
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2007, Article ID 59130, 16 pages
doi:10.1155/2007/59130

Research Article
Array Iterators in Lustre: From a Language Extension to
Its Exploitation in Validation

Lionel Morel

IRISA-INRIA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France

Received 29 June 2006; Revised 27 November 2006; Accepted 18 December 2006

Recommended by Jean-Pierre Talpin

The design of safety critical embedded systems has become a complex task, which requires both appropriate language features and
efficient validation techniques. In this work, we propose the introduction of array iterators to the synchronous dataflow language
Lustre as a mean to alleviate this complexity. We propose these new operators to provide Lustre programmers with a new mean
for designing regular reactive systems. We study a compilation scheme that allows us to generate efficient loop imperative code
from these iterators. This language aspect of our work has been fruitful since the iterators are being introduced in the industrial
version of Lustre. Finally, we propose to take these regular structures into account during the validation process. This approach
has already shown its applicability on different real-life case studies. The work we relate here is thus complete in the sense that our
propositions at the language level are taken into account both at the compilation and the validation levels.

Copyright © 2007 Lionel Morel. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

1.1. Reactive systems and the
synchronous approach

Reactive systems, as defined in [1], are characterized by the
interaction with their environment being the prominent as-
pect of their behavior. Software embedded in aircraft, nu-
clear plants, and similar physical environments, is a typi-
cal example. Moreover, they interact with a noncollabora-
tive environment, which may impose its own rhythm: it
does not wait, nor reissue events. Synchronous languages
[2] represent an important contribution to the program-
ming of reactive systems. They are all based on the per-
fect synchrony hypothesis that establishes that communi-
cations between different components of a system are in-
stantaneous and, more importantly, that computations per-
formed by components are seen as instantaneous from
their environment’s point of view. Among these languages,
the most significant ones are Esterel [3], Lustre [4], and
Signal [5]. These languages offer a strong formal seman-
tics and associated validation tools. They are now com-
monly used in highly critical industry for the design of
control systems in avionics, nuclear power plants, and so
forth.

1.2. Lustre: the language and associated
verification tools

The language

In this work, we are more particularly interested in the lan-
guage Lustre. It is dataflow in the sense that every variable
X represents an infinite flow of values (X1,X2, . . . ,Xi, . . .), Xi

being the value taken by X at the ith instant of the execution
of the program. Classical operators (or, and, not, +, −, ∗, /,
mod, >, >=, etc.) are applied pointwise on the flows. For ex-
ample, the conditional expression if C then E1 else E2 (where
C is a Boolean expression and E1 and E2 are 2 expressions
of the same type) describes a flow X such that for all n. If
Cn then Xn = E1n elseXn = E2n. Here, n represents the suc-
cessive instants of the execution of the system. Two operators
are used to manipulate the flows directly. The pre, defines a
localmemory (for all n > 0, pre (X)n = Xn−1) while the arrow
allows to initialize a flow (X → Y = (X1,Y2, . . . ,Yi)). Lustre
programs (nodes) possess input, output, and local variables
(flows) and every output/local variable is defined by exactly
one equation. The program of Figure 1 implements a simple
accumulator. At the first instant, c takes the value of expres-
sion “if e then 1 else 0.” Then at every instant n, c takes as value
the sum of the same expression (if e then 1 else 0) to which we
add the value of c at instant n− 1 (pre(c)).

2 EURASIP Journal on Embedded Systems

node Accumulator (e : bool) returns (c : int);
let
c= (0 -> pre c) + if e then 1 else 0;

tel

e
1
0

-> +

pre

c

if
then
else

Figure 1: The Accumulator program.

<Initialize memories>
Always do{
<Read inputs>
<Compute outputs>
<Update memories>}

Figure 2: Synchronous execution scheme.

We have only talked about a single notion of time, in-
duced by the sequence of values of variables. It defines a
global clock, that can be noted as the constant true (the
Boolean flow being true at each and every instant in time).
For developing embedded applications, it is often neces-
sary to describe subsystems evolving at different rhythms.
In this respect, Lustre provides two operations: a sampler
when and a projector current. Although we will not use these
clock operations in the examples throughout this paper, all
our propositions extend naturally to them. We will thus not
present these operations in details here.

Compilation

A set of Lustre equations describes a network of operators,
and is equivalent to the description of a combinational cir-
cuit. The same constraints apply: sets of equations with in-
stantaneous loops are ruled out by the compiler. For exam-
ple, {x = y + z, z = x + 1, . . .} is a set of fix-point equations
that perhaps has solutions. It is however not accepted as a
valid dataflow program. Lustre programs are compiled into
imperative programs in C, which have the form of Figure 2,
the infinite loop being classically called the reactivity loop.

Expressing safety properties

As Lustre is intended mainly to program safety critical sys-
tems, an important issue is the formal verification of safety
properties expressed on programs. These properties are ex-
pressed through the use of synchronous observers [6]. These
observers are standard Lustre nodes that take as inputs both
the inputs and outputs of the program to be verified and give
back one Boolean output representing the truth value of the
property to prove.

Verification scheme

In general, we want to prove that a certain program P satis-
fies a certain safety property Prop knowing that certain hy-
pothesis on its environment holds, described by an assertion
Assume. Such an assertion can also be described by an ob-

I ONode

Assum

Prop

env ok

prop ok

Figure 3: Validation with observers.

server, and introduced through an assert clause. The verifica-
tion scheme in Figure 3 is used by Lustre verification tools,
such as Lesar [6], a symbolic model checker, or nBac [7], an
abstract interpreter, to show that, as long as the assertion ob-
server outputs true, so does the property observer.

Technology transfer

The language Lustre is developed at Verimag,1 since the mid
eighties. During its history, it has always been very close to
the need of embedded system designers (particularly in em-
bedded control of critical systems). This has led to the cre-
ation of a tool called SCADE, developed now by Esterel Tech-
nologies,2 that is actually a graphical version of Lustre. Al-
though the evolution of both languages is independent in
practice, they stay very close and, as is exemplified by the
present work, Lustre often serves as an exploratory platform
for SCADE.

1.3. A language extension: from language design to
compilation to validation

The goal of this paper is to describe an extension of the Lus-
tre language to include new operators and the consequence
of such an extension on (1) the whole design process; (2)
the compilation process; and (3) the verification of prop-
erties. This extension started first as a language issue, and
more precisely a concern of making the language not more
expressive but easier to use for some particular types of appli-
cations, as we will see below. Facing an increasing complex-
ity, designers using the SCADE environment wanted some-
how to have the possibility to express regular programs in
a somehow natural way. Although operators for designing
regular hardware systems existed in the language, they were
not adapted to targeting software code generation. Trying to

1 http://www-verimag.imag.fr/SYNCHRONE.
2 http://www.esterel-technologies.com.

http://www-verimag.imag.fr/SYNCHRONE
http://www.esterel-technologies.com

Lionel Morel 3

overcome these drawbacks led quite naturally to the intro-
duction of new operators, called iterators, that were specif-
ically designed to answer this particular demand from pro-
grammers. The definition of the operators themselves was
also motivated by some compilation aspects: an important
concern was to introduce operators for which the generation
of more efficient code is straightforward. This whole process is
reported in Section 2. It starts from motivations for the new
operators and goes through the actual definition of the itera-
tors down to compilation and optimization aspects.

The natural prolongation of this definition of a language
extension was to be able to take these new constructs in
the validation process. In Section 3, we propose a validation
technique for iterative Lustre programs. More precisely, this
technique is based on a slicing algorithm of the regular struc-
tures implied by the use of the iterators. From a property on
a program expressed with iterations on arrays, we are able to
generate smaller proof obligations expressed on elements of
arrays.

An interesting aspect of this work is that the introduc-
tion of a language feature, with a first goal being to make the
description of certain types of applications easier, has raised
several interesting problems that concern both compilation
and validation. Starting from a language request, we have
tried to answer it and studied the implication of our solution
on the compilation and validation processes. This makes the
whole approach a good example of language design, show-
ing how a theoretical work can be inspired by actual realistic
applications and lead to a complete solution being actually
applicable in practice.

1.4. Plan of the document

This paper is organized in two distinct parts. In Section 2,
we study the language aspects.3 Starting from the motiva-
tions for introducting of array iterators (see Section 2.1), we
continue with the definition of their syntax and semantics
(see Section 2.2) and with the study of the compilation of
these operators into imperative code (see Section 2.3). Fi-
nally, we present a technique for optimizing cascades of iter-
ations (see Section 2.4). Section 2.5 will briefly present works
related to these language aspects. The second part of the pa-
per, Section 3, studies a validation methodology that takes
advantage of the regular structure introduced by the iter-
ators. After a brief introduction, we spend few paragraphs
(see Section 3.1) on the question of the form of the prop-
erties we are considering. Our proof methodology is pre-
sented in Section 3.2. Related works are then commented in
Section 3.3. Finally, Section 4 concludes and gives some per-
spectives about this work.

2. ARRAYS AND ITERATORS: A LANGUAGE ISSUE

2.1. A long story

Arrays were first introduced in Lustre in the Ph.D. work of
Rocheteau [9]. The Pollux code generator [10], resulting

3 This work has been presented in a slightly shorter form in [8].

from this work, is devoted to the generation of synchronous
circuits. The circuits produced by Pollux were to be imple-
mented on the PAM [11], a machine developed by DEC-PRL
for fast hardware prototyping, which is actually a matrix of
Xilinx’s programmable gate arrays. The operators proposed,
that we recall now, do not increase the expressive power of
the language, but they allow for more natural description of
these synchronous circuits.

2.1.1. Arrays

Let τ be a type and n a constant. n is known at compile-
time: for criticality reasons we do not allow array access by
dynamic indexes. And n is different from 0, meaning that we
do not allow empty arrays. τˆn is the type of arrays of size n
and whose elements’ type is τ.

The following constructors are available in the language.
[0, 2, 3] represents the array with elements 0, 2, and 3. trueˆ3
= [true, true, true]. Slice extraction:

A[i · · · j] =
⎧
⎨

⎩

[
A[i],A[i + 1], . . . ,A[j]

]
if i ≤ j,

[
A[i],A[i− 1], . . . ,A[j]

]
if j > i,

0 ≤ i, j ≤ “size of A.”

(1)

Concatenation

If A is of size n and B of size m then A—B is of size n+
m and is defined by A|B=[A[0],A[1], . . . ,A[n · · ·1],B[0],
B[1], . . . ,B[m · · ·1]]. All the polymorphic operators of the
language (if · · · then · · · else . . . , pre, ->) can be applied to
arrays. The size of an array T can be a generic parameter of a
node in which T is defined or used, with the condition that
for every call to that node, this parameter be instantiated by
a static constant. Finally, the with operator allows for a static
recursionmechanism in the language. Here, staticmeans that
this recursion must be ensured to terminate at compilation.
The with operation allows to describe the termination con-
dition of the recursion, which must be statically verifiable to
hold.

Example

To illustrate the use of these operations we define an n-bits
adder ADD in Figure 4. It takes as input two arrays A and B
and computes as output the array S as the binary sum of A
and B.

2.1.2. Compilation

The Pollux compiler (officially Lustre-V4) was implemented
for taking care of these array notations. It basically ex-
pands arrays into independent variables. Consider the n-
bits adder introduced earlier (see Figure 4). The first pass
generates the intermediate program of Figure 5. The whole
structure of data in arrays has been completely lost. Instead
of the array A of size n, we now have n independent vari-
ables (A 0, . . . ,A 9). Of course the C code obtained from
thisintermediate format will also have independent variables

4 EURASIP Journal on Embedded Systems

const n=10;

node FULL ADD(ci, a, b : bool)
returns (co, s : bool);
let
s = a xor (b xor ci);
co = (a and b) xor (b and ci) xor (a and ci);

tel

node ADD(A,B : boolˆn)
returns (S : boolˆn; overflow : bool);
var CARRY : boolˆn;
let
(CARRY,S) = FULL ADD([false]

| CARRY[0 · · · n-2], A, B);
overflow = CARRY[n-1];

tel

false

B[0]
A[0]

B[1]
A[1]

B[j]
A[j]

B[j+1]
A[j+1]

B[n-1]

A[n-1]

S[0]

CARRY[0]

S[1]

CARRY[1]

S[j]

CARRY[j]

S[j+1]

CARRY[j+1]

S[n-1]

CARRY[n-1] Overflow

ADD FULL

Figure 4: An n-bits adder in Lustre-v4.

instead of arrays. This method is well adapted to hardware
targeting since, in the end each element of an array ought to
be represented by one wire on the target hardware. Moreover,
this approach allows for a straightforward use of standard
validation tools associated to the “Lustre without arrays.”

2.1.3. Towards array iterators: somemotivations

For software generation, this array expansion technique is
useless and can actually be harmful, leading to unnecessary
code explosion. The code obtained is slow (1): we get as many
memory access as there are elements in the original arrays,
instead of one memory access per array in the case where
we would preserve the arrays in the generated code; and (2)
big: instead of generating as many assignments as there are
elements in arrays, one could hope to be able to generate
loops with one assignment only. For the ADD example, one
would like to get the code of Figure 6. The next code gener-
ator, Lustre-V5, was an attempt to generate loop code from
the operators presented above. But, using slice mechanisms,
one can write a program like the one given in Figure 7. It is
clearly tedious, even though possible, to write an equivalent
imperative loop for this kind of program.

Conclusions

(1) Compilation techniques presently used for arrays are not
adapted for obtaining efficient software code. (2) It is not
always easy to generate efficient loop-like imperative code
from the operators provided in the language (e.g., slice ex-
pressions). (3) These operators are not easy to use when pro-
gramming classical array algorithms like sorting, maximum,
and so forth. This is a particularly strong argument from fi-
nal users of SCADE. (4) When expanding arrays into inde-
pendent variables data arrangement is lost while it could be
kept for verification. This extra argument is the basis for the
work described in Section 3.

2.2. Array iterators

We now introduce iterators inspired from functional opera-
tors likemap or foldl into Lustre. They only enable simple de-
pendencies between array elements and thus make easier the
generation of loop code. Generating loop presents the fol-
lowing advantages considering the code generated: (1) size:
in all the cases where we apply n times a computation C, we
reduce the number of copies of C from n to 1; (2) execution
time: a C program containing n assignments written in se-
quence is generally a bit slower than an equivalent program
with a loop containing 1 assignment executed n times; (3)
amount of memory needed during the execution: if we use it-
erators it is possible to identify and suppress useless interme-
diate variables (see Section 2.4); (4) readability: the operators
we propose are easy to manipulate. Their use is similar to in-
tuitive functional operators.

Iterators have been widely used in functional program-
ming for more than twenty years. Our contribution con-
sists mainly in adapting these constructs to a data-flow syn-
chronous language. In particular, safety constraints have an
important influence on the constructs we introduce. These
have to be deterministic fixed-size iterations. In the sequel, n
is an integer whose value must be known statically. T and T’
are arrays of size n. The τs are types and τˆn is the type “array
of size n of elements of type τ.” The size of the arrays is nec-
essary only for the fill operator, but for uniformity we give it

Lionel Morel 5

node ADD (A 0: bool; . . . ; A 9: bool;
B 0: bool; . . . ; B 9: bool)

returns (S 0: bool; . . . ; S 9: bool; overflow: bool);
var V59 CARRY 0: bool; . . . ; V67 CARRY 8: bool;
let

S 0 = A 0 xor B 0 xor false;
· · ·
S 9 = A 9 xor B 9 xor V67 CARRY 8;
overflow = (A 9 and B 9) xor (B 9 and V67 CARRY 8)

xor (A 9 and V67 CARRY 8);
V59 CARRY 0 = (A 0 and B 0) xor (B 0 and false)

xor (A 0 and false);
· · ·
V67 CARRY 8 = (A 8 and B 8) xor (B 8 and V66 CARRY 7)

xor (A 8 and V66 CARRY 7);
tel

Figure 5: Intermediate code Lustre for the ADD program.

for(i=0; i<n; i++){
S[i] = A[i] xor (B[i] xor C[i]);
CARRY[i] = (A[i] && B[i])

‖ (B[i] && CARRY[i-1])
‖ (A[i] && CARRY[i-1]);

}
overflow = CARRY[n-1];

Figure 6: For loop we wish to get for a program manipulating ar-
rays.

X [0] = Y [0];

X [1 · · · 2] = Y [4 · · · 5];
X [3 · · · 5] = Y [1 · · · 3];

X Y

Figure 7: A slice expression and the corresponding dependencies
between X and Y.

even for the others. For simplicity, definitions are only given
for iterations of purely functional nodes, but the extension
to state-full nodes is straightforward. Nodes are expressed as
λ-terms. A graphical presentation of these iterators is avail-
able in Figure 8.

2.2.1. Definition

Map

If g = λt · t′, where t represents an array element and t′ an
expression depending on t, an abstract syntax of the map op-
erator is T1 = map(g,T2). It is semantically equivalent to

{T1[i] = g(T2[i])}i∈range(T1). If N (resp., O) is a node (resp., an
operator) of signature τ1×τ2×· · ·×τl → τ′1×τ′2×· · ·×τ′k,
thenmap�N,n	 (resp.,map�O,n) is a node (resp., an op-
erator)4 of signature τ1ˆn× τ2ˆn×· · ·× τlˆn→ τ′1ˆn× τ′2ˆn×
· · · × τ′kˆn.

Red

If g = λ(t, accu) · accu′, the reduction r of an array T
using g is r = red(init,T , g), where init is the initializa-
tion expression of the reduction. It is semantically equiva-
lent to {r0 = init; {ri+1 = g(ri,T[i])}i∈range(T); r = rsize(T)}.
The operator red has this syntax: if N is a node of signature
τ × τ1 × τ2 × · · · × τl → τ′ then red�N,n	 is a node of
signature τ × τ1ˆn× τ2ˆn× · · · × τlˆn→ τ′.

Fill

If g = λ accu ·(accu, elt), we can have r,T = fill(init, g),
where init is the initialization of the filling process. It
is semantically equivalent to {r0 = init; {ri+1,T[i] =
g(ri)}i∈range(T); r = rsize(T)}. In Lustre, fill has this syntax: if N
is a node of signature τ → τ′×τ′1×τ′2×· · ·×τ′k then fill�N,n	
is a node of signature τ → τ′ × τ′1ˆn× τ′2ˆn× · · · × τ′kˆn.

Map red

If g = λ(accu, t) · (accu, t), we have (T1, r) = map red(init,
T2, g). It is semantically equivalent to {r0= init; {ri+1,T1[i]=
g(ri,T2[i])}i∈range(T1); r = rsize(T1)}. In Lustre, if N is a node of
signature τ × τ1τ × τ2 × · · · × τl → τ′ × τ′1 × τ′2 × · · · × τ′k,
thenmap red�N,n	 is a node of signature τ×τ1ˆnτ×τ2ˆn×
· · · × τlˆn→ τ′ × τ′1ˆn× τ′2ˆn× · · · × τ′kˆn.

4 From now on, we will not make the distinction between operators and
nodes.

6 EURASIP Journal on Embedded Systems

N

T′T

(a)Map

init

res

N

T

(b) Red

init

res

N

T′

(c) Fill

init

res

N

T′T

(d)Map red

Figure 8: The four iterators introduced in Lustre.

node ADD(A,B:boolˆn)
returns (S:boolˆn;overflow:bool);
let
overflow,S = map red� FULL ADD;n	 (false,A,B);

tel

Figure 9: The adder, written with iterators.

2.2.2. Examples

N-bit adder

The adder example that we presented in Section 2.1 can be
easily rewritten using a map red iterator. The corresponding
new version of the ADD node is given in Figure 9.

Selection of the ith element of an array

In Lustre it is not possible to select an element from an array
directly from its index if the latter is given as dynamic expres-
sion (e.g., depending on the values of inputs of the program).

The iterators give us the possibility to build such func-
tionality in a safe manner. Let us describe this program. It
selects the ith element of an array of integers, i being an in-
put. When the value of i is not valid (outside the bounds of
the array), it returns a default value (here encoded as a con-
stant default). The accumulator output of the iteration is a
variable of type given in Figure 10(a).

At each stage of the iteration, these information repre-
sent: (1) the current element rank (initialized to default, and
incremented of 1 at each stage); (2) the rank of the element
to select simply initialized to rankToSelect. This field is prop-
agated “as is;” (3) the value of the selected element, initial-
ized to default. The corresponding iterated node is given in
Figure 10(b).

To describe the selection of the ith element, we iterate
selectOneStage on array. We thus define a variable of type it-
eratedStruct. The value of the selected element is then very
simply given by iterationResult.elementSelected as shown in
Figure 10(c).

type iteratedStruct={currentRank:int;
rankToSelect:int;
elementSelected:int};

(a)

node selectOneStage(acc in: iteratedStruct; currentElt: int)
returns (acc out : iteratedStruct)
let

acc out = {currentRank = acc in.currentRank+1;
rankToSelect = acc in.rankToSelect;
elementSele cted = if(acc in.currentRank

=acc in.rankToSelect)
then currentElt
else acc in.elementSelected};

tel

(b)

node selectElementOfRank inArray (i : int; array : intˆsize)
returns (elementSelected : elementType)
var iterationResult : iteratedStruct;
let

iterationResult = red� selectOneStage;size	({
currentRank = 0,
rankToSelect = rankToSelect,
elementSelected = default},
array);

elementSelected = iterationResult.elementSelected;
tel

(c)

Figure 10

2.3. Compilation

The objective of this part is to describe the compilation
scheme to translate iterative Lustre programs into impera-
tive code with loops and arrays. We adopt a very simplis-
tic approach. In particular, we are not interested in static
verifications that should be performed. We suppose the fol-
lowing:

(i) the Lustre program is syntactically correct and it has
been type-checked correctly;

Lionel Morel 7

node memo(accu in:int)
returns (accu out,t:int); //Variables
let (1) int V;
accu out=accu in-> (2) int T[10];

pre(accu in); (3) int accu out;
t=accu in; (4) int accu in[10];

tel (5) int PREaccu in[10];
node Tenlast(V:int) //Initializing
returns (T:intˆ10); // the iteration
var:foo:int;let (6) accu out=V;
foo,T=fill�memo,10	(V);
tel

//Computing outputs
(7) for(i=0;i<10;i++){
(8) accu in[i]=accu out
(9) T[i]=accu in[i];
//Initializing the memories
(10) if(init){ accu out=accu in[i];}
(11) else{
(12) accu out=
(13) PREaccu in[i];}}
//Memorizing values
(14) for(i=0;i<10;i++){
(15) PREaccu in[i]=
(16) accu in[i];}

Figure 11: An iterative Lustre program along with corresponding
imperative code.

(ii) node calls have been inlined. During code generation,
we thus only go through one node. The only other
nodes we need to manipulate are those iterated in the
main node.

We also do not take into account the generation of the in-
finite reactivity loop and concentrate only on computation of
outputs and update of memories.

We do not have the room to give the complete algorithm
here. We first illustrate it through the following example.
Then, we give the outline of the algorithm. Details can be
found in [12].

2.3.1. Example

We want to build a Lustre program that takes as input an in-
teger flow V and builds an array T that contains the values
of V in the last 10 instants (this number of instants has been
fixed arbitrarily for the example). At each instant t, the ith
element of T (Tt[i]) contains the value of V at instant t − i
(Vt−i). The corresponding Lustre program, named Tenlast is
given in Figure 11(left). It is made of a fill that iterates a node
memo. At each level of the iteration, memo stores the accu-
mulated value it receives in the corresponding element of T
(represented by the output “t”). Through accu out, it propa-
gates the memory of the accu in it receives. Note that during
the first 10 instants, not all the elements of V have been prop-
erly set.

generateCode(mainN){
generateVariableDeclarations(mainN);
generateStep(mainN);
generateUpdate(mainN);

}

Figure 12: The main function of the code generation algorithm.

On the right-hand side of Figure 11, we give the imper-
ative code generated for the Tenlast node. Let us now look
through this code. It contains variable declarations corre-
sponding to the main inputs/outputs (V and T). Then (lines
(4), (5), and (6)), we find declarations corresponding to vari-
ables that are local to the iterated node. The example raises
two possibilities. First, some variables do not need to be
memorized at each level of the iteration (accu out in the ex-
ample). For these, we can generate one scalar variable that
can be reused at each level of the iteration. Now, some vari-
ables may also need to be memorized at each level between
successive instants. This is the case for accu in that is used
both as an instantaneous value and as a memorized one (see
node memo). For that, we generate two arrays, one for the
value of all instances of accu in during the current instant
(declared at line (4)), and one for storing the previous val-
ues corresponding to pre(accu in) (line (5)).

Line (6) initializes the output accumulator. Lines (7) to
(13) compute the output. In that part, we generate exactly
one for loop for each iteration present in the original pro-
gram. Line (8) corresponds to the propagation of the ac-
cumulated value through the iteration. Then, line (9) cor-
responds to computing the array element T[i]. Lines (10) to
(13) compute the output accumulator and distinguish two
cases for that: the first instant (line (10)) and the rest of the
execution.

A second loop is generated for each iteration, updating
the memories that are local to the iterated node. In the ex-
ample, we update (lines (14) to (16)) the memory array cor-
responding to pre(accu in).

2.3.2. Intuition of the code generation algorithm

The code generation algorithm can be roughly decomposed
into the steps shown in Figure 12. In this small presentation,
we concentrate on aspects that are particularly relevant for
the case of iterative programs.Most of usual problems arising
in compiling synchronous programs (e.g., causality), code
optimizations or efficiency have been put aside and can be
added orthogonally.

Suppose that we start from a main node Minny where all
node calls have been inlined. Particular attention needs to be
given to the generation of variables. generateVariableDeclara-
tions needs to generate the input, output, and local variables
of the main node. But, it also needs to generate appropriate
variables for memories that are used locally in the iterated
nodes, as raised by the previous example. This generation is
performed by a first complete traversal of the program that
detects these memories.

8 EURASIP Journal on Embedded Systems

node main(T:intˆ10)returns(T′′:intˆ10);
var T′:intˆ10;
let

T′=map�f,10	(T);
T′′=map�g,10	(T′);

tel

(a) Original cascade of iteration

node main(T:intˆ10)returns(T′′:int);
let

T′′=map�h,n	(T);
tel
node h(in f:int)returns(out g:int);
var

in g:int;
out f:int;

let
out f=f(in f);
in g=out f;
out g=g(in g);

tel

(b) Corresponding optimized program

Figure 13: An example of optimization of cascades of iterations.

A second traversal (implemented in the generateStep
function) is needed to compute the actual computation of
the output variables. Basically, for each Lustre equation it
generates the corresponding imperative code. In the case of
an iterative equation, the code generated is made of a for-
loop that computes the accumulated variable as well as the
output array variables (depending on the type of iteration).
This function also takes care of the distinction between the
initial instant and the rest of the execution.

Finally, the generateUpdate function will generate code
for updating the memories that are either at the level of the
main node, or at the level of iterated nodes. This is achieved
by a third and last traversal of the program structure. For
efficiency reasons, it could be coupled to generateStep.

2.4. Optimization

Example

A possible optimization appears when writing cascades of it-
erations. Consider the program of Figure 13(a). T’ is defined
by a map of node f applied to T and T” by a map of a node g
applied to T’. The exact definition of f and g is of no impor-
tance here. From the definition of the map operator, we get
that T’ and T” are defined as

∀i ∈ [0 · · ·n] · T′[i] = f
(
T[i]

)
,

∀i ∈ [0 · · ·n] · T′′[i] = g
(
T′[i]

)
.

(2)

From these definitions, it is obvious to see that each element
of T” can actually be defined by a composition of f and g ap-
plied to T:

∀i ∈ [0 · · ·n] · T′′[i] = g
(
f
(
T[i]

))
. (3)

↗ Map Fill Red Map-red
Map � — � �
Fill � — � �
Red — — — —

Map-red � — � �

Figure 14: Optimization possibilities.

While doing this, we have also used the fact that the only
use we make of T’ in this program is as intermediate vari-
able to compute T” from T. Applying this kind of transforma-
tion directly on the Lustre program results in the program
of Figure 13(b), semantically equivalent to the original one,
where h has been built as a composition of f and g. We will
comment on the relations with existing works in that domain
in Section 2.5 but let us relate this kind of optimization to
listlessness [13, 14] or deforestation [15] as they have been
proposed in functional languages. Here, instead of generat-
ing the whole array T’, its elements are consumed as soon as
they are produced. From a design point of view, this opti-
mization is very useful in a context where programmers ma-
nipulate libraries of nodes performing classical array algo-
rithms (e.g., in SCADE), not necessarily knowing that cas-
cades appear.

Axiomatization

We have identified in total nine cascades where a similar tech-
nique can be applied. The table of Figure 14 identifies all pos-
sible optimizations. As an example, the first column of the
second line reads: the cascade “fill followed by map” can be
optimized. In order to apply these optimization axioms, we
must have that (1) the result(s) of the first iteration are the
input(s) of the second one; (2) these variables are not used in
the rest of the node; (3) the cascade formed by the two itera-
tions is optimizable (according to Figure 14). For keeping the
presentation short, we only give the formalization for one of
these optimizations.

Consider the cascade of Figure 15(a), where we suppose
to have f = a, t · (a′, t′) and g = a, t · (a′′, t′′) (where a′, t′,
a′′, and t′′ depend on a and t). If i2 does not depend on r1,
we can apply the equivalence rule given in Figure 15(b) for
rewriting the cascade as one iteration.

2.5. Relatedworks

2.5.1. About iterators

The exact notion of iterators is closely related to higher-order
functions andmore generally to the functional programming
style. Among the first propositions on this, we should re-
call the work of Backus [16] that basically introduces list-
manipulation operators (such as Insert or Apply to All) to
functional programing and wonders the first about possible
simplifications of compositions of such functions. This work
has been pursued during the years (leading to very nice for-
malisms such as BMF [17]).

Lionel Morel 9

rsrs
T′T T′′ T T′′

i j i jf g

(a) A graphical representation

map red(j,map red(i,T , f), g)
≡

map red({i, j},T , λ{a1, a2}, t· let
〈x, y〉 = f (a2, t) in let 〈x′, y′〉
= f (a2, y) in 〈{x, x′}, y′〉).
(b) The optimization rule

Figure 15: Optimizing the cascademap red(map red).

Right from the start, these works were meant to deal with
infinite list (actually, more generally with infinite tree-like
structures). The operations that we propose are very limited
compared to the one included in many functional languages.
This is mainly because of the high criticality of the application
domain we aim at. Introducing iterators in the Lustre should
typically not lead to unbounded computations and dynamic
creation of data structures. The operations we propose are
quite simple (actually already too complicated from the fi-
nal user’s point of view) and lead to unambiguously “safe”
code. Such operations (map, reduces, etc.) have also been
introduced into languages that are more closely related to
Lustre such as 81/2 [18], ALPHA [19] that are both dataflow
languages. The difference here is that these operations have
been introduced to help hardware architecture-related prob-
lems (parallelism of computation), which is quite the oppo-
site goal from the one we have here.

2.5.2. About optimizations of cascades

In [20], Waters underlines the advantages of programming
with serial expressions and of the optimization techniques
that can be used in that framework. The basic type consid-
ered here is list and the advantages of using higher-order
functions are presented. The author also underlines two rea-
sons why the techniques are not widely used: (1) constructs
proposed in functional languages are not easy to use; (2) the
compilation techniques used are rarely efficient, mainly be-
cause intermediate structures are not taken care of properly
in the case of cascades of serial functions.

This joins the work by Wadler on listlessness [13, 14]
and later on deforestation [15]. Listlessness consists exactly
in what we aim at in our optimization process of Section 2.4:
intermediate lists should not be built completely before one
can start to consume their elements. Deforestation is simply

a generalization of listlessness to tree-like structures. An im-
plementation of these deforestation techniques is presented
in [21]. A technique derived from this, called warm fusion is
presented in [22].

2.6. Aword about impact and technology transfer

The ideas we have presented in this section have been the
fruit of a thorough collaboration with Esterel Technologies.
Jean-Louis Colaço, chief investigator regarding the Lustre
language at Esterel Technologies has incorporated the iter-
ations as well as the optimization algorithms presented ear-
lier in the experimental compiler of the company. Convinc-
ing experimental results have been obtained, particularly on
an Airbus A380-related case study. This application manages
the electrical load in an aircraft. Redundancy of data and par-
allelism are central to this type of applications because they
represent the best way to ensure fault tolerance. There, the
introduction of iterators has lead to a target code-size reduc-
tion of a factor 300. This reduction was due both to the re-
structuring of the source code implied by the iterators and
the generation of loops instead of inlined elementary com-
putations.

Our iterations are well adapted to this kind of applica-
tions, as shown by this particular case study, but also by two
other ones (both were taken from the avionics domain). The
important practical result of this collaboration is that indus-
trial partners have been convinced by the usefulness of the
whole approach and that, as of 2008, the iterators will be part
of the new SCADE 6.0 tool. During this collaboration [23],
iterators have also been ported to Lucid Synchrone [24], an
synchronous extension toML. Last but certainly not least, the
iterators are now included in the Lustre-v6 language version.
The compiler, still under development at the time of writ-
ing this paper, implements the compilation and optimization
phases that we have proposed.

3. EXPLOITING SYSTEM’S REGULARITIES:
THE VALIDATION ASPECT

In the preceding section, we have introduced operators that
are well adapted for the description of regular systems. We
have focused our attention on the advantages of this language
extension regarding language usability and code generation.
The next step to be considered consists in taking this into
account in the validation process.

Concerning verification, the approach that has been ap-
plied traditionally consists in expanding the arrays into in-
dependent variables and use standard validation techniques
on the expanded code. This approach presents the following
inconvenients:

(i) the regular programs we deal with are generally big
and most verification tools will suffer from a state-
explosion problem;

(ii) this expansion forbids tools to take this regular struc-
ture into account, while it might be of importance for
validation.

10 EURASIP Journal on Embedded Systems

The goal of the work presented in the subsequent sections is
to propose a methodology for taking this regular structure
into account during the validation process. In Section 3.1,
we discuss the type of properties we want to be able to treat.
Section 3.2 presents the methodology itself (based on a slic-
ing algorithm) that, given a property on an iterative program
that deals with arrays, produces a set of smaller properties
on elements of arrays that are sufficient to prove the initial
property. Finally, Section 3.3 sums up related works.

3.1. Expressing properties on arrays

As mentioned earlier, a Lustre property is expressed with
an observer, that is, a node that has as inputs the in-
puts/outputs of the program being considered and as sole
output a Boolean variable representing the truth value of the
property. Such a property can be expressed on array variables
using all the expressive power of the language. In general, we
consider properties expressed as reductions with Boolean ac-
cumulator output or properties on results of reductions of
different types.

As an extension, we introduce a new operator forall to the
language. This allows for expressing perfectly regular prop-
erties that present the advantage of leading to a more con-
servative proof result. The introduction of this operator is
motivated by the following: (1) it is not straightforward for
the programmer to express a regular property using the stan-
dard red operation because the symmetry needs to be hid-
den in the reduction; (2) that symmetry being embedded in
the reduction makes it actually hard to identify by automatic
validation tools; (3) lots of practical examples we have en-
countered use arrays to express redundancy of data, typical
in Fault-tolerant controllers. Classical properties on these re-
dundant data are symmetric.

Forall

If g = λt · b is an observer (t is a scalar parameter repre-
senting an array element and the expression b is Boolean),
an abstract syntax for the forall operator is ok = forall(g, t).
It is semantically equivalent to ok = ∧i=size−1

i=0 g(T[i]). The
operator forall has the following syntax: if P is an observer of
signature τ1 × τ2 × · · · × τl → bool then forall�P,n	 is a
node of signature τ1ˆn× τ2ˆn× · · · × τlˆn→ Boolean. Every
property expressed with a forall can be translated in the form
of a Boolean red iteration.

3.2. A proofmethodology

We consider a validation scheme such as that of Figure 3.
Now, consider a program P and a property ϕ. Both use it-
erations. Our goal is to prove ϕ on P. From a more practi-
cal point of view, we will consider that ϕ is integrated in P
(see Figure 16) which leads us back to considering a reactive
“box” from which a Boolean value is outputed. This observa-
tion greatly simplifies the presentation without reducing its
generality.

We exploit the regular structure of both ϕ and P in order
to extract proof objectives simpler than ϕ itself. In practice,

Inputs ok ?P+ϕ

Figure 16: ϕ is integrated to P.

node obs(T1 : intˆ10) returns (ok : bool);
var T2 : intˆ10;
let

T2 = map�N;10	(T1);
ok = forall�onePositive;10	(T2);
assert forall�onePositive;10	(T1);

tel

(a) Purely symmetric property

node obs bis(elt T1 : int) returns (ok : bool);
var elt T2 : int;
let

elt T2 = N(elt T1);
ok = onePositive(elt T2);
assert onePositive(elt T1);

tel

(b) Proof obligation for the property of Figure 17(a)

Figure 17

these proof objectives are generated as Lustre observers. The
advantage of this technical choice is that these proof objec-
tives can be then fed to standard validation tools, like model-
checkers and theorem provers.

Our presentation will follow a gradually complicating
path through different cases: in Section 3.2.1 we look at
how to slice symmetric properties, that is, ϕ is expressed
using a forall. We extend this simple approach to the case
where the property is expressed by a single reduction red
(in Section 3.2.2). In Section 3.2.3 we explain how to prop-
agate the slice method to cascades of iterations such as those
presented in Section 2.4. Finally, Section 3.2.4 considers the
generalization of the approach to complex networks of oper-
ations and pinpoint limitations of our method.

3.2.1. Simple forall properties

Consider the observer of Figure 17(a). It expresses the fol-
lowing property: “if all the elements of T1 are positive and if
T2 is defined by a map of node N, then is it the case that the el-
ements of T2 are also positive?” Our slicing technique applies
the following argument: to prove this property, it is sufficient
to prove the property given at Figure 17(b) that expresses
that “if a variable elt T1 is positive then a variable elt T2, com-
puted as the result of applying N to elt T1 is positive.”

Lionel Morel 11

node Obs(T:intˆs) returns (ok:bool);
var n:int;
let

n = red�plus;s	(0,T);
ok = phi(n);

tel
node phi(v:int) returns (Pv:bool);
let

Pv = v>0;
tel

(a) A simple iterative property

Acc = 0; β
for(int i = 0;i<s;i++){

γ
Accu = plus(Accu,T[i]);

γ′

}
n = Accu; α

(b) Computing the value n

Figure 18

To formalize this, we introduce a form of transformation
rule. The rule for the forall case is

λt · P(N(t))
λT · ∀(P,map(N,T)

) (4)

that reads if the property is described by a cascade of a map
followed by a forall, then to prove the property, it is sufficient
to prove the iterated property P is valid after a call to node N.
In practice, the application of such a rule is done by generat-
ing the corresponding proof obligation as a Lustre node (see
Figure 17(b)).

3.2.2. Principle of the treatment of a red property

We are now interested in a property expressed as a red. Con-
sider the example of Figure 18(a). Node phi encodes the
property the value of v is positive (here by positive we implic-
itly mean “strictly positive”). The property encoded by the
node Obs is that the sum of the elements of T is positive.

Let us have a look at the imperative code (see
Figure 18(b)) that represents the code executed for that pro-
gram at every execution cycle to compute the value n. It is
made of a simple for loop obtained from the red iteration
(see Section 2.1.2). On the right-hand side of this program,
we have indicated 4mark points: α, β, γ, and γ′. The property
φmust be verified in α in the imperative code. We know that
in order to prove φ in α, it is sufficient to prove that φ is an
invariant of the loop. To achieve that, we apply the standard
Hoare-logic approach (see Section 3.3) and try to prove (1) a
base case expressing that φ is true in β and (2) an invariance
case expressing that φ is preserved by one passage in the loop
body (i.e., if φ is true in γ it is also true in γ′).

Base case

As a matter of fact, we will not consider the base case to hold
in β but rather in γ′ (after exactly one iteration has been per-
formed). This comes from the fact that the initialization of
the iteration, traditionally performed before the loop and
thus fixing the invariant of the iteration before it actually
starts, is made during the first round of our iteration. This is
not restricting the approach since we do not consider empty
arrays anyway. As an example, consider again the iteration
of Figure 18(a). Under the hypothesis that all the elements of
T are positive, φ is satisfied. The proof rule that we propose
leads naturally to the following base case: in β, the accumula-
tor Acc is positive. The corresponding induction case is if Acc
is positive in γ, then Acc is positive in γ′. This latter is trivially
true, but the base case is on the contrary trivially false be-
cause Acc is initialized to 0. By considering the base case in γ,
it is true.

Manipulation rule

The properties we consider in the example along with points
α and β are all represented in Figure 19. This also indicates
the places in the iterations where we consider the base and
invariance case. In order to prove this property, we will gen-
erate a conjunction of properties, this first one for prov-
ing the base case (see Figure 20(a)) and the other for prov-
ing the invariance of the property. This transformation is
represented by the following rule: consider the property φ
on the result of a reduction of a node N, that is, the ex-
pression (see Figure 19) λ init,T·φ(red(init,T,N)) where init
is the initialization input of the reduction and T is the ar-
ray input. From this, we generate two observers. The first
one (see Figure 20(a)) expresses that φ is true after one pas-
sage in the iteration λinit, t·φ(N(init, t)). The second (see
Figure 20(b)) expresses that if the property is satisfied at a
any level of the iteration (φ(acc)), then it is also satisfied at
the next level (after a call to the iterated node φ(N(acc, t)))
λacc, t·φ(acc)⇒φ(N(acc, t)). This rule is formalized by

λinit, t · φ(N(init, t))

λacc, t · φ(acc) =⇒ φ
(
N(acc, t)

)

λinit,T · φ(redd(N,T, init)) . (5)

Taking an iterative assertion into account

Generally, properties are given along with assertions that en-
code the assumption that the user has on the input of the
program, and that should hold so that the property can hold.
To take these assertions into account, we simply apply our
slicing algorithm to the propertyH ⇒ P .

3.2.3. Propagation to cascades of iterations

The preceding technique applies to single (red or forall) iter-
ations. We are now interested in cascades of iterations. We
will use the particular case of a map followed by a red as an
illustration. Consider the cascade program of Figure 21. T is

12 EURASIP Journal on Embedded Systems

init
β

N

γ

γ′

α
φ(red(N, init, T))

T

Validity of the property after
initial passage in the loop

Does the iterated node
preserve the desired property

Figure 19: Iterative property.

init

plust

φ(N(init, t))

(a) Base case

acc

plust

φ(N(acc, t))

φ(acc)

?

(b) Invariance

Figure 20

computed by an iteration of a node plusOne so that every el-
ement of T is equal to the corresponding element of T’ plus 1:
for all i · T[i] = T′[i] + 1. We want to prove the same prop-
erty as before and thus use the observer Obs of Figure 21. We
follow the same line as before, and give in Figure 22(a) the
imperative code corresponding to that program.

One way to treat cascades of iterations would be to first
apply the optimization of Section 2.4 and then apply the rule
given above. The optimizations are well adapted to code gen-
eration because the programmer is generally not interested in
reading the generated code. For verification, this argument is
not valid anymore. Readability is much more important, and
one should avoid as much as possible to derive from the form
of the original program.

We thus propose a manipulation rule similar to that pro-
posed for a simple red iteration that allows us to keep the
cascade’s structure in the proof obligation we generate:

λinit, t · φ(N(init,M(t)
))

λacc, t · φ(acc) =⇒ φ
(
N
(
acc,M(t)

))

λinit,T · φ(redd(N,map(M,T), init
)) . (6)

3.2.4. Propagation to operation networks

The generalization of the approach presented in previous
sections consists in traversing the cascades of iterations back-
wards (see Figure 23), starting from the final reduction and
going back through the program structure until we have ana-

node Obs(T′:intˆs)
returns (ok:bool);
var n:int;T:intˆs;
let
T = map�plusOne;s	(T′);
n = red�plus;s	(0,T);
ok = phi(n);tel

Figure 21: An observer with a simple cascade of iterations.

for(int i = 0;i<s;i++){
T[i] = plusOne(T′[i]);

}

Acc = 0;
for(int i = 0;i<s;i++){

Accu =plus(Accu,T[i]);
}
n=Accu;

(a) Imperative loop version

Acc = 0; β
for(int i = 0;i<s;i++){

γ
T[i] = plusOne(T′[i])
Acc = plus(Accu,T[i]);

γ′

}
n=Accu; α

(b) The same program after a loop
fusion

Figure 22

lyzed all its equations. For each iteration encountered during
this traversal, we generate a node call for the base case of the
induction and a node call for the invariance case. We are only
interested in slicing the array structure. This traversal is lim-
ited to iterations. It is not applied to expressions like P1 com-
puting the initial value of iterations nor to general networks
of operators (like P2). We will see in Section 3.2.6 that we can
apply this transformation to node calls C, under certain cir-
cumstances.

3.2.5. Example

We will now illustrate our technique on the cascade of itera-
tions given at Figure 24. In order to concentrate on the algo-
rithm, we have deliberately built up an example. We are not
particularly interested in the meaning of this program. Suf-
fice it to say that it illustrates pretty well the possibilities of
our approach. In Section 3.2.7, we will comment the interest
of our method for real-life case studies.

The Boolean output ok of this observer is computed by
a reduction of a node P applied on an array tab out. This
in turn is computed by a map of N on an array T4. T4 is an
output of a map red of Q. This iteration also computes the

Lionel Morel 13

init
C

P1

P2 φ

Direction of the traversal

Figure 23: Limitations of our slicing algorithm.

init fill

varOut

tab in

tab out

res3

res4 ok

true

T1 T2

T3

T4

T5

1

0 N
P

S

T

Q

R

Figure 24: Iteration network of observer prop.

variable res4 and the array T5 (but we are not interested in
these for our property). As parameters, it takes the constant
1 that initializes the iteration as well as two arrays T2 and T3.
T2 is computed by a map of S on T1, itself filled by a fill ini-
tialized with an input of the program init fill. Finally, T3 is
computed along with res3, with a map red iteration of R on
tab in (also an input of the observer).

The transformation of this observer is applied backward,
starting from the reduction that computes the output ok. We
start by generating equations defining two local variables: (1)
okInit expresses that the iterated property is true after an ini-
tial call to the iterated node; (2) okInv expresses that the prop-
erty is preserved by a call to the iterated node. To compute
NV, we define two variables propRanki and propRanki plus1.
propRanki is an input of the new observer and represents the
hypothesis that the property is true at a rank i. propRanki plus1
represents the fact that the property is true at rank i+1. After
we have generated these basic equations, we need to propa-
gate this generation of the init and inv cases to the cascade
of iterations until we reach the inputs of the program. For

iteration

res3,T3 = map redd� R; size	 (
1, tab in

)
; (7)

we generate the following two equations:

res3 init,elt T3 init = R
(
1, elt tab in init

)
;

res3 inv, elt T3 inv = R
(
accIn R, elt tab in inv

)
.

(8)

In Figure 25, we give a graphical representation of the ob-
server thus generated.

3.2.6. Taking node calls into account

As mentioned earlier, the algorithm we propose is propagat-
ing this slicing of arrays until it reaches some boundaries,
defined by the form of the network of operators that con-
stitutes the program. One possibility of extension of this al-
gorithm is to take node calls into account. When encoun-
tering node calls during the traversal, there are actually two
situations that we can consider. First, the node called is just
used to encapsulate regular computations. Then we can in-
line this node on the fly and apply the transformation to the
iterations that it contains. Second, the node actually encap-
sulates complicated computations, that the user particularly
does not want to be exposed to the rest of the program, as
it would make the analysis particularly difficult. In that case,
it would make a lot of sense for the user to give a contract
to that node. An assume-guarantee contract [25] is a form of
local specification. It is made of an assertion Boolean clause,
that specifies what the component expects from its environ-
ment, and a guarantee clause that specifies what the compo-
nent guarantees to its environment, assuming that the lat-
ter satisfies its assumption. If such a contract is given for the
node encountered, it is possible to abstract the node away (its
outputs can become inputs of the proof obligation) and ac-
tually replace it by an assertion on these newly created inputs.
This assertion is defined as the logical implication of the as-
sume and guarantee clauses assume⇒ guarantee, and can be
built syntactically. The same technique as before can be used
now to slice this new proof obligation.

3.2.7. Implementation and impact

This whole approach is implemented in a prototype tool
named GOuPIL.5 This should be seen as a tool provided to
Lustre programmers in order to facilitate the validation of
their programs. The manipulations are automated, but the
user is still intensively implicated since he needs to command
the tool. Some of the manipulations we proposed here (e.g.,
the replacement of a node call by an assertion) are not auto-
mated yet, this is still a work in progress. At any moment in
the process, the user can get the generated Lustre proof obli-
gations. The automatic connection tomodel checkers such as

5 Available from http://www.irisa.fr/espresso/Equipe/Morel/html/distrib-
goupil/goupil-1.0.html.

http://www.irisa.fr/espresso/Equipe/Morel/html/distrib-goupil/goupil-1.0.html
http://www.irisa.fr/espresso/Equipe/Morel/html/distrib-goupil/goupil-1.0.html

14 EURASIP Journal on Embedded Systems

true

true

true

varOut init

elt T1 init

elt tab in init

S

Q

R
1

res3 init

elt T2 init

elt T3 init elt T4 init

elt T5 init

res4 init

0
N P

ok init

okAND
ok inv

propRankN

propRankNp1
N P

elt T1 inv elt T2 inv

elt T3 inv elt T4 inv

elt T5 inv
accIn Q

accIn R

accIn T

Q

R

S

res3 inv

res4 inv

varOut inv

elt tab in inv

Figure 25: The observer prop dup.

nBac or theorem provers is not implemented yet, so once he
gets proof obligations as Lustre observers from GOuPIL, the
user still needs to run manually the adequate tool. However,
it has served as an experimental platform and has helped us
to validate the approach on several large-scale case studies.

The whole technique has been applied to a significant
case study, which we will not describe completely here, for
obvious space reasons. This application is again taken from
the avionics field. It is an implementation in Lustre of an EDF
(earliest deadline first) protocol to manage a list of processes
that have to run on a single processor. Arrays are used to de-
scribe lists of priority and deadline information about pro-
cesses. Iterators are used to manage these lists and decide,
at every instant, which process should be executed next. We
want to prove a global property on the system, that states that
the process that is being executed is always the one with the
higher priority.

To evaluate our propositions, we have first tried to use
standard verification to prove the property. We tried to prove
it using the Lustre tool box, that includes the model-checker
Lesar, and the abstract interpreter nBac. This rapidly led to
a state explosion, which was due to the regularity and the
size of the system combined with the numerical aspect of
the property. Then, starting from the original property, we
applied our slicing algorithm with GOuPIL. This gave us a
proof objective comparable to the one of Figure 25. The nu-
merical part of this proof objective was still complex, but we
were able to finally prove it with nBac.

3.3. Relatedworks

Symmetry

Techniques taking symmetry into account have been pro-
posed in several works and are generally applied on the state
machine representation of programs. Their main goal is to
reduce the state explosion associated with model checking.
Structural symmetries imply an equivalence relation between
the states on an automaton. It is then sufficient to explore

only one state per equivalence class when traversing the au-
tomaton. The first use of a notion of symmetry was pro-
posed for Petri-Nets [26]. The most significant propositions
in that domain are those of Emerson et al. [27–29] and of
Dill and Ip as implemented in the Murϕ system [30–32].
Recognizing symmetries is performed on a graph model of
the system while our approach is provided at language level.
This presents two advantages: it gives better feedback to the
user and we do not constrain ourselves to using this method
for one particular validation technique (model checking) but
keep availability of the whole validation framework.

Proof of iterative algorithms

A particular rule of Hoare logic, first proposed in [33] and
largely studied in [34], concerns the proof of while iterations
while Bdo S. To prove P{while Bdo S}R, we need to (1) find an
invariant Inv, that is, a property Inv such that Inv and B{S}Inv
(i.e., that Inv is preserved by the statement S); (2) prove that
P⇒ Inv and that Inv and not B ⇒ R. The major difficulty of
this approach is of course to find the invariant Inv. In our par-
ticular case, we will try to prove that R is an invariant, so that
R and B{ S} R. Of course, the two conditions are not necessary
to prove R since R is maybe not an invariant of the iteration.
So whenever our method is not able to prove R it does not
mean that R is false, but simply that we cannot answer. Fi-
nally, this proof of a while loop is only partial. But this is suf-
ficient in our case since iterations have statically-fixed sizes
(hence termination is guaranteed).

Verification of regular architectures

In a domain closer to ours, [35] and more recently [36] have
proposed a verification method for regular architectures de-
scribed in Alpha [19]. Part of this method consists in sim-
plifying the system’s implementation by applying inductive
rules on unidimensional structures. This induction rule ap-
plies to flow variables and allows the authors to prove invari-
ance of a property over time in a way similar to that proposed
in [37]. This rule, which in many ways resembles the one we

Lionel Morel 15

propose in Section 3.2.2 is not used to treat other (spatial)
dimensions of the program.

4. CONCLUSIONS

In this paper, we have proposed an extension of the syn-
chronous language Lustre with array iterators. From a lan-
guage point of view, these operators do not increase the ex-
pressive power provided to the final user. Rather, they make
more natural the expression of iterative algorithms. Another
important aspect of these operators is that it is easy to gener-
ate efficient imperative loop-like code from them. The com-
pilationmethod outlined in Section 2.3 has been put in prac-
tice in the experimental compiler of Esterel Technologies,
and will be included in the next official release of SCADE.
The efficiency of the code generation also accounts to the
optimization of cascades of iterations. In SCADE, iterators
will be provided as libraries of standard iterative algorithms.
These optimizations are then very useful because cascades
can appear without the programmer being aware of them.

Trying to make our approach as complete as possible, we
have then studied the possibility of taking the regular struc-
ture implied by iterations in the validation process. To that
end, we have proposed a slicing algorithm that, given a Lus-
tre property on an iterative program generates smaller proof
obligations (expressed also in Lustre) on parts of programs
concerning elements of arrays. These proof obligations are
only sufficient: if we are able to prove that they are true, then
the original property is true as well. If we are not able to prove
these obligations, then we cannot conclude. In practice, these
proof obligations are generated as Lustre observers. This al-
lows for the full power of validation tools available around
the language instead of making the slicing algorithm incor-
porated in a specific tool.

This work is particularly interesting because it is some-
what complete: starting from a requirement from actual
users of the Lustre language, we have studied a language ex-
tension, a compilation scheme taking full advantage of this
extension as well as an adapted validation technique. More-
over, the technology transfer partnership with Esterel Tech-
nologies has already led to the integration of the iterators in
the SCADE tool set (to be effective in the next version, avail-
able in 2008). As far as validation is concerned, the results we
had on applying the slicing mechanics to different case stud-
ies are a good promise. An interesting perspective is certainly
to build a more convincing interface for applying it and bet-
ter connections to validation tools to make the treatment of
proof obligations more transparent.

ACKNOWLEDGMENTS

This work, representing the main contribution of the au-
thor’s Ph.D. thesis [38], has been supported by CNRS and
INPG. The author is deeply indebted to Florence Maran-
inchi, without whom most of the ideas appearing in this
paper would never have made their way, and to MM. Marc
Pouzet and Patrice Quinton for their thorough reviews of the
thesis.

REFERENCES

[1] D. Harel and A. Pnueli, “On the development of reactive sys-
tems,” in Logics and Models of Concurrent Systems, pp. 477–
498, Springer, New York, NY, USA, 1985.

[2] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le
Guernic, and R. de Simone, “The synchronous languages 12
years later,” Proceedings of the IEEE, vol. 91, no. 1, pp. 64–83,
2003.

[3] G. Berry and G. Gonthier, “The Esterel synchronous program-
ming language: design, semantics, implementation,” Science of
Computer Programming, vol. 19, no. 2, pp. 87–152, 1992.

[4] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The syn-
chronous dataflow programming language Lustre,” Proceed-
ings of the IEEE, vol. 79, no. 9, pp. 1305–1320, 1991.

[5] P. Le Guernic and A. Benveniste, “The synchronous language
SIGNAL,” in Proceedings of the 2ndWorkshop on Large-Grained
Parallelism, M. R. Barbacci, Ed., pp. 56–57, Pittsburgh, Pa,
USA, November 1987, Carnegie-Mellon University Software
Engineering Institute.

[6] N. Halbwachs, F. Lagnier, and P. Raymond, “Synchronous ob-
servers and the verification of reactive systems,” in Proceedings
of the 3rd International Conference on Algebraic Methodology
and Software Technology (AMAST ’93), M. Nivat, C. Rattray,
T. Rus, and G. Scollo, Eds., Workshops in Computing, pp. 83–
96, Twente, The Netherlands, June 1993.

[7] B. Jeannet, Partitionnement Dynamique Dans l’Analyse de Re-
lations Linéaires et Application à la Vérification de Programmes
Synchrones, Ph.D. thesis, Institut National Polytechnique de
Grenoble, Grenoble, France, 2000.

[8] L. Morel, “Efficient compilation of array iterators for Lustre,”
in Proceedings of the 1st Workshop on Synchronous Languages,
Applications, and Programming (SLAP ’02), F. Maraninchi, A.
Girault, and É. Rutten, Eds., vol. 65 of Electronic Notes in The-
oretical Computer Science, Grenoble, France, April 2002.

[9] F. Rocheteau, Extension du langage Lustre et application la
conception de circuits: le langage Lustre-V4 et le système Pol-
lux, Ph.D. thesis, Institut National Polytechnique de Grenoble,
Grenoble, France, 1992.

[10] F. Rocheteau and N. Halbwachs, “Pollux: a Lustre-based hard-
ware design environment,” in Proceedings of the International
Workshop on Algorithms and Parallel VLSI Architectures II, P.
Quinton and Y. Robert, Eds., pp. 335–346, Chateau de Bonas,
France, June 1991.

[11] P. Bertin, D. Roncin, and J. Vuillemin, “Introduction to pro-
grammable active memories,” in Systolic Array Processors, J.
McCanny, J. McWhirter, and E. Swartzlander, Eds., pp. 301–
309, Prentice-Hall, Englewood Cliffs, NJ, USA, 1989.

[12] L. Morel, “Generating imperative code from Lustre iterators,”
http://www.irisa.fr/espresso/Equipe/Morel/Publications/
algoCodeGeneration/algo.pdf.

[13] P. L. Wadler, “Listlessness is better than laziness: lazy evalu-
ation and garbage collection at compile-time,” in Proceedings
of the ACM Symposium on LISP and Functional Programming,
pp. 45–52, Austin, Tex, USA, August 1984.

[14] P. L. Wadler, “Listlessness is better than laziness II: composing
listless functions,” in Proceedings of a Workshop on Programs as
Data Objects, vol. 217 of Lecture Notes in Computer Science, pp.
282–305, Copenhagen, Denmark, October 1985.

[15] P. L. Wadler, “Deforestation: transforming programs to elim-
inate trees,” Theoretical Computer Science, vol. 73, no. 2, pp.
231–248, 1990.

http://www.irisa.fr/espresso/Equipe/Morel/Publications/algoCodeGeneration/algo.pdf
http://www.irisa.fr/espresso/Equipe/Morel/Publications/algoCodeGeneration/algo.pdf

16 EURASIP Journal on Embedded Systems

[16] J. Backus, “Can programming be liberated from the von neu-
mann style? A functional style and its algebra of programs,”
Communications of the ACM, vol. 21, no. 8, pp. 613–641, 1978.

[17] R. S. Bird, “Lectures on constructive functional program-
ming,” in Constructive Methods in Computer Science, M. Broy,
Ed., vol. F55 of NATO ASI Series, pp. 151–216, Springer, New
York, NY, USA, 1988.

[18] J.-P. Sansonnet, O. Michel, and D. De Vito, “8-1/2: data-
parallelism and data-flow,” Tech. Rep. LRI-CNRS, Université
Paris-Sud, Orsay Campus, France, 1992.

[19] C. Mauras, Alpha, un langage équationnel pour la concep-
tion et la programmation d’architectures parallèles synchrones,
Ph.D. thesis, Université de Rennes I, Rennes, France, Decem-
ber 1989.

[20] R. C. Waters, “Automatic transformation of series expressions
into loops,” ACM Transactions on Programming Languages and
Systems, vol. 13, no. 1, pp. 52–98, 1991.

[21] A. Gill, J. Launchbury, and S. L. Peyton Jones, “A short cut
to deforestation,” Tech. Rep., University of Glasgow, Glasgow,
UK, October 1993.

[22] J. Launchbury and T. Sheard, “Warm fusion: deriving build-
catas from recursive definitions,” in Proceedings of the 7th In-
ternational Conference on Functional Programming Languages
and Computer Architecture (FPCA ’95), pp. 314–323, La Jolla,
Calif, USA, June 1995.

[23] J.-L. Colaco and M. Pouzet, “Prototypages,” Rapport final du
projet GENIE II, Verilog SA, Paris, France, Janvier 2000.

[24] P. Caspi and M. Pouzet, “Lucid Synchrone, a functional exten-
sion of Lustre,” Tech. Rep., Laboratoire LIP6, Université Pierre
et Marie Curie, Paris, France, 2000.

[25] F. Maraninchi and L. Morel, “Logical-time contracts for reac-
tive embedded components,” in Proceedings of the 30th EU-
ROMICRO Conference on Component-Based Software Engi-
neering Track (ECBSE ’04), vol. 30, pp. 48–55, Rennes, France,
August 2004.

[26] P. Huber, A. M. Jensen, L. O. Jepsen, and K. Jensen, “Towards
reachability trees for high-level petri nets,” in Advances in Petri
Nets, vol. 188 of Lecture Notes in Computer Science 1984, pp.
215–233, Springer, New York, NY, USA, 1985.

[27] E. A. Emerson and A. P. Sistla, “Symmetry and model check-
ing,” in Proceedings of the 5th International Conference on Com-
puter Aided Verification, pp. 463–478, Austin, Minn, USA,
November 1993.

[28] E.M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla, “Symmetry
reductions in model checking,” in Proceedings of the 10th Inter-
national Computer Aided Verification Conference, pp. 145–458,
Vancouver, BC, Canada, June-July 1998.

[29] E. M. Clarke, R. Enders, T. Filkorn, and S. Jha, “Exploiting
symmetry in temporal logic model checking,” Formal Meth-
ods in System Design, vol. 9, no. 1-2, pp. 77–104, 1996.

[30] C. N. Ip andD. L. Dill, “Better verification through symmetry,”
in Proceedings of the 11th International Conference on Com-
puter Hardware Description Languages and Their Applications
(CHDL ’93), D. Agnew, L. Claesen, and R. Camposano, Eds.,
vol. 32 of IFIP Transactions A: Computer Science and Technol-
ogy, pp. 97–112, Amsterdam, The Netherlands, April 1993.

[31] C. N. Ip and D. L. Dill, “Efficient verification of symmetric
concurrent systems,” in Proceedings of the IEEE International
Conference on Computer Design: VLSI in Computers and Pro-
cessors (ICCD ’93), E. Straub, Ed., pp. 230–234, Cambridge,
Mass, USA, October 1993.

[32] C. N. Ip and D. L. Dill, “Verifying systems with replicated
components in murϕ,” in Proceedings of the 8th Interna-
tional Conference on Computer Aided Verification (CAV ’96),
vol. 1102 of Lecture Notes in Computer Science, pp. 147–158,
New Brunswick, NJ, USA, July-August 1996.

[33] C. A. R. Hoare, “An axiomatic basis of computer program-
ming,” Communications of the ACM, vol. 12, no. 10, pp. 576–
580, 1969.

[34] S. K. Basu and J. Misra, “Proving loop programs,” IEEE Trans-
actions on Software Engineering, vol. 1, no. 1, pp. 76–86, 1975.

[35] C. Dezan and P. Quinton, “Verification of regular architectures
using ALPHA: a case study,” Tech. Rep., INRIA, Paris, France,
June 1994.

[36] K. Morin-Allory, Vérification Formelle dans le Modèle Poly
edrique, Ph.D. thesis, Université de Rennes 1, Rennes, France,
2004.

[37] C. Dumas and P. Caspi, “A PVS proof obligation generator for
Lustre programs,” in Proceedings of the 7th International Con-
ference on Logic for Programming and Automated Reasoning,
vol. 1955 of Lecture Notes in Artificial Intelligence, pp. 179–188,
Saint Denis, France, November 2000.

[38] L. Morel, Exploitation des Structures Régulières et des Specifica-
tions Locales pour le Developpement Correct de Systèmes Réactifs
de Grande Taille, Ph.D. thesis, Institut National Polytechnique
de Grenoble, Grenoble, France, 2005.

	Research Article
	1. INTRODUCTION
	1.1. Reactive systems and the synchronous approach
	1.2. Lustre: the language and associated verification tools
	The language
	Compilation
	Expressing safety properties
	Verification scheme
	Technology transfer

	1.3. A language extension: from language design to compilation to validation
	1.4. Plan of the document

	2. ARRAYS AND ITERATORS: A LANGUAGE ISSUE
	2.1. A long story
	2.1.1. Arrays
	Concatenation
	Example

	2.1.2. Compilation
	2.1.3. Towards array iterators: some motivations
	Conclusions

	2.2. Array iterators
	2.2.1. Definition
	Map
	Red
	Fill
	Map red

	2.2.2. Examples
	N-bit adder
	Selection of the ith element of an array

	2.3. Compilation
	2.3.1. Example
	2.3.2. Intuition of the code generation algorithm

	2.4. Optimization
	Example
	Axiomatization

	2.5. Related works
	2.5.1. About iterators
	2.5.2. About optimizations of cascades

	2.6. A word about impact and technology transfer

	3. EXPLOITING SYSTEM’S REGULARITIES: THE VALIDATION ASPECT
	3.1. Expressing properties on arrays
	Forall

	3.2. A proof methodology
	3.2.1. Simple forall properties
	3.2.2. Principle of the treatment of a red property
	Base case
	Manipulation rule
	Taking an iterative assertion into account

	3.2.3. Propagation to cascades of iterations
	3.2.4. Propagation to operation networks
	3.2.5. Example
	3.2.6. Taking node calls into account
	3.2.7. Implementation and impact

	3.3. Related works
	Symmetry
	Proof of iterative algorithms
	Verification of regular architectures

	4. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

