
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2007, Article ID 57575, 8 pages
doi:10.1155/2007/57575

Research Article
Java Processor Optimized for RTSJ

Zhilei Chai,1 Wenbo Xu,1 Shiliang Tu,2 and Zhanglong Chen2

1 School of Information Technology, Southern Yangtze University, Wuxi 214122, China
2Department of Computer Science and Engineering, Fudan University, Shanghai 200433, China

Received 18 January 2006; Revised 25 September 2006; Accepted 23 April 2007

Recommended by Zoran Salcic

Due to the preeminent work of the real-time specification for Java (RTSJ), Java is increasingly expected to become the leading pro-
gramming language in real-time systems. To provide a Java platform suitable for real-time applications, a Java processor which can
execute Java bytecode is directly proposed in this paper. It provides efficient support in hardware for somemechanisms specified in
the RTSJ and offers a simpler programmingmodel through ameliorating the scopedmemory of the RTSJ. The worst case execution
time (WCET) of the bytecodes implemented in this processor is predictable by employing the optimization method proposed in
our previous work, in which all the processing interfering predictability is handled before bytecode execution. Further advantage
of this method is to make the implementation of the processor simpler and suited to a low-cost FPGA chip.

Copyright © 2007 Zhilei Chai et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Real-time specification for Java RTSJ [1] is a real-time ex-
tension for the Java language specification [2] and the Java
virtual machine specification [3] under the requirements for
real-time extensions for the Java platform [4]. It provides an
application programming interface that enables the creation,
execution, and management of Java threads with predictable
temporal behavior. The RTSJ contains some enhanced areas
such as thread scheduling and dispatching, synchronization
and resource sharing, asynchronous event handling, asyn-
chronous transfer of control, asynchronous thread termina-
tion, memory management, and physical memory access. It
holds predictable execution as the first priority in all trade-
offs. With the advantages as an object-oriented and concur-
rent programming language, and with the real-time perfor-
mance guaranteed by the RTSJ, Java is increasingly expected
to become the leading programming language in embedded
real-time systems.

Currently, some Java platforms supporting RTSJ or its
variants have been implemented. These platforms include
RI.()() [5], JTime [6], RJVM [7], Mackinac [8], and OVM
[9], to name only few. All of these Java platforms are im-
plemented as an interpreter or an ahead-of-time compiler.
Just-in-time compilation (even with the hotspot technique)
during the execution consumes too much memory and leads
to WCET unpredictability. So it is not suitable for embed-

ded real-time systems. Comparing with these platforms, a
Java processor can execute Java bytecode directly in silicon
and provide special support in hardware, which makes it an
appealing execution platform for Java in embedded systems.
Now, some excellent Java processors for real-time and em-
bedded systems were implemented, such as aJile [10], Fem-
toJava [11], and JOP [12]. Nevertheless, few of them provide
special support for mechanisms of the RTSJ now. aJile sys-
tems announces the RTSJ will be supported on top of the
aJ-80 and aJ-100 chips.

In this paper, we propose a Java processor optimized for
RTSJ (called JPOR for short) suitable for embedded real-time
systems. This processor provides special support in hardware
for mechanisms of the RTSJ such as asynchronous trans-
fer of control (ATC), thread, synchronization, and memory
management, as well as offers a simpler programming model
through ameliorating the scoped memory of the RTSJ. Be-
cause all the processing interfering instruction predictabil-
ity is handled by the CConverter (a class loader and pre-
processor we designed to do preprocessing and optimiza-
tion according to optimization method in [13]) before byte-
code execution on JPOR, the WCET of the bytecodes imple-
mented in this processor is predictable. At the same time,
some of the complex Java bytecodes (e.g., new) are simplified
dramatically by the CConverter and it makes implementa-
tion of JPOR straightforward and suited to a low-cost FPGA
chip.

2 EURASIP Journal on Embedded Systems

CConverter

APIs
(class library) JPOR

processor

Figure 1: Java platform based on JPOR.

2. JPOR ARCHITECTURE OVERVIEW

2.1. The Java platform based on JPOR

A Java processor alone is not a complete Java platform.
In this paper, the complete Java platform is composed of
CConverter (class loader), APIs (class library), and JPOR
processor (including execution engine, memory, and I/O),
which is shown in Figure 1. The APIs provide a profile based
on the RTSJ for Java application programmers. JPOR is our
proposed processor to execute Java bytecode directly and
provide support optimized for the RTSJ.

Similar to other real time Java platforms, the execution
of Java applications on this platform is also divided into two
phases: initialization phase (nonreal time) andmission phase
(real time). During the initialization phase, all of the class
files including application code and class library referred to
by the Java application are loaded, verified, linked, and then
transformed into a binary representation before being ex-
ecuted on JPOR. This transformation is performed by the
CConverter instead of JPOR. During the mission phase, the
binary representation is downloaded and executed on JPOR
with predictable WCET. The CConverter does some opti-
mizations to guarantee the real-time performance of the Java
processor and simplify its implementation at the same time.
The new instruction is taken for an example. In the conven-
tional JVM, the new instruction is quite complicated, which
requires searching and loading the class and superclasses of
this new object dynamically while allocating memory space
for it. Furthermore, the new instruction needs containing a
loop bounded by the size of the object to initialize the new
object with zero values. Hence, the implementation of the
new instruction is too complicated and its WCET cannot be
predicted in the conventional JVM.

To solve this problem, every object’s size is calculated and
recorded by the CConverter in advance. And some bytecodes
are inserted behind the new instruction into the binary rep-
resentation to initialize the new object with zero values.

The original new instruction:
//indexbyte (16-bit) is the entry for constant pool.
new, indexbyte1, indexbyte2;
Stack: before: ;
after: objectref;
The new instruction executed by JPOR:
//objectsize (16-bit) is size of this new object
//Classaddr (16-bit) is the address for the class’ //refer-

ence of this object.
new, objectsize, Classaddr;
//initialize the new object with zero values.

Fetch
instruction

JPOR processor core

Decode

IRSH Execution

A
B

Stack

Memory I/O

Figure 2: Architecture of JPOR processor.

Initialization bytecodes;
Stack: before: . . . ;
after: objectref;
As shown above, the new instruction in JPOR is only used

to handle memory allocation. The initialization of the new
object is processed by initialization bytecodes. This method
makes new instruction simple and its WCET predictable.
More details will be discussed together with memory man-
agement in Section 3.2. Other bytecodes are preprocessed
and optimized by the CConverter similarly with new instruc-
tion.

2.2. Architecture of the JPOR processor

As shown in Figure 2, the JPOR processor core is simply di-
vided into three pipeline stages: fetch instruction, decode, and
execution.

Fetch instruction

In order to build a self-contained Java processor, direct ac-
cess to the memory and I/O devices is necessary. However,
there is no bytecode defined in Java instruction set for low-
level access. Some extended instructions should be defined
to solve this problem. In JPOR, the bytecodes from 0xcb to
0xe4 that are used as quick bytecodes in the conventional
JVM are selected as extended instructions because quick in-
structions are not used anymore in JPOR. Take M2R(0xce),
reg1, reg2, for example, this extended instruction reads data
from memory or I/O according to the address denoted by
register reg2, and writes it into register reg1. The extended
instructions in this way are in the uniform format with other
bytecodes. Thus, the fetch unit can process them as a single
instruction set conveniently. In order to reduce memory ac-
cess frequency, a register IRSH (instruction register shifting
to high 8-bit) having the same width with the memory inter-
face (e.g., 16-bit) is used as an FIFO to fetchmultiple instruc-
tions (e.g., 2 instructions) at a time. The fetched instruction,
which is used in decode or execution stages, are located into
register IRSH.

Zhilei Chai et al. 3

Decode

The decode unit of JPOR is implemented as amicroprogram-
ming model. With the IRSH shifting right 8-bit at a time, the
decode unit always takes the highest 8-bit of IRSH as the en-
try to find the proper microcode.

Execution

JPOR is implemented as a stack-oriented machine to fit
the JVM behavior. Since the stack is accessed frequently for
operands and locals, it is placed into the same chip with the
processor core. This stage performs ALU operations, load,
store, and stack operations. Similar to [12], to avoid extra
write-back stage and data forwarding, we use as the two top-
most stack elements two explicit registers A and B providing
operands for ALU. The execution unit can get operands from
IRSH, stack, memory, and I/O.

Memory and I/O

The binary representation produced by the CConverter is
downloaded intomemory, whose layout is shown as Figure 3.
The processor core can access I/O through interrupt or loop
from a uniform addressing with the memory. Once power
on, the JPOR processor starts to execute initial code and
do system initialization according to the initial parameters.
Then, it executesmain thread creating code to create the main
thread. Finally, the processor selects main thread and exe-
cutes bytecode from there step by step. All of the string, static
fields, and other data can be accessed by their addresses di-
rectly.

3. RTSJ-SPECIFIC SUPPORT IN JPOR

Asmentioned in Section 1, the RTSJ contains some enhanced
areas, among which the asynchronous event is handled by
software but not extra hardware, and asynchronous thread
termination is processed in the same way with asynchronous
transfer of control. To conceal the details of memory allo-
cation from Java programmers, physical memory access is
not supported in JPOR. The special hardwares in JPOR for
thread scheduling, synchronization, asynchronous transfer
of control, and memory management will be introduced in
the following sections.

3.1. Thread, scheduling, and synchronization in JPOR

The RTSJ defines two subclasses RealtimeThread and No-
HeapRealtimeThread of Java.lang.Thread that ownmore pre-
cise scheduling semantics. The NoHeapRealtimeThread ex-
tending RealtimeThread is not allowed to allocate or even ref-
erence objects from the heap, and can safely execute in pref-
erence to the garbage collector.

The base scheduler required by the RTSJ is fixed-priority
preemptive with 28 unique priority levels. The PriorityInher-
itance protocol is the default monitor control policy in the
RTSJ, defined as follows: a thread with higher priority enter-
ing the monitor will boost the effective priority of another

Init parameters

Generic AIE

Init code

Scheduler

Thread 0

Thread n− 1

waitObject 0

· · ·
waitObject n− 1

Main thread creating code

Main ()

Other methods

Static fields

String

Class (method table)

Immortal memory

LTMemory

Others

· · ·

Figure 3: Memory layout of JPOR.

thread in the monitor to level of its own effective priority.
When that thread exits the monitor, its effective priority will
be restored to its previous value.

In JPOR, a fixed-priority preemptive scheduler is imple-
mented. To schedule thread efficiently and predictably, some
state registers are provided, namely Run T, Ready T, Block T,
and Dead T. These registers are n-bit (n is the width of the
data path) registers to record the queues of threads which are
running, ready, blocked, and dead, respectively. A thread’s
state is changed by marking corresponding bit of that state
register to “1” according to this thread’s priority. For exam-
ple, the 10th bit of the register Ready T is set to “1” denot-
ing the thread with a priority value 10 is ready now. Register
BitMap is used to translate the thread’s priority into corre-
sponding bit “1” in a register. Offset is used to translate the
corresponding bit “1” of a register into the thread’s priority
value. STK base 0 ∼ n− 1 is the base address of the stack for
each thread. LTMAddr 0 ∼ n − 1 is the base address of the
LTMemory space for each thread.

The maximum thread number supported in the JPOR
processor is n (n is the width of the data path). Every thread
can be assigned a unique priority from 0 to n − 1, and any
two of them cannot be assigned to the same priority. 0 is
the highest priority. These threads can be created and termi-
nated dynamically during execution. Creating a new thread
is just like creating a general object, but the reference of
this thread should be kept into the corresponding static field
Thread 0 ∼ n−1 shown in Figure 3 according to this thread’s

4 EURASIP Journal on Embedded Systems

Thread object struct

Class
monitor
MonCnt

Priority

Timeout

Click

Join

Name

Interrupted

Context

logic

Release

Exchange

pending

AIE ref

AIE level

LTM

Method runtime
context stack

this

preC

LV

SP

throwAIE

doInterruptible

Fst catch

extab addr

extab len

Locked

· · ·
PC

Figure 4: Thread object of JPOR.

priority. The scheduler can terminate a thread through mov-
ing the corresponding “1” from other queues to the Dead T
according to its priority. The scheduler always chooses the
thread corresponding to the leftmost “1” in Ready T queue
to dispatch and execute it.

The thread object and its corresponding context are
shown in Figure 4. The context of a preempted thread is
pushed into its own stack (on the same chip with the proces-
sor) when a scheduling occurs, and the pointer of the stack
is kept in the field Context of the thread object. The context
can be restored from the Context pointer when this thread is
selected again.

wait() method implementation: when a thread calls the
wait() method and the object being requested is locked by
another thread, it releases the object already locked by itself.
Then, it records the reference of the object being requested in
corresponding static fieldWaitObject 0 ∼ n− 1 according to
its priority and blocks itself. This static field will be checked
to decide whether the thread is waiting for a released object
when another thread calls the notify()method.

notify() method implementation: when a thread calls the
notify() method, it checks the object reference recorded in
WaitObject 0 ∼ n − 1. If this reference is equal to the ob-
ject reference released by current thread, then, the thread
specified by thisWaitObject is notified and put into Ready T
queue.

Join() method implementation: using the instance field
join to record the object reference of the thread to wake up
when current thread is finished.

Priority inheritance implementation: if a thread wants
to enter a synchronized block where another thread with a
lower priority locates, then the priority inheritance must be
taken. In JPOR, a simple method to implement the prior-
ity inheritance is adopted. The scheduler checks the field ex-
change of the thread owning the shared object, if the priority

inheritance has been taken (exchange ! = −1), the higher pri-
ority will be assigned to this thread directly. Otherwise, the
original priority of this thread is saved in its Exchange field,
then, the higher priority is assigned to it. When this thread
releases the locked object, it takes the original priority back
again from exchange.

3.2. Asynchronous transfer of control in JPOR

Asynchronous transfer of control is a crucial mechanism for
real-time applications that enables one thread to throw an
exception into another. It is useful for several purposes such
as timeout expressing, thread termination, and so on. Some
ATC-related terms are described as follows.

AIE: Javax.realtime.AsynchronouslyInterruptedExcept-ion
is a subclass of Java.Lang.InterruptedEx- ception. ATC is trig-
gered by throwing an AIE into another thread.

AI-method: a method is Asynchronously Interruptible if
it includes AIE in its throws clause.

ATC-deferred section: a synchronized method, a syn-
chronized statement, or any methods without AIE in its
throws clause.

Because the ATC mechanism needs processing operation
rules, propagation rules, replacement rules, and so on, pro-
cessing these rules during execution will impede the pre-
dictability of the WCET. To solve this problem, some spe-
cial supports are provided in JPOR and the ATC is processed
from three aspects as follows.

(1) ATC preprocessing by the CConverte

CConverter reads standard Java class file and converts all of
the methods into a binary format. Attributes of each method
are stored in fields with a determined location.

CConverter processes the exception table of every
method, and assigns correct values that JPOR can process di-
rectly to the items extab addr, extab len, and extab item.

(2) ATC triggered by target.interrupt() or target.aie.fire()

The ATC is triggered by invoking method interrupt() or
aie.fire() in a thread. cur level, cur AIE are variants defined
in method interrupt() or aie.fire().

ATC related fields of each thread are shown in Figure 4:
Pending: it shows there is an AIE in action.
AIE ref : the reference of the received AIE.
AIE level: the method invocation level of the received

AIE.
When an ATC is triggered, if there is no AIE in pending,

the target thread is marked pending and the object’s reference
of the AIE thrown currently is kept into the target thread’s
field AIE ref. Else, replacement rules must be taken. The AIE
with higher priority (generic AIE has a higher priority than
specific AIE) will be recorded into the target thread’s field
AIE ref. If the ATC is triggered by method interrupt(), the
target thread’s field interrupted is marked for compatibility.

Zhilei Chai et al. 5

(3) ATC processing by the scheduler

ATC related registers in JPOR:
throwAIE: it denotes whether the current method has a

throws AIE clause.
doInterruptible: it denotes whether catch AIE (or its su-

perclass) or finally clauses exist in this method.
Fst catch: always records the first reference of method

context to process the AIE.
Locked: denoting if this method is a synchronizedmethod

or not.
When the target thread of the thrown AIE is scheduled

again, the scheduler will process it based on three different
conditions. ♣When the target thread is in an AI-deferred
section, the scheduler restores its context and executes it as
a normal thread. ♣When the target thread is in an AI sec-
tion and it is the run() method of interface doInterruptible,
the scheduler pops the stack frame of run() method and re-
stores the context of method interruptAction() to handle the
AIE. ♣When the target thread is in an AI section and it is in
other methods instead of run() method of interface doInter-
ruptible, the scheduler will restore context from the register
fst catch to handle the AIE.

With many processing completed before execution and
with the special hardware designed for ATC (e.g., Fst catch
always records the reference of method used to process the
AIE), the ATC process in JPOR is predictable.

3.3. Memorymanagement in JPOR

The unpredictability caused by the interference of garbage
collector is intolerable for the real-time systems. The RTSJ
proposes two kinds of memory classes ScopedMemory and
ImmortalMemory to allow the definition of memory regions
outside of the traditional Java heap. ImmortalMemory is a
memory resource that is shared among all threads. Objects
allocated in the immortal memory live until the end of the
application. ScopedMemory is the abstract base class of all
classes dealing with representations of memory regions with
a limited lifetime and its reclamation is predictable. The
ScopedMemory area is valid as long as there are real-time
threads with access to it. ScopedMemory has four subclasses
defined in the RTSJ. Considering the factor of operation pre-
dictability and program portability, only LTMemory is se-
lected to be used in JPOR.

Some goals of the LTMemory in JPOR

(i) In order to check the object assignment rules in ad-
vance by the CConverter to guarantee the predictabil-
ity ofWCET, the LTMemory in JPOR cannot be shared
with multiple threads.

(ii) To improve the efficiency of memory space, the LT-
Memory in JPOR can be nested.

(iii) It offers simpler API in JPOR to simplify the program-
ming model.

Related registers are used in Figure 5:

class
monitor

Cur addr

monCnt

class

monCnt

monitor

Immo memory objectLTM memory object

this

Immo

LTM

this

Figure 5: Memory management of the JPOR.

LTM: current pointer to allocate space in the LTMemory
associated with the running thread. Each thread has its own
LTMemory space and its LTM value for allocating. Because
there will be several threads creating and using several scopes
at the same time, the separate LTMemory space for per thread
is used to avoid memory collision.

Immo: current pointer to allocate space in the shared im-
mortal memory.

Cur addr: pointing to LTM or IMMO to concretely make
an allocation.

As described in Section 2.1, the new instruction prepro-
cessed by the CConverter has a format like new, objectsize,
Classaddr. objectsize is used to denote the type of the object
to be created (objectsize = −1, LTMemory object; objectsize
= −2, ImmortalMemory object; others, general object and
its size) and the object size. JPOR can create proper object
according to the new instruction.

//create a memory space
New LTMemory/ImmortalMemory:
//save some common fields for this object
//class address of this object
class(class address)
=>mem[LTM++/Immo++];
//thread locking this object
monitor(0) =>mem[LTM++/Immo ++];
//locked count
monCnt (0) =>mem[LTM++/Immo ++];
//return the reference of this object for use later
//LTMemory/ImmortalMemory object reference
return this (LTM-3/Immo-3);
//create a general object
New general object:
//save some common fields for this object
//class address of this object
class(class address)=>mem[Cur addr +1];
//thread locking this object
monitor(0) =>mem[Cur addr + 2];
//locked count
monCnt (0) =>mem[Cur addr + 3];
//allocate space for the object
Cur addr +objectsize => Cur addr;
if(MEMType == “0”)
//update Immo if allocating in the Immortal memory

6 EURASIP Journal on Embedded Systems

Cur addr => Immo;
Else
//update LTM if allocating in the LTMemory
Cur addr => LTM;
//return the object reference
Return this (Cur addr - objectsize);
As shown above, the general new instruction in JPOR is

only used to process memory allocation. The initialization
of the new object is processed by initialization bytecodes de-
scribed in Section 2.1. Thus, the new instruction is simple
and its WCET is predictable.

//“1”denotes LTM; “0”denotes Immo;
LTMemory.enter()
//current memory space is LTMemory
“1” =>MEMType;
//current LTMemory address to be allocated of the run-

ning thread
LTM => Cur addr;
LTMemory.exit()
//go back to last LTMemory scope
this => LTM;
ImmortalMemory.enter()
//current memory space is immortal memory
“0” =>MEMType;
//current immortal memory address to be allocated
Immo => Cur addr;
Because the immortal memory exists for ever, the Immor-

talMemory.exit() is not needed for JPOR.
In standard RTSJ, the memory size must be specified by

the programmer to create an LTMemory object, such as LT-
Memory(long initialSizeInBytes, long maxSizeInBytes) or LT-
Memory(SizeEstimator initial, SizeEstimator maximum), and
so forth. It makes the programming model a little tricky
to Java programmers. Another disadvantage of the mem-
ory object with fixed size is that there will be many mem-
ory fragments existing. As described above, an API exit() is
provided in JPOR to avoid the programmer to specify the
memory size for an LTMemory and avoid memory frag-
ments occurring. This programming model is more maneu-
verable for a Java programmer. Moreover, without shared LT-
Memory between threads and based on the operation policy
above, the WCET of memory management in JPOR is pre-
dictable.

4. EVALUATION ANDDISCUSSION

The JPOR processor is implemented in experimental plat-
form FD-MCES (the computer architecture experimental
platform designed by Fudan university), which provides an
FPGA chip XC2S150-PQ208 and some debugging conve-
niences. Through the monitoring software FD-uniDbugger
designed by our laboratory, the bytecode execution on top of
JPOR can be traced single cycle. Due to the constraints of the
experimental platform, the current version of JPOR is 16-
bit and about 100 instructions implemented including sev-
eral extended instructions with the resource usage 1933 LCs
+ 2KB RAM. Thememory provided by FD-MCES is 32 Kx16
with 0.1microseconds latency, so, read and write without

Table 1: Clock cycles of bytecode execution time.

JPOR JPOR JOP JOP

iload 2 2 + r 2 2

iadd 1 1 1 1

iinc 8 7 + r 11 11

ldc 8 6 + 2∗r 4 3 + r

if icmplt
taken

10 9 + r 6 6

if icmplt
not taken

10 9 + r 6 6

getfield 7 5 + 2∗r 12 10 + 2∗r

putfield 7 5 +w + r 15 13 + r +w

getstatic 8 6 + 2∗r 6 4 + 2∗r

putstatic 8 6 +w + r 7 5 + r +w

iaload 2 2 + r 21 19 + 2∗r

invoke 43 34 + 9∗r 82 78 + 4∗r + b

invoke static 39 29 + 10∗r 61 58 + 3∗r + b

invoke
interface

n/a n/a 90 84 + 6∗r + b

dup 2 2 1 1

new 12 12 Java Java

iconst x 2 2 1 1

aconst null 2 2 1 1

astore x 3 3 1 1

aload x 3 3 1 1

return 20 20 14 13 + r + b

ireturn 22 22 16 15 + r + b

goto 5 4 + r 4 4

bipush 4 4 + r 2 2

pop 1 1 1 1

istore 2 2 + r 2 2

istore x 3 3 1 1

cache by JPOR with 8MHz frequency can be completed in
one cycle that simplifies the WCET analysis.

Table 1 shows some bytecode execution time in cycles im-
plemented by the JOP and the JPOR processor. r denotes the
time to complete a memory read and w denotes a memory
write when the bytecode needs access the memory. b is the
bytecodes loading time when a cache miss happened in JOP.
There is no instruction/method cache implemented in JPOR
till now, so b is not used for denoting its bytecode execu-
tion cycles. The columns 1 and 3 show the bytecode execu-
tion time assuming that r = w = 1 and b = 0. Obviously,
the JOP with 100MHz frequency has a much higher perfor-
mance than JPOR. Currently, the JPOR processor puts more
emphases on the predictability and optimization for the RTSJ
than the performance. The performance will be considered
carefully at the next step.

Zhilei Chai et al. 7

import javax.realtime.∗;
class DataProcessor extends NoHeapRealtimeThread{

int data=0;
public DataProcessor(int priority){

super(priority);
}
public void run(){
System.out.println(“Processing

in DataProcessor”);
Demo.ltm1.exit();

}
}
public class Demo extends NoHeapRealtimeThread{

public static LTMemory ltm = null;
public static LTMemory ltm1 = null;
public Demo(int priority){

super(priority);
}
public void run(){
for(int i = 0; i < 100; i++){

ltm1 = new LTMemory();
ltm1.enter();
DataProcessor t1 = new DataProcessor(3);
t1.start();

}
ltm.exit();

}
public static void main(String[] args){

ltm = new LTMemory();
ltm.enter();
Demo t0 = new Demo(5);
t0.start();

}
}

Figure 6: An example designed with the APIs of the JPOR proces-
sor.

In JPOR, some complex instructions in conventional
JVM are simplified. Take iaload as an example, to reduce the
complexity and guarantee the predictability of its WCET, the
null and bound checking are processed by the CConverter
and the programmer. Then, this instruction is implemented
as follows, its WCET is predictable.

arrayref(B) + index(A) => ADDR;
mem[ADDR] => A; stack[SP] => B;
(SP)−1 => SP;

Estimating the WCET of tasks is essential for designing
and verifying a real-time system. In general, static analysis
is a necessary method for hard real-time systems. Therefore,
the WCET of the simple example shown in Figure 6 is static
analyzed to demonstrate the real-time performance of the
JPOR processor. There are 3 threads in this example namely
main(0), t1(3), t0(5). The smaller priority value denotes a
higher priority.

Becausemany hardware features such as data forwarding,
branch prediction and data/instruction cache are not imple-

mented in JPOR, the global low-level analysis can be omit-
ted. The bytecodes compiled from Demo.java can be mainly
partitioned as 3 parts. In each part, the WCET of the gen-
eral bytecode is listed in Table 1. For thread t0, there is a fi-
nite loop. Its WCET can be calculated as 100∗WCET (gen-
eral codes + LTMemory + start() + scheduling). Method start()
sets the created thread into queue Ready T and wait schedul-
ing. Scheduling denotes theWCET of the scheduler execution
when a thread scheduling happens. The WCET of the LT-
Memory operation is predictable as discussed in Section 3.3.
Thus, just the WCET of the method start() and scheduling
are described below.

The process of method t.start() and its WCET
Disable the interrupt; (1 cycle)
Save the PC for current thread; (1 cycle)
Put current thread into Ready T; (2 cycles)
Jump to the scheduler; (1 cycle)
The process of scheduling and itsWCET:
Disable the interrupt; (1 cycle)
Save the context of the preempted thread; (17 cycles)
Move corresponding “1” from Run T to Ready T; (2
cycles)
Move the leftmost “1” to the corresponding bit in
Run T; (2 cycles)
Save the thread reference to this thread register; (3 cy-
cles)
Restore the context for the thread corresponding to the
left most “1;” (16 cycles)

From the described above, the WCET of the method
start() and scheduling is also predicted. So, the real-time per-
formance of the whole application can be guaranteed.

Furthermore, from Figure 6, the efficiency of the nested
LTMemory is illustrated clearly. The maximal allocation of
the LTMemory space in this example is S(t0)+S(t1) instead of
S(t0) + 100∗S(t1). S(t) denotes the space allocated for thread
t. It is notable that although some hardware is implemented
in JPOR to prevent the memory collapse, the programmer
should also take some measures to avoid a program collapse,
such as do not exceed maximum thread number, do not as-
sign the same priority to more than one thread, and so on.

Another advantage learned from this example is that the
programming model of the LTMemory is simple. Java pro-
grammers just need creating and entering an LTMemory
space to use it instead of denoting its memory size.

5. CONCLUSIONS

In this paper, a real-time Java processor optimized for RTSJ is
implemented. This processor provides efficient supports for
themechanisms specified in the RTSJ such as threadmanage-
ment, synchronization, ATC, scoped memory, and so on. Be-
cause most of the operations are completed by the preproces-
sor CConverter, this processor is simple to implement with
a predictable bytecode execution time. Presently, the JPOR
processor puts more emphases on the predictability than the
performance. It will be considered carefully at the next step.

8 EURASIP Journal on Embedded Systems

REFERENCES

[1] G. Bollela, J. Gosling, B. Brosgol, P. Dibble, S. Furr, D. Hardin,
andM. Trunbull, The Real-Time Specification for Java, Addison
Wesley, Reading, Mass, USA, 1st edition, 2000.

[2] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language
Specification, Addison-Wesley, Boston, Mass, USA, 2nd edi-
tion, 2000.

[3] T. Lindholm and F. Yellin, The Java Virtual Machine Specifica-
tion, Addison-Wesley, Boston, Mass, USA, 2nd edition, 1999.

[4] L. Carnahan and M. Ruark, “Requirements for Real-time
Extensions for the JavaTM Platform,” September 1999,
http://www.itl.nist.gov/div897/ctg/real-time/rtj-final-draft
.pdf.

[5] “Java Reference Implementation (RI) and Technology Com-
patibility Kit (TCK),” http://www.timesys.com/java/.

[6] G. Bollella, K. Loh, G. McKendry, and T. Wozenilek, “Expe-
riences and Benchmarking with JTime,” in Workshop on Java
Technologies for Real-Time and Embedded Systems (JTRES ’03),
vol. 2889 of Lecture Notes in Computer Science, pp. 534–549,
Catania, Sicily, Italy, November 2003.

[7] H. Cai and A. J. Wellings, “Towards a high integrity real-time
Java virtual machine,” in Workshop on Java Technologies for
Real-Time and Embedded Systems (JTRES ’03), vol. 2889 of
Lecture Notes in Computer Science, pp. 319–334, Catania, Sicily,
Italy, November 2003.

[8] G. Bollella, B. Delsart, R. Guider, C. Lizzi, and F. Parain,
“Mackinac: making hotspotTM real-time,” in Proceedings of the
8th IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC ’05), pp. 45–54, Seattle,
Mass, USA, May 2005.

[9] http://www.cs.purdue.edu/homes/jv/soft/ovm/documents
.htm.

[10] D. S. Hardin, “aJile Systems: Low-Power Direct-Execution
JavaTM Microprocessors for Real-Time and Networked Em-
bedded Applications,” http://www.jempower.com/ajile/
downloads/aJile-white-paper.pdf.

[11] S. A. Ito, L. Carro, and R. P. Jacobi, “Making Java work for mi-
crocontroller applications,” IEEE Design & Test of Computers,
vol. 18, no. 5, pp. 100–110, 2001.

[12] M. Schoeberl, “JOP: a Java optimized processor for em-
bedded real-time systems,” Phd dissertation, Vienna Uni-
versity of Technology, Vienna, Austria, 2005, http://www
.jopdesign.com/.

[13] Z. Chai, Z. Q. Tang, L. M. Wang, and S. Tu, “An effective in-
struction optimization method for embedded real-time Java
processor,” in Proceedings of the International Conference on
Parallel Processing Workshops (ICPPW ’05), pp. 225–231, Oslo,
Norway, June 2005.

http://www.itl.nist.gov/div897/ctg/real-time/rtj-final-draft.pdf
http://www.itl.nist.gov/div897/ctg/real-time/rtj-final-draft.pdf
http://www.timesys.com/java/
http://www.cs.purdue.edu/homes/jv/soft/ovm/documents.htm
http://www.cs.purdue.edu/homes/jv/soft/ovm/documents.htm
http://www.jempower.com/ajile/downloads/aJile-white-paper.pdf
http://www.jempower.com/ajile/downloads/aJile-white-paper.pdf
http://www.jopdesign.com/
http://www.jopdesign.com/

	Research Article
	1. INTRODUCTION
	2. JPOR ARCHITECTURE OVERVIEW
	2.1. The Java platform based on JPOR
	2.2. Architecture of the JPOR processor
	Fetch instruction
	Decode
	Execution
	Memory and I/O

	3. RTSJ-SPECIFIC SUPPORT IN JPOR
	3.1. Thread, scheduling, and synchronization in JPOR
	3.2. Asynchronous transfer of control in JPOR
	(1) ATC preprocessing by the CConverte
	(2) ATC triggered by target.interrupt() or target.aie.fire()
	(3) ATC processing by the scheduler

	3.3. Memory management in JPOR
	Some goals of the LTMemory in JPOR

	4. EVALUATION AND DISCUSSION
	5. CONCLUSIONS
	REFERENCES

