎢⎣
fx
fy
0

⎤
⎥⎦ , J =

⎡
⎢⎣
0 −1 0
1 0 0
0 0 0

⎤
⎥⎦ ,

(17)

equation (15) can be replaced by the state space vector in
(18), which simplifies the mathematical analysis

V̇ b =M · ( f − bGL
)
+ J ·Vb · (γ − dYRS

)
+ gb, (18)

where Vb is the velocity vector in the b frame.
Using the trapezoid method [15], the velocity in the body

frame can be integrated from (19) as

Vb = Vb
0 +

1
2

(
k1 + k2

) · Δt,
k1 =M · ( f(0) − bGL(0)

)
+ J ·Vb

0

(
γ(0) − dYRS(0)

)
+ gb0 ,

k2 =M · ( f − bGL
)
+ J · (Vb

0 + k1 · Δt
) · (γ − dYRS

)
+ gb,
(19)

whereVb
0 is the initial velocity that comes from the integrated

system, f(0) and γ(0) are the G sensors and yaw rate sensor
measurements at last epoch, bGL(0) and dYRS(0) are the G sen-
sors and yaw rate sensor biases at last epoch, gb0 is last epoch’s
gravity vector in the b frame, k1 and k2 are parameters for
the trapezoid integration, Δt is the integration time interval
(defined to be 1 second in this research).

To conduct the GL/YRS update in the b frame, the veloc-
ity in the integrated system is transformed from the e frame
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into the b frame, and the measurement equation is expressed
by (20):

Vb = (Re
b

)T · ve, (20)

where Vb is the velocity computed from (19), and ve is the
velocity of the integrated system in the e frame.

The perturbation of the gravity vector in (16) can be de-
rived as shown in (21):

δgb = (Re
b

)T ·Ne · δre + (Re
b

)T ·Ge · εe, (21)

whereNe is the tensor of the gravity gradients,Ge is the skew-
symmetric matrix of the gravity vector in the e frame.

Using (19) and (21), the perturbation of the velocity vec-
tor Vb is expressed by (22):

δVb = 1
2

(
δk1 + δk2

) · Δt

= Δt

2

(
Re
b

)T ·Ne · δre + Δt

2

(
Re
b

)T ·Ge · εe

+
Δt

2
M · δbGL + Δt

2
J · (Vb

0 + k1 · Δt
) · δdYRS.

(22)

The perturbations of the right-hand side of (20) are shown
in (23):

δ
((
Re
b

)T · ve
)
= (Re

b

)T · δve + (Re
b

)T ·VE · εe, (23)

where VE is the skew-symmetric matrix of the integrated ve-
locity in the e frame.

Similarly to WSS update, the measurement misclosure
can be derived from (5) and (20) as shown in (24):

Wz = Vb − (Re
b

)T · ve. (24)

Based on (22) and (23), the design matrix related to the
GL/YRS velocity update is consequently derived in (25) in
terms of (6):

Wz = δ
((
Re
b

)T · ve
)
− δVb +wm

= −Δt

2
· (Re

b

)T ·Ne · δre + (Re
b

)T · δve

+
[(
Re
b

)T ·VE − Δt

2
· (Re

b

)T ·Ge · Δt·
]
εe

− Δt

2
·M · δbGL − Δt

2
· J · (Vb

0 + k1 · Δt
)

· δdYaw +wm = HGL/YRS · δx +w,

(25)

where HGL/YRS is the design matrix for the GL/YRS update,
which is coupled with the error states of position, velocity,
b-to-e frame misalignment angles, and GL/YRS biases. More
specifically, the design matrix is

HGL/YRS

=
[
U

(
Re
b

)T
U ′ O3×3 O3×3 O3×AR O3×1 O3×3 −Δt

2
M U ′′

]
,

where U = −Δt

2

(
Re
b

)T
Ne, U ′ = (Re

b

)T
VE − Δt

2

(
Re
b

)T ·GeΔt,

U ′′ = −Δt

2
J
(
Vb

0 + k1 · Δt
)
.

(26)

In this research, the noise power of GL/YRS was deter-
mined from a static test by calculating the average standard
deviation across 40 evenly spaced 1-second intervals of the
static data. When performing integration with the GL/YRS
measurements to derive the velocity, the noise in GL/YRS
behaves as random walk error because of the integration.
The propagation of G sensor noise on the velocity from the
trapezoid integration is correlated with the integration time
length, that is,

σ2
Vb
Noise

= σ2f · Δt, (27)

where σ2f is the noise power of G sensors, Δt is the time inter-

val for the integration, and σ2
Vb
Noise

is the variance propagated

by the measurement noise.
Considering the integration is performed every 1 second

and the initial value comes from the integrated system every
1 second, σ2

Vb
Noise

= σ2f herein. Therefore, the velocity vari-

ance for the GL/YRS velocity update can be tuned adaptively
in terms of variance propagation theory from (19), which is
shown in (28),

σ2Vb = σ2
Vb
0
+
1
4
· (σ2k1 + σ2k2

) · Δt2,

σ2gb =
(
Re
b

)T ·Ne · σ2re ·
(
Ne
)T · Re

b,

σ2k1 =M
(
σ2f + σ2bGL(0)

) ·MT + Jσ2
Vb
0
· (γ(0) − dYRS(0)

)2 · JT ,

+ J ·Vb
0 ·
(
σ2γ + σ2dYRS(0)

) · (J ·Vb
0

)T
+ σ2

gb0
,

σ2k2 =M
(
σ2f + σ2bGL

) ·MT + J ·
(
σ2
Vb
0
+ σ2k1 · Δt2

)

· (γ − dYRS
)2 · JT + J · (Vb

0 + k1 · Δt
) · (σ2γ + σ2dYRS

)

· (Vb
0 + k1 · Δt

)T · JT + σ2gb ,

(28)

where σ2Vb is the velocity variance of the GL/YRS, σ2bGL and
σ2dYRS are the estimated variances of the GL/YRS biases pro-
vided by the Kalman filter, σ2bGL(0) and σ2dYRS(0) are the variances

of GL/YRS biases at the previous step, σ2
Vb
0
is the initial veloc-

ity variance from the integrated system, σ2gb is the variance of

the gravity vector in the body frame, σ2re is the position vari-
ance in e frame.

Figure 3 describes the geometric relationship between the
WSS and GL/YRS, as well a simplified vehicle’s bicycle model
that contains the rear wheel side slip angle. The rear wheel
side slip angle can be calculated in (29) from the transformed
velocity in the lateral and longitudinal directions using [18]:

βr = tan−1
[
Vb
x − Lr · γ
Vb

y

]
, (29)

where βr is the rear wheel side slip angle, Lr is the distance
between the GL/YRS andWSS, and Vb

x and Vb
y are the lateral

and longitudinal velocity derived from the GL/YRS.
The lateral nonholonomic constraint is most frequently

violated when the side slip angle is large. Therefore, the side
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Figure 3: The geometric relationship between WSS, GL/YRS, and
the side slip angle.

slip angle provides a way to detect and alleviate the violation
of the lateral nonholonomic constraint. This mechanism is
designed as described below.

When the side slip angle is smaller than a threshold (5
degrees in this research), it means that the nonholonomic
constraint is valid, and the nonholonomic constraints are ap-
plied in both the lateral and vertical directions. In this case,
(30) is used as the measurement for WSS update:

VWSS =
⎡
⎢⎣

0
vWSS

0

⎤
⎥⎦ . (30)

By contrast, if the side slip angle exceeds a threshold, the vio-
lation of the lateral nonholonomic constraint can be replaced
by the GL/YRS derived lateral velocity, that is,

VWSS =
⎡
⎢⎣
Vb
x

vWSS

0

⎤
⎥⎦ . (31)

The longitudinal element is a real value that comes from
WSS. The lateral and vertical elements are virtual values that
can be either nonholonomic constraints or other values from
external measurements. Despite the fact that a lateral veloc-
ity can also be given from the INS mechanization output,

it cannot be employed as an external or independent mea-
surement to remove the lateral constraint if violated. Other-
wise, a correlation or dependence will be introduced when
performing external update to the centralized Kalman filter.
GL/YRS unit, however, provides redundant and independent
measurement for detecting and alleviating the violation of
the lateral constraint.

To achieve a high positioning accuracy, it is necessary to
switch (30) and (31) in terms of a side slip angle threshold.
With a small side slip angle, the lateral constraint is more
close to the real situation where the lateral velocity is very
small. If (31) is still being used when the lateral constraint
is not violated; the error and noise from GL/YRS unit will
degrade the positioning accuracy.

During GPS outages, the absolute velocity update from
WSS limits the longitudinal velocity drift error and increases
the accuracy of initial longitudinal velocity for GL/YRS. Al-
ternatively, GL/YRS unit provides a way to detect and allevi-
ate the violation of the lateral nonholonomic constraint on
WSS. This kind of effective cooperation between WSS and
GL/YRS can adapt to a variety of driving cases with a high
positioning accuracy during GPS outages.

5. TESTS, RESULTS, AND ANALYSIS

To investigate the benefits gained from onboard vehicle sen-
sors, two tests were conducted in an open sky and processed
in post-mission and in a suburban area in real time. In this
section, the data processing and analysis method is illustrated
first. The tests are then described and the results are analyzed,
respectively, for each test.

5.1. Data processing and analysis method

The data collected (see Sections 5.2 and 5.3) were processed
and the results are analyzed in the following way. First, the
satellite DOP (horizontal and vertical dilution of precision),
the GPS availability as well as the number of resolved ambi-
guities are given. In the GPS/low-cost IMU/onboard vehicle
sensor integrated system, GPS is the driving factor in terms
of system accuracy. When GPS is fully available, GPS plays a
dominant role in the integrated system and determines the
absolute accuracy of the integrated system. To this end, the
GPS availability, namely, the satellite availability in both the
base and remote stations is analyzed in all the tests. Also,
the satellite DOP which is a measure of the satellite geom-
etry is also shown in each test. Lower DOP values give bet-
ter position accuracy. The correct and fast ambiguity resolu-
tion has crucial effects on the positioning accuracy when the
carrier phase measurement is used. In general, correct ambi-
guity resolution can result in the centimetre-level accuracy.
Associated with the numbers of satellites tracked, the num-
ber of double difference ambiguities that have been fixed is
shown. Second, a reference solution is generated from an-
other independent system such as the GPS/HG1700 IMU
(tactical grade) integrated system or GPS/CIMU (naviga-
tion grade) system. It is important to know the accuracy of
the reference solution. Furthermore, the reference solution
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can be generated by either the optimal backward smoothing
technique or by a forward Kalman filtering technique. Both
the GPS/HG1700 IMU and GPS/CIMU integrated solutions
are accurate to the centimetre level, and there is no signif-
icant difference in the optimal smoothing and the forward
Kalman filtering solutions when GPS availability is good.
Therefore, the reference solution in the post-mission open-
sky kinematic test was generated by the GPS/HG1700 IMU
integrated solution without backward smoothing. However,
in the suburban real-time test, both tactical and navigation
grade IMUs are susceptible to position and velocity drift due
to the frequent masking of satellite signals by trees, build-
ings, and underpasses. As the CIMU is more accurate than
the HG1700 IMU, the reference trajectory was generated by
the GPS/CIMU with an optimal backward smoothing tech-
nique because it will be more reliable than that generated
by the GPS/HG1700 IMU. For the reference generated by
GPS/HG1700 solution, its accuracy is shown by the esti-
mated standard deviations of the position. The GPS/CIMU
reference solution processed by the Applanix POS Pac soft-
ware gives the estimated RMS error of the estimated position.
The estimated RMS errors are equivalent to the estimated
standard deviation assuming the estimated error has zero
mean. Third, the performances of four integration strategies
are assessed with respect to the reference solution. The inte-
gration strategies include GPS/INS without the aiding from
the onboard vehicle sensors, GPS/INS/WSS with the non-
holonomic constraints applied in the lateral and the vertical
directions, and GPS/INS/GL/YRS as well as a combined in-
tegration strategy using GPS/INS/WSS/GL/YRS with a detec-
tion and alleviationmechanism for the lateral nonholonomic
constraint violation.

As the side slip angle is a key parameter for the side slip
detection, the side slip angles will be given in the following
analysis.

5.2. Post-mission test in open-sky area

The onboard vehicle sensor and the low-cost IMU data were
collected and logged onto a desktop PC through a serial port
at 100Hz. The GPS base station was set up on a pillar with a
surveyed coordinate. For the open-sky kinematic test in post-
mission, the GPS base station data was saved onto a flash
card. The GPS/HG1700 IMU (tactical grade IMU) integrated
solution generated the reference solution. The HG1700 IMU
data were time tagged and logged by a NovAtel SPAN system
at 100Hz.

The purpose of the post-mission open-sky kinematic test
was to tune the Kalman filter, assess the modeling of sen-
sors and the validity of the integration algorithm, and to as-
sess the performance and positioning accuracy for various
integration strategies by simulating GPS outages. Figure 4
gives an overview of the open-sky test that was conducted
on March 21, 2006 in Springbank near Calgary, which is an
open-sky area with good GPS satellite visibility. The system
was run for 10 minutes in static mode for initialization, and
approximately for 30 minutes in kinematic mode for po-
sitioning and navigation testing with a maximum baseline

Antenna 1 Antenna 2

(a)

Test van

GPS base station

(b)

Open sky

(c)

Good GPS availability

(d)

Figure 4: Open-sky test that processed in post-mission.

length of 4 km. Due to a benign environment for the am-
biguity resolution, the GPS measurements used in this test
include L1 carrier phase, Doppler and the C/A code.

In the open-sky test, 12GPS outages were simulated and
the horizontal position RMS drift error with respect to the
reference solution was computed. Also, the actual position
difference and the estimated position standard deviations in
the Kalman filter were compared. The estimated standard de-
viation should have good agreement with the statistics of the
actual position difference in an ideal case. In practice, this
indicates that the model and parameters in the Kalman filter
are well tuned if the estimated standard deviation does not
deviate too much from the statistics of the actual position
difference.

Figure 5 shows the satellite DOP values, the number of
tracked satellites at the base and remote stations (and their
difference), and the number of fixed ambiguities. It can
be seen that the open-sky test had good GPS availability
and satellite geometry, as well as sufficient double difference
(DD) ambiguities resolved.

In the open-sky area, the accuracy of the reference so-
lution generated by GPS/HG1700 IMU integrated system is
dominated by GPS. As shown in Figure 6, the carrier phase
residual is around 2-3 centimetres and the C/A code residual
is unbiased. It is reasonable to conclude that GPS ambiguity
is correctly resolved. Hence the reference solution is accurate
to be at centimetre level.

To investigate the benefits gained from the integration of
the onboard vehicle sensors, 12GPS outages of 40-second
duration were simulated. The simulated GPS outages cover
a wide range of vehicle dynamics. The side slip angles (by
labeling the simulated GPS outage number and by zoom-
ing the side slip angles of five simulated GPS outages) are
shown in Figure 7. As the open-sky test was conducted in
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Table 1: Horizontal position RMS error and the average estimated standard deviation at the end of 40-second GPS outages for the open-sky
test that is processed in post-mission.

Strategies
Horizontal position RMS error and average estimated
standard deviation at the end of 40-second GPS outages

Horizontal position RMS error [m] Average estimated standard deviation [m]

GPS/INS 30.48 31.98

GPS/INS/GL/YRS 25.00 24.90

GPS/INS/WSS 2.92 3.59

GPS/INS/WSS/GL/YRS 2.26 2.02
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Figure 5: Satellite DOPs, satellite numbers, and the resolved ambi-
guities in the open-sky test that processed in post-mission.

March at Springbank near Calgary, the icy and bumpy road
contributed to the maximum side slip angle at 20 degrees.
Figure 8 compares the RMS horizontal position error and the
average estimated standard deviation during the 40-second
GPS outages with respect to the four proposed integration
strategies. The RMS horizontal position error and the aver-
age estimated standard deviation are summarized in Table 1.
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Figure 6: Residuals of carrier phase and C/A code and the baseline
length for open-sky test that processed in post-mission.

During GPS outages and without any external aiding from
the onboard vehicle sensors, the low-cost IMU drifts very
rapidly. However, significant benefits can be gained from
the integration of the wheel speed sensor with improve-
ments in the horizontal positioning accuracy of 90.4%. The
improvement gained from the integration GL/YRS is less
significant than WSS due to the low quality of GL/YRS
unit. However, when the WSS and GL/YRS are incorpo-
rated (GPS/INS/WSS/GL/YRS strategy) to detect and allevi-
ate the violation of the lateral nonholonomic constraint, the
horizontal positioning accuracy can be improved by 92.6%,
which is correlated with the degree of the side slip. Due to
the well-tuned Kalman filter, the actual horizontal position
errors and the average estimated standard deviations in the
Kalman filter have good agreement for all integration strate-
gies.
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Figure 7: Side slip angles in the open-sky test that processed in post-mission.
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Figure 8: Horizontal position RMS error and average estimated
standard deviation during 12 simulated GPS outages for the open-
sky test that processed in post-mission.

5.3. Real-time test in suburban area

For real-time test in suburban area, the GPS base station data
was broadcast to the remote station via a pair of FreeWave
radio link antennas and transceivers. The reference solution
was generated by a GPS/CIMU (navigational grade IMU) in-
tegrated solution. The CIMU data were collected at 200Hz
by an Applanix POS LS system.

The real-time tests gave an evaluation of the validity of
the design of the Kalman filter as well as the impact of various
sensor combinations when the satellite signals were masked.
The real-time test in suburban area test started and ended
in front of the Calgary Centre for Innovative Technology

Table 2: Horizontal position difference RMS for the real-time sub-
urban area test.

Strategies Horizontal position difference RMS [m]

GPS/INS 1.09

GPS/INS/GL/YRS 1.05

GPS/INS/WSS 0.48

GPS/INS/WSS/GL/YRS 0.38

(CCIT) building at the University of Calgary on June 28,
2006. The test was conducted around the campus with a
maximum baseline of 2.5 km, and 8 minutes of static mode
for the initialization, as well as approximately 20 minutes
for the kinematic part. As shown in Figure 9, the GPS base
station and radio link antennas were set up on the roof of
the CCIT building. Also, partial and complete GPS outages
were mainly introduced by the dense foliage, small buildings
near the street as well as bridges. Unlike the open-sky area,
the multipath error significantly increases in suburban area.
To guarantee reliable ambiguity resolution, the widelane car-
rier phase (rather than L1 in the open-sky test), Doppler and
the C/A code measurements were used. The use of widelane
measurements is at the cost of amplifying the noise by the
linear combination of the L1 and L2 carrier phases. However,
it is a tradeoff between fast and reliable ambiguity resolution
and an increase in the noise.

For the real-time suburban area test, DOP values, the
number of tracked satellites at the base and remote stations
(and their difference), and the number of fixed ambiguities
are shown in Figure 10. Most of the horizontal DOP are less
than two with several cases exceeding five. However, the GPS
availability is far from ideal since dense foliage, underpasses,
and the buildings near the road introduced partial and com-
plete satellite masking. The difference in the number of satel-
lites tracked between the GPS base and the remote stations
indicate the level of signal masking.

Figure 11 illustrates the estimated position accuracies for
the reference solution used for the real-time test. It indicates
that the estimated accuracy of the GPS/CIMU with optimal
backward smoothing is closely related to the GPS availabil-
ity. When GPS is fully available, the estimated accuracy is
comparable to that in the open sky. However, the estimated
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Figure 9: Real-time test in suburban area.

accuracy is susceptible to the masking of the satellites as well
as the durations of the masking. The longer the duration of
GPS blockage, the lower the estimated accuracy. Neverthe-
less, due to the superior quality of the navigational grade
CIMU, the worst case for the estimated accuracy, which is rel-
evant to the masking of GPS signal, is at the decimetre level
(10–15 cm) for this test. Its accuracy is much higher than for
the low-cost IMU, and thus serves as a good reference solu-
tion.

Figure 12 shows the side slip angle during the entire real-
time test. As the test was conducted in the summer time on a
relatively flat road, the maximum side slip angle was less than
10 degrees, with maximum values being sparsely distributed
around the specific epochs at 321100 seconds, 321400 sec-
onds, and 321840 seconds, respectively.
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Figure 10: The satellite DOPs, satellite numbers, and the resolved
ambiguities in the real-time suburban area test.

The horizontal position computed from the four inte-
gration strategies is compared with the reference solution,
as shown in Figure 13. When GPS is fully available, GPS de-
termines the absolute accuracy of the integrated system, and
the horizontal position difference for each integration strat-
egy is very small. During GPS outages, the horizontal posi-
tion difference increases significantly depending on the dura-
tion of the outages. By comparing the four integration strate-
gies, the aiding from the WSS can be seen to significantly re-
duce the position drift as compared to the stand-alone low-
cost IMU. The benefits gained form GPS/INS/GL/YRS in-
tegration strategy is somewhat limited. However, the hori-
zontal positioning accuracy can be further improved by the
GPS/INS/WSS/GL/YRS integration strategy with respect to
GPS/INS/WSS integration strategy if a large side slip occurs.
This fact can be verified in Figure 13 around the specific
epochs at 321100 seconds, 321400 seconds, and 321840 sec-
onds, which are relevant to the large side slip angles. For easy
comparisons, Table 2 statistically summarizes the horizontal
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Figure 11: The position accuracy for the reference solution gener-
ated by GPS/CIMU integrated system for the real-time suburban
area test.

RMS position difference for the four integration strategies.
The benefits gained from the integration of the onboard ve-
hicle sensors on the positioning accuracy can be seen clearly.

6. CONCLUSIONS

In this paper, GPS, a low-cost IMU and several onboard ve-
hicle sensors (four wheel speed sensors, two G sensors, and
a yaw rate sensor) are integrated using a closed loop central-
ized Kalman filter. The integration strategies and the integra-
tion algorithms were developed. A mechanism was proposed
for detecting and alleviating the violation of the lateral non-
holonomic constraint on the wheel speed sensor.

It is consistently illustrated by all the tests that GPS plays a
dominant role in determining the absolute positioning accu-
racy of the system when GPS is fully available. The integra-
tion of onboard vehicle sensors can enhance the horizontal
positioning accuracy during GPS outages.

The improvements from the wheel speed sensor over GPS
and low-cost IMU integrated system are 90.4% for the open-
sky test (post-mission processing with 12 simulated GPS out-
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Figure 12: Side slip angle for the real-time suburban area test.
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Figure 13: Horizontal position difference between GPS/INS/on-
board vehicle sensor integrated output and the reference solution
for the real-time suburban area test.

ages) and 56.0% for suburban area real-time test, respec-
tively.

The improvement from automotive grade GL/YRS unit is
less significant than the wheel speed sensor. It is only 18.0%
for the open-sky test and 3.7% for suburban area real-time
test, respectively. However, the strategy that integrates all sen-
sors to detect and alleviate the violation of the lateral non-
holonomic constraints performs best. Percentage improve-
ments on horizontal positioning accuracy reached 92.6% for
open-sky test and 65.1% for the suburban area real-time test.
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