Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2007, Article ID 56467, 16 pages
doi:10.1155/2007/56467

Research Article

The Sandbridge SB3011 Platform

John Glossner, Daniel lancu, Mayan Moudgill, Gary Nacer, Sanjay Jinturkar,

Stuart Stanley, and Michael Schulte

Sandbridge Technologies, Inc., 1 North Lexington Avenue, White Plains, NY 10601, USA

Received 1 August 2006; Revised 18 January 2007; Accepted 20 February 2007

Recommended by Jarmo Henrik Takala

This paper describes the Sandbridge Sandblaster real-time software-defined radio platform. Specifically, we describe the SB3011
system-on-a-chip multiprocessor. We describe the software development system that enables real-time execution of communi-
cations and multimedia applications. We provide results for a number of interesting communications and multimedia systems
including UMTS, DVB-H, WiMAX, WiFi, and NTSC video decoding. Each processor core achieves 600 MHz at 0.9 V operation
while typically dissipating 75 mW in 90 nm technology. The entire chip typically dissipates less than 500 mW at 0.9 V.

Copyright © 2007 John Glossner et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Performance requirements for mobile wireless communica-
tion devices have expanded dramatically since their incep-
tion as mobile telephones. Recent carrier offerings with mul-
tiple communication systems and handover from cellular to
broadband suggest that some consumers are requesting con-
vergence devices with full data and voice integration. The
proliferation of cameras and Internet access in cell phones
also suggests a variety of computationally intense features
and applications such as web browsing, MP3 audio, and
MPEGH4 video are needed. Moreover, consumers want these
wireless subscriber services to be accessible at all times any-
where in the world. Such complex functionality requires high
computing capability at low power consumption; adding
new features requires adding computing capacity.

The technologies necessary to realize true broadband
wireless handsets and systems presenting unique design chal-
lenges if extremely power efficient, yet high-performance,
broadband wireless terminals are to be realized. The design
tradeoffs and implementation options inherent in meeting
such demands highlight the extremely onerous requirements
for next generation baseband processors. Tremendous hard-
ware and software challenges exist to realize convergence de-
vices.

The increasing complexities of mobile terminals and a
desire to generate multiple versions with increasing features
for handsets have led to the consideration of a software-
defined radio- (SDR-) based approach in the wireless indus-

try. The previous generation of mobile terminals was primar-
ily designed for use in geographically restricted areas where
growth of the wireless industry was dependant upon signing
up new users. The penetration levels in European and Asian
countries are high and new revenue streams (from technolo-
gies such as 3G) have been slow to materialize for a variety
of complex reasons. True convergence of multimedia, cellu-
lar, location and connectivity technologies is expensive, time
consuming, and complex at all levels of development—not
only mobile terminals, but infrastructure as well. Moreover,
the standards themselves have failed to converge, which has
led to multiple market segments. In order to maintain mar-
ket share, a handset development company must use multi-
ple platforms each of which may be geographically specific
supporting multiple combinations of communications sys-
tems. This requires some handset companies to support mul-
tiple platforms and multiple hardware solutions from multi-
ple technology suppliers.

1.1. SDR-based approach

Building large parallel processing systems is a difficult task.
Programming them efficiently is even more challenging.
When nonassociative digital signal processing (DSP) arith-
metic is included, the challenge of automated software devel-
opment for a complex chip multiprocessor (CMP) system is
amplified.

Early software-defined radio (SDR) platforms were of-
ten built out of discrete processors and FPGAs that were

EURASIP Journal on Embedded Systems

integrated on a card. More recently a trend has been to inte-
grate multiple processors on a single chip creating SDR CMP
systems. The SDR Forum [1] defines five tiers of solutions.
Tier-0 is a traditional radio implementation in hardware.
Tier-1, software-controlled radio (SCR), implements the
control features for multiple hardware elements in software.
Tier-2, software-defined radio (SDR), implements modu-
lation and baseband processing in software but allows for
multiple frequency fixed function RF hardware. Tier-3, ideal
software radio (ISR), extends programmability through the
RF with analog conversion at the antenna. Tier-4, ultimate
software radio (USR), provides for fast (millisecond) transi-
tions between communications protocols in addition to dig-
ital processing capability.

The advantages of reconfigurable SDR solutions versus
hardware solutions are significant. First, reconfigurable so-
lutions are more flexible allowing multiple communication
protocols to dynamically execute on the same transistors
thereby reducing hardware costs. Specific functions such as
filters, modulation schemes, encoders/decoders can be re-
configured adaptively at run time. Second, several commu-
nication protocols can be efficiently stored in memory and
coexist or execute concurrently. This significantly reduces
the cost of the system for both the end user and the ser-
vice provider. Third, remote reconfiguration provides sim-
ple and inexpensive maintenance and feature upgrades. This
also allows service providers to differentiate products after
the product is deployed. Fourth, the development time of
new and existing communications protocols is significantly
reduced providing an accelerated time to market. Develop-
ment cycles are not limited by long and laborious hardware
design cycles. With SDR, new protocols are quickly added as
soon as the software is available for deployment. Fifth, SDR
provides an attractive method of dealing with new standards
releases while assuring backward compatibility with existing
standards.

SDR enabling technologies also have significant advan-
tages from the consumer perspective. First, mobile terminal
independence with the ability to “choose” desired feature sets
is provided. As an example, the same terminal may be ca-
pable of supporting a superset of features but the consumer
only pays for features that they are interested in using. Sec-
ond, global connectivity with the ability to roam across oper-
ators using different communications protocols can be pro-
vided. Third, future scalability and upgradeability provide
for longer handset lifetimes.

1.2. Processor background

In this section we define a number of terms and provide
background information on general purpose processors, dig-
ital signal processors, and some of the workload differences
between general purpose computers and real-time embed-
ded systems.

The architecture of a computer system is the minimal set
of properties that determine what programs will run and
what results they will produce [2]. It is the contract between
the programmer and the hardware. Every computer is an

interpreter of its machine language—that representation of
programs that resides in memory and is interpreted (exe-
cuted) directly by the (host) hardware.

The logical organization of a computer’s dataflow and
controls is called the implementation or microarchitecture.
The physical structure embodying the implementation is
called the realization. The architecture describes what hap-
pens while the implementation describes how it is made
to happen. Programs of the same architecture should run
unchanged on different implementations. An architectural
function is transparent if its implementation does not pro-
duce any architecturally visible side effects. An example of a
nontransparent function is the load delay slot made visible
due to pipeline effects. Generally, it is desirable to have trans-
parent implementations. Most DSP and VLIW implementa-
tions are not transparent and therefore the implementation
affects the architecture [3].

Execution predictability in DSP systems often precludes
the use of many general-purpose design techniques (e.g.,
speculation, branch prediction, data caches, etc.). Instead,
classical DSP architectures have developed a unique set of
performance-enhancing techniques that are optimized for
their intended market. These techniques are characterized by
hardware that supports efficient filtering, such as the ability
to sustain three memory accesses per cycle (one instruction,
one coefficient, and one data access). Sophisticated address-
ing modes such as bit-reversed and modulo addressing may
also be provided. Multiple address units operate in parallel
with the datapath to sustain the execution of the inner kernel.

In classical DSP architectures, the execution pipelines
were visible to the programmer and necessarily shallow to
allow assembly language optimization. This programming
restriction encumbered implementations with tight timing
constraints for both arithmetic execution and memory ac-
cess. The key characteristic that separates modern DSP ar-
chitectures from classical DSP architectures is the focus on
compilability. Once the decision was made to focus the DSP
design on programmer productivity, other constraining de-
cisions could be relaxed. As a result, significantly longer
pipelines with multiple cycles to access memory and multi-
ple cycles to compute arithmetic operations could be utilized.
This has yielded higher clock frequencies and higher perfor-
mance DSPs.

In an attempt to exploit instruction level parallelism in-
herent in DSP applications, modern DSPs tend to use VLIW-
like execution packets. This is partly driven by real-time re-
quirements which require the worst-case execution time to
be minimized. This is in contrast with general purpose CPUs
which tend to minimize average execution times. With long
pipelines and multiple instruction issue, the difficulties of
attempting assembly language programming become appar-
ent. Controlling dependencies between upwards of 100 in-
flight instructions is not an easy task for a programmer. This
is exactly the area where a compiler excels.

One challenge of using some VLIW processors is large
program executables (code bloat) that result from inde-
pendently specifying every operation with a single instruc-
tion. As an example, a VLIW processor with a 32-bit basic

John Glossner et al.

instruction width may require 4 instructions, 128 bits, to
specify 4 operations. A vector encoding may compute many
more operations in as few as 21 bits (e.g., multiply two 4-
element vectors, saturate, accumulate, and saturate).

Another challenge of some VLIW implementations is
that they may have excessive register file write ports. Because
each instruction may specify a unique destination address
and all the instructions are independent, a separate port may
be provided for the target of each instruction. This can result
in high power dissipation, which is unacceptable for handset
applications.

To help overcome problems with code bloat and excessive
write ports, recent VLIW DSP architectures, such as OnDSP
[4], the embedded vector processor (EVP) [5], and the syn-
chronous transfer architecture (STA) [6], provide vector op-
erations, specialized instructions for multimedia and wireless
communications, and multiple register files.

A challenge of visible pipeline machines (e.g., most DSPs
and VLIW processors) is interrupt response latency. It is de-
sirable for computational datapaths to remain fully utilized.
Loading new data while simultaneously operating on current
data is required to maintain execution throughput. However,
visible memory pipeline effects in these highly parallel inner
loops (e.g., a load instruction followed by another load in-
struction) are not typically interruptible because the proces-
sor state cannot be restored. This requires programmers to
break apart loops so that worst-case timings and maximum
system latencies may be acceptable.

Signal processing applications often require both compu-
tations and control processing. Control processing is often
amenable to RISC-style architectures and is typically com-
piled directly from C code. Signal processing computations
are characterized by multiply-accumulate intensive functions
executed on fixed point vectors of moderate length. There-
fore, a DSP requires support for such fixed point saturating
computations. This has traditionally been implemented us-
ing one or more multiply accumulate (MAC) units. In ad-
dition, as the saturating arithmetic is nonassociative, paral-
lel operations on multiple data elements may result in dif-
ferent results from serial execution. This creates a challenge
for high-level language implementations that specify integer
modulo arithmetic. Therefore, most DSPs have been pro-
grammed using assembly language.

Multimedia adds additional requirements. A processor
which executes general purpose programs, signal processing
programs, and multimedia programs (which may also be
considered to be signal processing programs) is termed a
convergence processor. Video, in particular, requires high
performance to allow the display of movies in real-time. An
additional trend for multimedia applications is Java execu-
tion. Java provides a user-friendly interface, support for pro-
ductivity tools and games on the convergence device.

The problems associated with previous approaches req-
uire a new architecture to facilitate efficient convergence ap-
plications processing. Sandbridge Technologies has devel-
oped a new approach that reduces both hardware and soft-
ware design challenges inherent in real-time applications like

SDR and processing of streaming data in convergence ser-
vices.

In the subsequent sections, we describe the Sandbridge
SB3011 low-power platform, the architecture and implemen-
tation, the programming tools including an automatically
multithreading compiler, and SDR results.

2. THE SB3011 SDR PLATFORM

Motivated by the convergence of communications and mul-
timedia processing, the Sandbridge SB3011 was designed for
efficient software execution of physical layer, protocol stacks,
and multimedia applications. The Sandbridge SDR platform
is a Tier-2 implementation as defined by the SDR Forum.
Figure 1 shows the SB3011 implementation. It is intended
for handset markets. The main processing complex includes
four DSPs [7] each running at a minimum of 600 MHz at
0.9 V. The chip is fabricated in 90 nm technology. Each DSP
is capable of issuing multiple operations per cycle includ-
ing data parallel vector operations. The microarchitecture
of each DSP is 8-way multithreaded allowing the SB3011
to simultaneously execute up to 32 independent instruction
streams each of which may issue vector operations.

2.1. DSP complex

Each DSP has alevel-1 (L1) 32 KB set-associative instruction
cache and an independent L1 64 KB data memory which is
not cached. In addition a noncached global level-2 (L2) 1 MB
memory is shared among all processors. The implementa-
tion guarantees no pipeline stalls for L1 memory accesses
(see Section 4). For external memory accesses or L2 accesses
only the thread that issued the load request stalls. All other
threads continue executing independent of which processor
issued the memory request.

The Sandblaster DSP is a true architecture in the sense
that from the programmer’s perspective each instruction
completes prior to the next instruction issuing—on a per
thread basis.

The processors are interconnected through a determinis-
tic and opportunistic unidirectional ring network. The in-
terconnection network typically runs at half the processor
speed. The ring is time-division multiplexed and each pro-
cessor may request a slot based on a proprietary algorithm.
Communications between processors is primarily through
shared memory.

The processor’s instruction set provides synchronization
primitives such as load locked and store conditional. Since all
data memory is noncached, there are no coherence issues.

2.2, ARM and ARM peripherals

In addition to the parallel multithreaded DSP complex, there
is an entire ARM complex with all the peripherals neces-
sary to implement input/output (I/O) devices in a smart
phone. The processor is an ARM926E]J-S running at up to
300 MHz. The ARM has 32kB instruction and 32 kB data
cache memories. There is an additional 64 kB of scratch

4 EURASIP Journal on Embedded Systems
I’ ___)
I
i DSP local peripherals 10-50 MHz REF TAP
: Ext. clks REF1 REF2 < (JTAG [
! / General T T "":"‘I "“:"‘I port)
| I purpose —
I
RF control i /o % S
i J— Clock generation | : Int. clks Multimedia
! Serial — card <7~
i interfaces interface
; (SPI, 12C) —
i Smart
E Prog. ed
; timers/ L
Timer I/O : gens X d T
I Ins. & data mem.
i (32 KB/64KB) Syne. |4
i serial port
I
:K—— PSD
TX data interface Kevboard
| eyboar
RX data J N| k) 4 VAN
3 interface
i \ 7
: Kb/ DSP &> ARM
| bridge UART/ [<~
i IRDA
I
i TDM
i interface Vector Audio N
i interrupt _ codec
i controller interface
I
i [A—
I
Memory interface | Multiport General- EEN
(synchronous and i memory purpose
asynchronous) | controller /o)
i
I
I
i DtM‘?l Real-time i
i USB OTG controller
i interface
| J (
| LCD AHB &> APB
i interface bridge Timers |l4—
i @)
! Camera h \
I interface Peripheral
i device
! Ehternet -l Power [
i interface <— Managem.
I
i AHB APB
I
I

Ficure 1: Sandblaster SB3011 chip.

memory partitioned as 32kB instruction and 32kB data.
Sandbridge has ported Linux to this platform and the pro-
cessor functions as the user interface (UI or sometimes MMI)
for smart phone applications.

Using an AMBA advanced high-speed bus (AHB) and
advanced peripheral bus (APB), the system is able to sup-
port the processing of multiple concurrent data interfaces.
Attached to the APB is a multimedia card (MMC) and secure
digital card (SD Card) interface for connecting external Flash
storage. Keyboard and mouse interfaces are included along

with multiple UARTs and an IRDA interface. Audio and mi-
crophone PCM data is supported through an AC-97 interface
which connects directly to an external codec. A number of
other general peripherals are also supported on the APB in-
cluding a real-time clock and general purpose timers, which
are used to keep system time.

The AHB is used to move high-speed data such as mem-
ory requests and video into the chip for processing or out of
the chip for display or storage. A direct connection to an LCD
display is provided and can be accessed from either the ARM

John Glossner et al.

or DSP processors. Similarly, a high-speed camera interface
is provided to capture raw video data that may be encoded or
processed in the DSP or ARM processors.

The SB3011 includes a full USB 2.0 on-the-go (OTG) im-
plementation for seamless connection to printers, cameras,
storage, or other USB devices. An Ethernet interface is also
included on the chip for wired local area network (LAN) con-
nections.

2.3. External memory

External memory requests which both the ARM and DSPs
can initiate are routed through a multiport memory con-
troller attached to the AHB. The external memory can be
synchronous or asynchronous. Typical memories include
Flash, SDRAM, DRAM, and SRAM. The controller supports
multiple simultaneous requests whether generated through
direct memory access (DMA) devices (both for the ARM and
DSP) or by a direct address from the processors. External
memory requests are managed by an arbitration controller
which ensures priority and fairness for the bus transactions.
All external memory is mapped into a 32-bit global address
space and is shared among all processors.

Device processors are booted from external memory in
a two-step sequence: ARM followed by the DSPs. Once the
device is released from reset, the ARM processor begins ex-
ecution from one of the memory controller’s memory ports
(typically the port connected to Flash memory on the card).
The ARM then executes a device initialization routine, which
configures the necessary internal device peripherals and the
execution vectors for the DSPs. Once complete, the DSPs are
enabled and each processor begins executing the Sandbridge
Operating System (SBOS), which may be in Flash or other
memory.

2.4. DSP peripherals

In addition to the ARM peripherals, there are a number of
DSP specific peripherals primarily intended for moving data
to and from external radio frequency (RF) devices, time divi-
sion multiplexed (TDM) voice and data devices (e.g., T1/E1),
and other peripherals. These peripherals interface directly to
the DSPs’ L2 memory subsystem through the multiple par-
allel streaming data (PSD) or TDM interfaces. Four half-
duplex PSD interfaces are provided, each supporting up to
16-bit data samples. PSD data is latched or transmitted by
the device on both edges of its respective clock, thus realizing
two data streams per interface (typically I and Q streams to
and from an RF’s analog-front-end device). Four serial TDM
interfaces are provided, each of which capable of up to 1024
channels, for an aggregate 32 k samples per second through-
put. Support for synchronization of transmitted or received
data bursts is accomplished through the use of dedicated I/O
timers. When configured, these timers can be operated with
an external (system) clock source and are internally used to
gate the DMA transfers on the PSD interfaces. This feature
is important for slot-based communications systems such as
GSM.

A number of other interfaces are provided for general
purpose control of external components typically found in
smart phones. These include general purpose timers which
can be used as external clocks, SPI, and I2C buses which are
common in RF control logic, and general purpose I/O. The
SPI and I2C peripherals allow the DSPs to compute in soft-
ware functions such as automatic gain control (AGC) and
send the information seamlessly to the RF control interface.
The DSP computes the changed values and the SPI or 12C
bus delivers the information to the external chip(s).

2.5. Power management

To facilitate flexible system-level power management, the
Sandblaster SB3011 incorporates thirteen independent
power domains. Each processor core is isolated by a separate
domain thus 5 domains encapsulate the ARM plus 4 DSPs.
An additional domain is used for L2 memories. The other
power domains are used to isolate specific logic portions of
the chip.

Each domain is independently controllable by the Device
Power Management Unit (DPMU) which is itself isolated
within an independent power domain. The DPMU is a pro-
grammable peripheral that allows for the following options:
(1) the ability to place the device in power down where all
data and internal state is not maintained and (2) the ability
to place each processor independently in power down where
each core does not maintain state but the L2 memories are
back-biased and thus retain state.

In addition to the voltage control features, clock man-
agement is also included in two forms: (1) instruction-based
automatic clock enable/disable operation where the hard-
ware dynamically controls clocks to internal sub-blocks
when inactivity is detected and (2) operating System (OS)
or application-based clock enable/disable which can control
DSP cores, AHB peripherals, LCD, Camera, USB, Ethernet,
and APB peripherals.

While not a comprehensive list, some typical profiles of
low power configurations include the following. (1) Device
Deep Sleep where the all the SB3011 functional blocks are
powered off with the exception of the Device Power Man-
agement Unit. No state is retained in this mode. In this state
only the DPMU is powered since it is required to wake the
rest of the chip. (2) Processing Unit Deep Sleep Mode where
all the processor cores are shut down without state retention.
However, L2 memories and peripherals retain state and may
function. (3) Device Standby where all DSP cores and the
ARM processor clocks are disabled but full state is retained.

The subsequent sections discuss the Sandblaster DSP ar-
chitecture and programming tools that enable real-time im-
plementation of the parallel SDR system.

3. SANDBLASTER LOW-POWER ARCHITECTURE

3.1. Compound instructions

The Sandblaster architecture is a compound instruction set
architecture [7]. Historically, DSPs have used compound

EURASIP Journal on Embedded Systems

LO: 1lvu %vrO, %r3, 8

Il vmulreds
%ac0,%vr0,%vr0, %aco

|l loop %1c0,LO

Figure 2: Compound instruction for sum of squares inner loop.

instruction set architectures to conserve instruction space
encoding bits. In contrast, some VLIW architectures contain
full orthogonality, but only encode a single operation per in-
struction field, such that a single VLIW is composed of mul-
tiple instruction fields. This has the disadvantage of requiring
many instruction bits to be fetched per cycle, as well as sig-
nificant write ports for register files. Both these effects con-
tribute heavily to power dissipation. Recent VLIW DSP ar-
chitectures, such as STA, overcome these limitations by pro-
viding complex operations, vector operations, and multiple
register files.

In the Sandblaster architecture, specific fields within the
instruction format may issue multiple suboperations includ-
ing data parallel vector operations. Most classical DSP in-
struction set architectures are compound but impose restric-
tions depending upon the particular operations selected. In
contrast, some VLIW ISAs allow complete orthogonality of
specification and then fill in any unused issue slots by insert-
ing no operation instructions (NOPs) either in hardware or
software.

3.2. Vectorencoding

In addition to compound instructions, the Sandblaster ar-
chitecture also contains vector operations that perform mul-
tiple compound operations. As an example, Figure 2 shows
a single compound instruction with three compound oper-
ations. The first compound operation, lvu, loads the vector
register vrO with four 16-bit elements and updates the ad-
dress pointer r3 to the next element. The vmulreds operation
reads four fixed point (fractional) 16-bit elements from vr0,
multiplies each element by itself, saturates each product, adds
all four saturated products plus an accumulator register, ac0,
with saturation after each addition, and stores the result back
in ac0. The vector architecture guarantees Global System for
Mobile communication (GSM) semantics (e.g., bit-exact re-
sults) even though the arithmetic performed is nonassocia-
tive [8]. The loop operation decrements the loop count reg-
ister 1c0, compares it to zero, and branches to address L0 if
the result is not zero.

3.3. Simple instruction formats

Simple and orthogonal instruction formats are used for all
instructions. The type of operation is encoded to allow sim-
ple decoding and execution unit control. Multiple operation
fields are grouped within the same bit locations. All operand
fields within an operation are uniformly placed in the same

bit locations whether they are register-based or immediate
values. As in VLIW processors, this significantly simplifies
the decoding logic.

3.4. Low-power idle instructions

Architecturally, it is possible to turn off an entire processor.
All clocks may be disabled or the processor may idle with
clocks running. Each hardware thread unit may also be dis-
abled to minimize toggling of transistors in the processor.

3.5. Fully interlocked

Unlike some VLIW processors, our architecture is fully
interlocked and transparent. In addition to the benefit
of code compatibility, this ensures that many admissible
and application-dependent implementations may be derived
from the same basic architecture.

4. LOW-POWER MICROARCHITECTURE

4.1. Multithreading

Figure 3 shows the microarchitecture of the Sandblaster pro-
cessor. In a multithreaded processor, multiple threads of ex-
ecution operate simultaneously. An important point is that
multiple copies (e.g., banks and/or modules) of memory are
available for each thread to access. The Sandblaster architec-
ture supports multiple concurrent program execution by the
use of hardware thread units (called contexts). The architec-
ture supports up to eight concurrent hardware contexts. The
architecture also supports multiple operations being issued
from each context. The Sandblaster processor uses a new
form of multithreading called token triggered threading (T?)
[9].

With T3, all hardware contexts may be simultaneously
executing instructions, but only one context may issue an
instruction each cycle. This constraint is also imposed on
round-robin threading. What distinguishes T is that each
clock cycle, a token indicates the next context that is to be ex-
ecuted. Tokens may cause the order in which threads issue in-
structions to be sequential (e.g., round-robin), even/odd, or
based on other communications patterns. Figure 4 shows an
example of T? instruction issue, in which an instruction first
issues from Thread 0, then Thread 3, then Thread 2, and so
forth. After eight cycles, the sequence repeats with Thread 0
issuing its next instruction. Compared to SMT, T° has much
less hardware complexity and power dissipation, since the
method for selecting threads is simplified, only a single com-
pound instruction issues each clock cycle, and most depen-
dency checking and bypass hardware is not needed.

4.2. Decoupledlogic and memory

As technology improves, processors are capable of execut-
ing at very fast cycle times. Current state-of-the-art 0.13 um
technologies can produce processors faster than 3 GHz. Un-
fortunately, current high-performance processors consume

John Glossner et al.

I-cache

L2 memory and
external interface

l

Data memory

32 KB Bus/memory 64 KB

64 B lines interface II||||| 8-bank

4'W (2-active) ——
7

Program flow
control unit

Integer/load-store
unit

SIMD vector unit

FiGure 3: Multithreaded microarchitecture.

|—>T0—>T39T2—>T19T6+T5+T4—>T7—‘

F1GURE 4: Token triggered threading, with even/odd sequencing.

significant power. If power-performance curves are consid-
ered for both memory and logic within a technology, there
is a region in which you get approximately linear increase in
power for linear increase in performance. Above a specific
threshold, there is an exponential increase in power for a lin-
ear increase in performance. Even more significant, memory
and logic do not have the same threshold.

For 0.13um technology, the logic power-performance
curve may be in the linear range until approximately
600 MHz. Unfortunately, memory power-performance
curves are at best linear to about 300 MHz. This presents
a dilemma as to whether to optimize for performance or
power. Fortunately, multithreading alleviates the power-
performance trade-off. The Sandblaster implementation
of multithreading allows the processor cycle time to be
decoupled from the memory access time. This allows both
logic and memory to operate in the linear region, thereby
significantly reducing power dissipation. The decoupled
execution does not induce pipeline stalls due to the unique
pipeline design.

4.3. Caches

An instruction cache unit (ICU) stores instructions to be
fetched for each thread unit. A cache memory works on the
principle of locality. Locality can refer to spatial, temporal,
or sequential locality [2]. We use set associative caches to
alleviate multiple contexts evicting another context’s active
program. In our implementation, shown in Figure 5, there
are four directory entries (D0-D3) and banked storage en-
tries. A thread identifier register (not shown) is used to se-

v

Rld_Data

Bus/memory
interface
Instruction I
Rld_Req Enables
2 I-decode
Hit/miss logic

TTTT

s/

Address

D3 D2 D1 Do

FIGURE 5: Cache memory design.

lect whether the cache line in the left or right bank will be
evicted. This effectively reduces the complexity of the cache
line selection logic. In a 4-way set associative cache, only one
additional least recently used (LRU) bit is needed to select
which of the two lines should be evicted. This method of us-
ing thread information and banked memory accesses signif-
icantly reduces the complexity of the cache logic. In our im-
plementation, a unique feature is the use of a read associativ-
ity of 4 and a write associativity of 2, which further reduces
the cache logic complexity.

EURASIP Journal on Embedded Systems

Ld/St Inst. Dec. RFread Agen.

XFer Int.ext. Mem.0 Mem.1 Mem.2 WB

ALU Inst. Dec. Wait

RF read Exec.1 Exec.2 XFer WB — —

I_Mul Inst. Dec. Wait

RF read Exec.1 Exec.2 Exec.3 XFer WB —

V_Mul Inst. Dec. VRF read Mpyl

Mpy2 Addl

Add2 XFer VRFWB —

FIGURE 6: Processor pipeline.

4.4. Pipeline

The pipeline for one particular implementation of the Sand-
blaster DSP is shown in Figure 6. The execution pipelines
are different for various functions. The Load/Store (Ld/St)
pipeline is shown to have 9 stages. It is assumed that the in-
struction is already in the cache. The first stage decodes the
instruction (Inst. Dec.). This is followed by a read from the
general purpose register file. The next stage generates the ad-
dress to perform the Load or Store. Five cycles are used to
access data memory. Finally, the result for a Load instruc-
tion is written back (WB) to the referenced register file lo-
cation. Once an instruction from a particular context enters
the pipeline, it runs to completion. It is also guaranteed to
write back its result before the next instruction issuing from
the same thread tries to use the result.

Similarly, there are multiple (variable) stages for other ex-
ecution pipelines. The integer unit has three execute stages
for multiplication (I_LMUL) and two execute stages for addi-
tion (ALU). The vector unit has four execute stages, two for
multiplication and two for addition.

4.5. Interlock checking hardware

Most interlocked architectures require significant interlock
checking hardware and bypass logic for both correctness and
performance reasons. Multithreading mitigates this effect.
With the carefully designed pipeline shown in Figure 6, there
is only one interlock that must actually be checked for in
hardware, a long memory load or store. All other operations
are guaranteed to complete prior to the same thread issuing
a new instruction. This completely removes the power con-
suming interlock checks associated with most interlocked ar-
chitectures.

5. LOW-POWER LOGIC DESIGN
5.1. Single write-port register files

Having multithreading to cover the latency associated with
long pipeline implementations allows the use of single write-
port register files even though more than one write may oc-
cur within an instruction cycle. An important point is that
the write back stages are staggered. This allows a single write
port to be implemented but provides the same functionality
as multiple write ports [10].

An example is loading the integer register file while per-
forming an integer multiply. From the processor pipeline
shown in Figure 6, it is apparent that the reads and writes
from the register file are staggered in time. In addition, sep-
arate architected register spaces for vector, integer, and accu-
mulate operations enable reduced ports. A VLIW implemen-
tation of the instruction shown in Figure 2 may take many
write ports for sustained single cycle throughput. Compara-
tively, our solution requires at most a single combined R/W
port and an additional read port per register file.

5.2. Bankedregister files

Token triggered threading which follows a permutation of
even and odd thread issue policies along with the pipeline
implementation enables the use of banked register files. This
allows the register files to run at half the processor clock, but
never stall awaiting data.

5.3. Single-ported memories

The same characteristics that allow banked register file oper-
ation also enable the use of single ported L1 memories that
may also be banked and run at half the processor clock. Since
decoupled memories are highly desirable to reduce power,
this provides significant overall savings.

5.4. Minimal control signals

A combination of architectural and microarchitectural tech-
niques allows the processor to be implemented with very few
control signals. Since control signals often propagate to many
units, they become not only a source of bugs but also may
dissipate significant power.

5.5. Clock gating

Because the architecture is modular and the pipeline is deep,
there is time to compute which functional units will be ac-
tive for each instruction. If a functional unit is not active, the
clocks may be gated to that unit and suspend it on a unit-by-
unit basis. As an example, if there are no vector operations on
a given cycle, the vector unit is disabled. Even within a unit it
is possible to gate the clocks. For example, if a vector multi-
ply operation is executed but it does not need to be reduced,
the reduce unit within the vector unit is gated off.

John Glossner et al.

6. LOW-POWER CIRCUIT DESIGN

The average power consumption in a CMOS circuit can be
modeled as

Py = aCV3yf + Vadlmean + Vaaleas (1)

where « is the average gate switching activity, C is the to-
tal capacitance seen by the gates’ outputs, Vyq is the supply
voltage, f is the circuit’s operating frequency, Imean is the av-
erage current drawn during input transition, and e, is the
average leakage current. The first term, aCV, f, which rep-
resents the dynamic switching power consumed by charg-
ing and discharging the capacitive load on the gates’ out-
puts, often dominates power consumption in high-speed mi-
croprocessors [11]. The second term, Vyglmean, which rep-
resents the average dynamic power due to short-circuit cur-
rent flowing when both the PMOS and NMOS transistors
conduct during input signal transitions, typically contributes
10% to 20% of the overall dynamic power [12]. This is also
a function of frequency but is simplified in this analysis.
The third term, Vy4lieak, represents the power consumed due
to leakage current and occurs even in devices that are not
switching. Consequently, for systems that are frequently in
standby mode, the leakage power may be a dominate fac-
tor in determining the overall battery life. Since the leakage
power increases exponentially with a linear decrease in device
threshold voltage, leakage power is also a concern in systems
that use power supply voltage scaling to reduce power.

6.1. Low-voltage operation

Since the dynamic switching power, aCVJ, f, is proportional
to the supply voltage squared, an effective technique for re-
ducing power consumption is to use a lower supply volt-
age. Unfortunately, however, decreasing the supply voltage
also decreases the maximum operating frequency. To achieve
high performance with a low-supply voltage, our arithmetic
circuits are heavily pipelined. For example, our multiply-
accumulate unit uses four pipeline stages. Our unique form
of multithreading helps mask long pipeline latencies, so that
high performance is achieved.

6.2. Minimum dimension transistors

Minimum dimension transistors help to further reduce
power consumption, since they reduce circuit capacitance
[13]. Throughout the processor, we use minimum dimension
transistors, unless other considerations preclude their use.
For example, transistors that are on critical delay paths often
need to have larger dimensions to reduce delay [14]. Larger
dimension transistors are also used to drive nodes with high
fan-out and to balance circuit delays.

6.3. Delay balancing

Gates with unbalanced input delays can experience glitches,
which increase dynamic switching power and dynamic short-
circuit power [15]. To reduce glitches, we balance gate input

delays in our circuits through a combination of gate-level de-
lay balancing techniques (i.e., designing the circuits so that
inputs to a particular gate go through roughly the same num-
ber of logic levels) and judicious transistor sizing. Glitches
are further reduced by having a relatively small number of
logic levels between pipeline registers.

6.4. Logic combining and input ordering

Dynamic and static power consumptions are also reduced by
utilizing a variety of specially designed complex logic cells.
Our circuits include efficient complex logic cells, such as 3-
input AndOrlInvert (AOI), 3-input OrAndInvert (OAI), half
adder, and full adder cells. Providing a wide variety of com-
plex gates with different drive strengths, functionality, and
optionally inverted inputs gives circuit designers and synthe-
sis tools greater flexibility to optimize for power consump-
tion. Keeping nodes with a high probability of switching in-
side of complex gates and reordering the inputs to complex
gates can help further reduce power. In general, inputs that
are likely to be off are placed closer to gate output nodes,
while inputs that are likely to be on are placed closer to the
supply voltage [15].

7. SANDBLASTER SOFTWARE TOOLS

A simulator is an interpreter of a machine language where the
representation of programs resides in memory but is not di-
rectly executed by host hardware. Historically, three types of
architectural simulators have been identified. An interpreted
simulator consists of a program executing on a computer
where each machine language instruction is executed on a
model of a target architecture running on the host computer.
Because interpreted simulators tend to execute slowly, com-
piled simulators have been developed. A statically compiled
simulator first translates both the program and the architec-
ture model into the host computer’s machine language. A
dynamically compiled (or just-in-time) simulator either starts
execution as an interpreter, but judiciously chooses functions
that may be translated during execution into a directly exe-
cutable host program, or begins by translating at the start of
the host execution.

7.1. Interpreted execution

Instructions set simulators commonly used for application
code development are cycle-count accurate in nature. They
use an architecture description of the underlying processor
and provide close-to-accurate cycle counts, but typically do
not model external memories, peripherals, or asynchronous
interrupts. However, the information provided by them is
generally sufficient to develop the prototype application.
Figure 7 shows an interpreted simulation system. Exe-
cutable code is generated for a target platform. During the
execution phase, a software interpreter running on the host
interprets (simulates) the target platform executable. The
simulator models the target architecture, may mimic the im-
plementation pipeline, and has data structures to reflect the

10

EURASIP Journal on Embedded Systems

Compilation phase . Execution phase

]
e
7]
oL
e]

Exec. code
(target)

F1GuUrE 7: Interpreted simulation.

machine resources such as registers. The simulator contains a
main driver loop, which performs the fetch, decode, data read,
execute, and write back operations for each instruction in the
target executable code.

An interpreted simulator has performance limitations.
Actions such as instruction fetch, decode, and operand fetch
are repeated for every execution of the target instruction.
The instruction decode is implemented with a number of
conditional statements within the main driver loop of the
simulator. This adds significant simulation overhead because
all combinations of opcodes and operands must be distin-
guished. In addition, the execution of the target instruction
requires the update of several data structures that mimic the
target resources, such as registers, in the simulator.

7.2. Statically compiled simulation

Figure 8 shows a statically compiled simulation system. In
this technique, the simulator takes advantage of the any a pri-
ori knowledge of the target executable and performs some of
the activities at compile time instead of execution time. Us-
ing this approach, a simulation compiler generates host code
for instruction fetch, decode, and operand reads at compile
time. As an end product, it generates an application-specific
host binary in which only the execute phase of the target pro-
cessor is unresolved at compile time. This binary is expected
to execute faster, as repetitive actions have been taken care of
at compile time.

While this approach addresses some of the issues with in-
terpretive simulators, there are other limitations. First, the
simulation compilers typically generate C code, which is then
converted to object code using the standard compile — as-
semble — link path. Depending on the size of the generated
C code, the file I/O needed to scan and parse the program
could well reduce the benefits gained by taking the compiled
simulation approach. The approach is also limited by the id-
iosyncrasies of the host compiler such as the number of labels
allowed in a source file, size of switch statements and so forth.
Some of these could be addressed by directly generating ob-
ject code—however, the overhead of writing the application-
specific executable file to the disc and then rereading it dur-
ing the execution phase still exists. In addition, depending
on the underlying host, the application-specific executable
(which is visible to the user) may not be portable to another
host due to different libraries, instruction sets and so forth.

7.3. Dynamically compiled simulation

Figure 9 shows the dynamically compiled simulation ap-
proach. This is the approach used in the Sandbridge simu-
lator. In this approach, target instructions are translated into
equivalent host instructions (executable code) at the begin-
ning of execution time. The host instructions are then exe-
cuted at the end of the translation phase. This approach elim-
inates the overhead of repetitive target instruction fetch, de-
code, and operand read in the interpretive simulation model.
By directly generating host executable code, it eliminates the
overhead of the compile, assemble, and link path and the as-
sociated file I/O that is present in the compiled simulation
approach. This approach also ensures that the target exe-
cutable file remains portable, as it is the only executable file
visible to the user and the responsibility of converting it to
host binary has been transferred to the simulator.

7.4. Multithreaded programming model

Obtaining full utilization of parallel processor resources has
historically been a difficult challenge. Much of the pro-
gramming effort can be spent determining which processors
should receive data from other processors. Often execution
cycles may be wasted for data transfers. Statically scheduled
machines such as Very Long Instruction Word architectures
and visible pipeline machines with wide execution resources
complicate programming and may reduce programmer pro-
ductivity by requiring manual tracking of up to 100 in-flight
instruction dependencies. When nonassociative DSP arith-
metic is present, nearly all compilers are ineffective and the
resulting burden falls upon the assembly language program-
mer. A number of these issues have been discussed in [8].

A good programming model should adequately abstract
most of the programming complexity so that 20% of the ef-
fort may result in 80% of the platform utilization [16]. While
there are still some objections to a multithreaded program-
ming model [9], to-date it is widely adopted particularly with
the introduction of the Java programming language [17].

With hardware that is multithreaded with concurrent ex-
ecution and adopting a multithreaded software program-
ming model, it is possible for a kernel to be developed
that automatically schedules software threads onto hard-
ware threads. It should be noted that while the hardware
scheduling is fixed and uses a technique called token trig-
gered threading (T%) [18], the software is free to use any
scheduling policy desired.

The Sandblaster kernel has been designed to use the
POSIX pthreads open standard [19]. This provides cross
platform capability as the library is compilable across a num-
ber of systems including Unix, Linux, and Windows.

7.5. Compiler technology

There are many challenges faced when trying to develop
efficient compilers for parallel DSP technologies. At each
level of processor design, Sandbridge has endeavored to al-
leviate these issues through abstraction. First and foremost,

John Glossner et al.

11

Compilation phase

Execution phase

Exec. code
(target)

Application-specifig

executable on host
(visible to user)

Execute
the binary

F1Gure 8: Statically compiled simulation.

Compilation phase

. Execution phase

Exec. code

(target)

Application-specifid
executable on host | :
(visible to user)

Execute
the binary

FIGURE 9: Dynamically compiled simulation.

the Sandblaster processor is transparent in the architectural
sense. This proscribes that there are no visible implementa-
tion effects for the programmer or compiler to deal with [2].
This is in distinct contrast with VLIW designs where the im-
plementation strongly influences the architecture. A benefit
of a true architecture approach is that object code will exe-
cute unmodified (e.g., without any translation required) on
any Sandblaster compliant implementation.

The Sandblaster architecture uses a SIMD datapath to
implement vector operations. The compiler vectorizes C
code to exploit the data level parallelism inherent in signal
processing applications and then generates the appropriate
vector instructions. The compiler also handles the difficult
problem of outer loop vectorization

Within the architecture, there is direct support for par-
allel saturating arithmetic. Since saturating arithmetic is
nonassociative, out-of-order execution may produce differ-
ent bit results. In some wireless systems this is not permis-
sible [20]. By architecting parallel saturating arithmetic (i.e.,
vector multiply and accumulate with saturation), the com-
piler is able to generate code with the understanding that the

hardware will properly produce bit-exact results. The com-
piler algorithm used to accomplish this is described in [21].
Some hardware techniques to implement this are described
in [22].

Additionally, our compiler can also automatically gener-
ate threads. We use the same pthreads mechanism for thread
generation in the compiler as the programmer who specifies
them manually. For most signal processing loops, it is not a
problem to generate threads and the compiler will automati-
cally produce code for correct synchronization.

7.6. Tool chain generation

Figure 10 shows the Sandblaster tool chain generation. The
platform is programmed in a high-level language such as C,
C++, or Java. The program is then translated using an inter-
nally developed supercomputer class vectorizing parallelizing
compiler. The tools are driven by a parameterized resource
model of the architecture that may be programmatically
generated for a variety of implementations and organiza-
tions. The source input to the tools, called the Sandbridge

12

EURASIP Journal on Embedded Systems

Sandblaster
compiler

Binary
translator

x86
asm

Compiled
simulator

Dynamic
simulator

FIGURE 10: Tool chain generation.

architecture description language (SaDL), is a collection of
python source files that guide the generation and optimiza-
tion of the input program and simulator. The compiler is re-
targetable in the sense that it is able to handle multiple pos-
sible implementations specified in SaDL and produce an ob-
ject file for each implementation. The platform also supports
many standard libraries (e.g., libc, math, etc.) that may be
referenced by the C program. The compiler generates an ob-
ject file optimized for the Sandblaster architecture.

8. RESULTS

This section discusses the performance and power results for
the processor, the simulation and compilation performance
results, and finally full communications systems results.

8.1. Processor performance and power results

Figure 11 shows a picture of the SB3011 chip which was fab-
ricated in 90 nm TSMC technology. Highlighted are the 4
Sandblaster cores, the ARMO core, and the L2 memories. Ini-
tial samples have performed at 600 MHz at 0.9 V.

Figure 12 shows power measurements made on the ini-
tial samples for a single Sandblaster core. As described
in Section 2.5, the power modes may be programmed.
Figure 12 shows power at some typical configurations. When
the entire device is in deep sleep it consumes less than 1 mi-
crowatt of power. As you bring each core out of deep sleep to
a standby state, there is a measured range of power dissipa-
tion which on the initial samples is less than 5 milliwatts with
complete state retention. The last section of Figure 12 depicts
the linear nature of programs executing. Depending on the
core activity, the power dissipation is linear with respect to
the workload. The linear nature depicted is the result of aver-
age utilization of threads. We have measured on hardware a
range of applications. WCDMA dissipates about 75 mW per

| I'.l | e B e 1Ea} ki

TRALERIL

FiGure 11: SB3011 device layout.

75mW/core _ |
(typical app.)
I
i
I
5mW/core i
(typical) i
I
1
ST N s B :
(typical) T T T T |
" Device 'Per-core' Device' Device
deep deep standby executing
sleep sleep (all cores up)

FIGURE 12: Processor power results for a 600 MHz 0.9 V Sandblaster
device.

core (at 600 MHz 0.9 V). Other less demanding applications
such as GSM/GPRS dissipate less power.

8.2. Processor tools results

Figure 13 shows the results of various compilers on out-of-
the-box ETSI C code [20]. The y-axis shows the number of
MHz required to compute frames of speech in real-time. The
AMR code is completely unmodified and no special include
files are used. Without using any compiler techniques such as
intrinsics or special typedefs, the compiler is able to achieve
real-time operation on the baseband core at hand-coded as-
sembly language performance levels. Note that the program
is completely compiled from C language code. Since other
solutions are not able to automatically generate DSP opera-
tions, intrinsic libraries must be used. With intrinsic libraries
the results for most DSPs are near ours but they only apply to
the ETSI algorithms whereas the described compiler can be
applied to arbitrary C code.

John Glossner et al.

13

AMR encoder
(out-of-the-box C code)

700

600

500
E 400
S 300

200

0 SB [mcesx [mcex | SC140 [sC140 Blackfin

(@ AMR encoder 10 | 193 | 199 | 308 | 590

DSPs

F1GURE 13: Out-of-the-box AMR ETSI encoder C code results. (Re-
sults based on out-of-the-box C code. C64x IDE Version 2.0.0 com-
piled without intrinsics using -k -q -pm -op2 -03 -d“WMOPS = 0"
-ml0 -mv6400 flags with results averaged over 425 frames of ETSI-
supplied test vectors. C62x IDE Version 2.0.0 compiled without in-
trinsics using -k -q -pm -op2 -03 -d“WMOPS = 0” -ml0 -mv6200
flags with results averaged over 425 frames of ETSI-supplied test
vectors. Starcore SC140 IDE version Code Warrior for StarCore ver-
sion 1.5, relevant optimization flags (encoder only): scc -g -ge -be
-mb -sc -O3 —Og, other: no intrinsic used. Results based on execu-
tion of 5 frames. ADI Blackfin IDE Version 2.0 and Compiler ver-
sion 6.1.5 compiled without intrinsics using -O1 -ipa -DWMOPS =
0 —BLACKFIN with results averaged over 5 frames of ETSI-supplied
test vectors for the encoder only portion.)

Efficient compilation is just one aspect of software pro-
ductivity. Prior to having hardware, algorithm designers
should have access to fast simulation technology. Figure 14
shows the postcompilation simulation performance of the
same AMR encoder as Figure 13 for a number of DSP pro-
cessors. All programs were executed on the same 1 GHz lap-
top Pentium computer. The Sandbridge tools are capable
of simulating 24.6 million instructions per second. This is
more than two orders of magnitude faster than the nearest
DSP and allows real-time execution of GSM speech coding
on a Pentium simulation model. To further elaborate, while
some DSPs cannot even execute the out-of-the-box code in
real-time on their native processor, the Sandbridge simulator
achieves multiple real-time channels on a simulation model
of the processor. This was accomplished by using internal
compilation technology to accelerate the simulation.

8.3. Applications results

Figure 15 shows the results of a number of communica-
tions systems as a percentage utilization of a 4-core 600 MHz
SB3011 platform. Particularly, WiFi 802.11b, GPS, AM/FM
radio, Analog NTSC Video TV, Bluetooth, GSM/GPRS,
UMTS WCDMA, WiMax, CDMA, and DVB-H. A notable
point is that all these communications systems are written
in generic C code with no hardware acceleration required. It
is also notable that performance in terms of data rates and
concurrency in terms of applications can be dynamically ad-
justed based on the mix of tasks desired. For most of the sys-
tems, the values are measured on hardware from digitized RF
signals that have been converted in real-time. This includes

Simulation speed

2 (1 GHz laptop)
5 100
ks
- 10 1
£3%
238 1]
Y
o] 0.1 1
%
(==Y
= 0.01 7 —-
S
=
b= 0.001
I SB 24.639
Il T1 C64x (code composer) 0.114
071 C62x (code composer) 0.106
|@sC140 (metrowerks) 0.002
M ADI Blackfin (visual DSP) 0.013

FiGure 14: Simulation speed of ETSI AMR encoder.

100
90
£ 80 1
g 7
83 60
£8 50+
2 X 40 .
- <t
ST 30 il
8 20+ i
10 A I |
O.
2 @90 > < = S5 X 2 2z
5 B 2 E, % gi3ige & o2
=z Eé“ﬁsqnﬁ%ﬂ%-gggv &
2 Z £ 3 S 0% 24 29 bl
g R z3 RE T2
§ < Z a2
= RE
-
E
=

FiGure 15: Communication systems results as a percentage of
SB3011 utilization (4 Cores at 600 MHz).

the design of RF cards based on industry standard compo-
nents. The only exceptions are Bluetooth and DVB-H. For
these systems the RF cards are still under development.

Figure 16 shows the results of various multimedia codecs.
Note that the total MHz scale is 7% of the entire 4-core ca-
pacity. Results for QCIF (176 x 144) at 15 frames per sec-
ond (fps) and CIF (360 x 288) at 30 fps images are shown
for the H.264 decoder. For the MPEG4 decoder, out-of-the-
box (OOB) and optimized (OPT) are shown for the Foreman
clip at 30 frames per second. Noticeably, out-of-the-box per-
formance is real-time and highly efficient. This is the result
of our highly optimizing compiler which can both vectorize
and parallelize standard C code. Also, MP3 decoding results
are shown at various bit rates. A key point is that all these
applications run using less than two threads and many in a
percentage of a single thread. Since there are 32 threads in the
SB3011 implementation, a single thread consumes 3.125% of
the available processor performance.

Figure 17 shows measurements while executing either
GPRS class 14 or WCDMA at a 384 kbps bit rate. Note that
both of these applications dissipate less power than the stated
average dissipation of 75mW per core. The actual power

EURASIP Journal on Embedded Systems

14
7
H.264 Foreman QCIF at 15 fps at 60 kbps
6 - H.264 Foreman CIF at 30 fps at 215 kbps
g 5
g E MPEG4 Foreman QCIF at 15 fps at 265 kbps out of box
= MPEG4 Foreman CIF at 30 fps at 384 kbps out of box and optimize
55 4 P p: D
N
22
ERVEEE
— X
— < —
2 21
M
w
. ul
0 - T T "
H.264 dec. MPEG enc. MPEG dec. MP3 dec.
T 2c
Q O Q 33
o o
[anlas!
——
Lo

128 k/192k/224 k
/256 k/320 kbps
(44.1 MHz sample rate)

FIGURE 16: Multimedia results as a percentage of SB3011 utilization
(4 cores at 600 MHz).

dissipation is highly dependent upon workload. As an ap-
proximation it may be possible to use the average utilization
of the processor complex multiplied by the average power.
However, in practice the actual results vary significantly by
application. The SB3010 measurements refer to an earlier
version of the chip that was predominantly synthesized. The
SB3011 is a semicustom design. The software-optimized col-
umn refers to the operating system’s ability to turn off cores
and threads that are unused. This can result in significant
power savings.

9. RELATED WORK

In this section we contrast and compare our approach for
both processors and tools with other known approaches. The
Sandbridge processor design provides important power and
performance characteristics while the tools provide the capa-
bility of rapidly designing SDR systems.

9.1. Processors

Other SDR platforms include the Signal Processing on De-
mand Architecture (SODA) [23], OnDSP [4], the Embed-
ded Vector Processor (EVP) [5], the Synchronous Transfer
Architecture (STA) [6], picoArray [24], XiSystem [25], and
the MS1 reconfigurable DSP (rDSP) core [26].

SODA is a programmable SDR platform that consists of
four processor cores. Each core contains scratchpad memo-
ries and asymmetric pipelines that support scalar, 32-wide
SIMD, and address generation operations. SODA is opti-
mized for 16-bit arithmetic and features several specialized
operations including saturating arithmetic, vector permute,
vector compare and select, and predicated negation opera-
tions.

OnDSP, EVP, and STA all are VLIW architectures with
support for multiple parallel scalar, vector, memory ac-
cess, and control operations. For example, OnDSP pro-
vides 8-element vector operations that can operate in par-
allel with scalar operations. With EVP, the maximum VLIW-
parallelism available is five vector operations, four scalar op-
erations, three address updates, and loop-control. All three
architectures feature dedicated instructions for wireless com-
munications algorithms, such as FFTs and Viterbi, Reed-
Solomon, and Turbo coding. STA utilizes a machine descrip-
tion file to facilitate the generation of different hardware and
simulation models for the processor.

picoArray is a tiled architecture in which hundreds of
heterogeneous processors are interconnected using a bus-
based array. Within the picoArray, processors are organized
in a two-dimensional grid, and communicate over a net-
work of 32-bit unidirectional buses and programmable bus
switches. Each programmable processor in the array sup-
ports 16-bit arithmetic, uses 3-way VLIW scheduling, and
has its own local memory. In addition to the programmable
processors, the picoArray includes specialized peripherals
and connects to hardware accelerators for performing FFTs,
cryptography, and Reed-Solomon and Viterbi coding.

XiSystem and the MS1 rDSP core combine programma-
ble processors with reconfigurable logic to implement wire-
less communication systems. XiSystem integrates a VLIW
processor, a multicontext reconfigurable gate array, and re-
configurable I/O modules in a SoC platform. The multi-
context reconfigurable gate array enables dynamic instruc-
tion set extensions for bit-level operations needed in many
DSP applications. The MS1 rDSP core contains a reconfig-
urable logic block, called the RC Array, a 32-bit RISC proces-
sor, called mRISC, a context memory, a data buffer, and an
I/O controller. The mRISC processor controls the RC array,
which performs general purpose operations, as well as word-
level and bit-level DSP functions.

Unlike other SDR platforms, the SB3011 platform pro-
vides a fully programmable solution in which all communi-
cations systems are written in generic C code with no hard-
ware acceleration or assembly language programming. It also
is the first SDR platform to combine explicit multithread-
ing, powerful compound instructions, vector operations, and
parallel saturating arithmetic in a low-power programmable
SoC multiprocessor.

Another important aspect of the SB3011 platform is the
technique it uses to support explicit multithreading. Previ-
ous techniques for explicit hardware multithreading includ-
ing interleaved multithreading (IMT), blocked multithread-
ing (BMT), and simultaneous multithreading (SMT) [27].
With IMT [28], also known as fine grain multithreading
or horizontal multithreading, only one thread can issue an
instruction each cycle, and threads issue instructions in a
predetermined order (e.g., round-robin). With BMT [29],
also known as coarse-grain multithreading or vertical multi-
threading, instructions are executed sequentially until a long-
latency event (e.g., a cache miss) occurs. The long-latency
event triggers a fast context switch to another thread. With
SMT [30], multiple instructions may be issued each cycle

John Glossner et al. 15
GSM/GPRS class 14, 1 core WCDMA at 384 kbps, 1 of 3 cores
SB3010 SB3010 SB3010 SB3010
(i) G gy || D (mW) 1 sB3011
SW (mW) SW (mW)
Measured | optimized Measured | optimized
Core w/ L1 instances
32 KB I-cache
64 KB D mem. 150 85 45 171 130 65
Core w/o L1 instances 142 77 40 160 117 58

FIGURE 17: Application power measurements.

from multiple threads. SMT combines techniques from pre-
vious multithreaded processors and dynamically scheduled
superscalar processors to exploit both instruction-level par-
allelism and thread-level parallelism.

As discussed in Section 4, The SB3011 features a new
form of interleaved multithreading, known as token trig-
gered threading (T?). Unlike previous IMT implementations,
the T3 implementation on the SB3011 features compound
instructions, SIMD vector operations, and greater flexibil-
ity in scheduling threads. Compared to BMT, T° provides
greater concurrency since instructions from multiple threads
are executing in parallel each cycle. Compared to SMT, T3
has much less hardware complexity and power dissipation,
since the method for selecting threads is simplified, only a
single compound instruction issues each clock cycle, and de-
pendency checking and bypass hardware are not needed. The
SB3011 platform combines T? with chip multiprocessing to
provide up to 32 simultaneously executing hardware threads.

9.2. Tools

In this section, we compare our solution to other high-
performance tools solutions. Automatic DSP simulation gen-
eration from a C++-based class library was discussed in [31].
Automatic generation of both compiled and interpretive sim-
ulators was discussed in [32]. Compiled simulation for pro-
grammable DSP architectures to increase simulation perfor-
mance was introduced in [33]. This was extended to cycle
accurate models of pipelined processors in [34]. A general
purpose MIPS simulator was discussed in [35]. The ability
to dynamically translate snippets of target code to host code
at execution time was used in Shade [36]. However, unlike
Shade, our approach generates code for the entire applica-
tion, is targeted towards compound instruction set architec-
tures, and is capable of maintaining bit exact semantics of
DSP algorithms. A similar approach to ours is described in
[37].

10. SUMMARY

Sandbridge Technologies has introduced a completely new
and scalable design methodology for implementing multi-
ple communications systems on a single SDR chip. Using
a unique multithreaded architecture specifically designed to
reduce power consumption, efficient broadband communi-
cations operations are executed on a programmable plat-

form. The instruction execution in the described architecture
is completely interlocked providing software compatibility
among all processors. Because of the interlocked execution,
interrupt latency is very short. An interrupt may occur on
any instruction boundary including loads and stores; this is
critical for real-time systems.

The processor is combined with a highly optimizing vec-
torizing compiler with the ability to automatically analyze
programs and generate DSP instructions. The compiler also
automatically parallelizes and multithreads programs. This
obviates the need for assembly language programming and
significantly accelerates time-to-market for streaming multi-
mode multimedia convergence systems.

REFERENCES

[1] http://www.sdrforum.org/.

[2] G. Blaauw and E Brooks Jr., Computer Architecture: Concepts
and Evolution, Addison-Wesley, Reading, Mass, USA, 1997.

[3] B. Case, “Philips hopes to displace DSPs with VLIW;” Micro-
processor Report, vol. 8, no. 16, pp. 12-15, 1997.

[4] J. Kneip, M. Weiss, W. Drescher, et al., “Single chip pro-
grammable baseband ASSP for 5 GHz wireless LAN applica-
tions,” IEICE Transactions on Electronics, vol. E85-C, no. 2, pp.
359-367, 2002.

[5] K. van Berkel, F. Heinle, P. P. E. Meuwissen, K. Moerman,
and M. Weiss, “Vector processing as an enabler for software-
defined radio in handheld devices,” EURASIP Journal on Ap-
plied Signal Processing, vol. 2005, no. 16, pp. 2613-2625, 2005.

[6] J. P.Robelly, G. Cichon, H. Seidel, and G. Fettweis, “A HW/SW
design methodology for embedded SIMD vector signal pro-
cessors,” International Journal of Embedded Systems, vol. 1,
no. 11, pp. 2-10, 2005.

[7] J. Glossner, T. Raja, E. Hokenek, and M. Moudgill, “A multi-
threaded processor architecture for SDR,” The Proceedings of
the Korean Institute of Communication Sciences, vol. 19, no. 11,
pp. 70-84, 2002.

[8] J. Glossner, M. Schulte, M. Moudgill, et al., “Sandblaster low-
power multithreaded SDR baseband processor,” in Proceed-
ings of the 3rd Workshop on Applications Specific Processors
(WASP ’04), pp. 5358, Stockholm, Sweden, September 2004.

[9] E. A. Lee, “The problem with threads,” Computer, vol. 39,

no. 5, pp. 33—42, 2006.

J. Glossner, K. Chirca, M. Schulte, et al., “Sandblaster low

power DSP,” in Proceedings of the IEEE Custom Integrated Cir-

cuits Conference (CICC ’04), pp. 575-581, Orlando, Fla, USA,

October 2004.

B. Moyer, “Low-power design for embedded processors,” Pro-

ceedings of the IEEE, vol. 89, no. 11, pp. 1576-1587, 2001.

http://www.sdrforum.org/

16 EURASIP Journal on Embedded Systems
[12] T.Mudge, “Power: a first-class architectural design constraint,” [27] T. Ungerer, B. Robi¢, and J. Silc, “A survey of processors with
Computer, vol. 34, no. 4, pp. 52-58, 2001. explicit multithreading,” ACM Computing Surveys, vol. 35,

[13] A. Wroblewski, O. Schumacher, C. V. Schimpfle, and J. A. no. 1, pp. 29-63, 2003.

Nossek, “Minimizing gate capacitances with transistor sizing,” [28] B.]J.Smith, “The architecture of HEP,” in Parallel MIMD Com-
in Proceedings of the IEEE International Symposium on Circuits putation: HEP Supercomputer and Its Applications, J. S. Kowa-
and Systems (ISCAS ’01), vol. 4, pp. 186—189, Sydney, NSW, lik, Ed., pp. 41-55, MIT Press, Cambridge, Mass, USA, 1985.

Australia, May 2001. [29] T. E. Mankovic, V. Popescu, and H. Sullivan, “CHoPP princi-

[14] M. Borah, R. M. Owens, and M. J. Irwin, “Transistor sizing for ples of operations,” in Proceedings of the 2nd International Su-
minimizing power consumption of CMOS circuits under de- percomputer Conference, pp. 2—10, Mannheim, Germany, May
lay constraint,” in Proceedings of the International Symposium 1987.
on Low Power Electronics and Design, pp. 167-172, Dana Point, [30] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous
Calif, USA, April 1995. multithreading: maximizing on-chip parallelism,” in Proceed-

[15] S. Kim, J. Kim, and S.-Y. Hwang, “New path balancing algo- ings of the 22nd Annual International Symposium on Computer
rithm for glitch power reduction,” IEE Proceedings: Circuits, Architecture (ISCA °95), pp. 392—403, Santa Margherita Ligure,
Devices and Systems, vol. 148, no. 3, pp. 151-156, 2001. Italy, June 1995.

[16] R. Goering, “Platform-based design: a choice, not a panacea,” [31] D. Parson, P. Beatty, J. Glossner, and B. Schlieder, “A frame-
EE Times, 2002, http://www.eetimes.com/story/OEG2002091- work for simulating heterogeneous virtual processors,” in Pro-
1S0061. ceedings of the 32nd Annual Simulation Symposium, pp. 58—67,

[17] O. Silvén and K. Jyrkkd, “Observations on power-efficiency San Diego, Calif, USA, April 1999.
trends in mobile communication devices,” in Proceedings of [32] R. Leupers, J. Elste, and B. Landwehr, “Generation of inter-
the 5th International Workshop on Embedded Computer Sys- pretive and compiled instruction set simulators,” in Proceed-
tems: Architectures, Modeling, and Simulation (SAMOS ’05), ings of the Asia and South Pacific Design Automation Conference
vol. 3553 of Lecture Notes in Computer Science, pp. 142-151, (ASP-DAC99), vol. 1, pp. 339-342, Wanchai, Hong Kong,
Samos, Greece, July 2005. January 1999.

[18] M. Schulte, J. Glossner, S. Mamidi, M. Moudgill, and S. [33] V. Zivojnovic, S. Tjiang, and H. Meyr, “Compiled simula-
Vassiliadis, “A low-power multithreaded processor for base- tion of programmable DSP architectures,” in Proceedings of the
band communication systems,” in Embedded Processor Design IEEE Workshop on VLSI Signal Processing, pp. 187-196, Osaka,
Challenges: Systems, Architectures, Modeling, and Simulation, Japan, October 1995.
vol. 3133 of Lecture Notes in Computer Science, pp. 393-402, [34] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr, “LISA—
Springer, New York, NY, USA, 2004. machine description language for cycle-accurate models of

[19] B. Nichols, D. Buttlar, and J. Farrell, Pthreads Programming: A programmable DSP architectures,” in Proceedings of the 36th
POSIX Standard for Better Multiprocessing, O’Reilly Nutshell Annual Design Automation Conference (DAC’99), pp. 933—
Series, O’Reilly Media, Sebastopol, Calif, USA, 1996. 938, New Orleans, La, USA, June 1999.

[20] K. Jarvinen, J. Vainio, P. Kapanen, et al., “GSM enhanced full [35] J. Zhu and D. D. Gajski, “An ultra-fast instruction set simula-
rate speech codec,” in Proceedings of IEEE International Con- tor,” IEEE Transactions on Very Large Scale Integration (VLSI)
ference on Acoustics, Speech and Signal Processing (ICASSP *97), Systems, vol. 10, no. 3, pp. 363-373, 2002.
vol. 2, pp. 771-774, Munich, Germany, April 1997. [36] R. Cmelik and D. Keppel, “Shade: a fast instruction-set sim-

[21] V. Kotlyar and M. Moudgill, “Detecting overflow detection,” ulator for execution profiling,” Tech. Rep. UWCSE 93-06-06,
in Proceedings of the 2nd IEEE/ACM/IFIP International Con- University of Washington, Washington, DC, USA, 1993.
ference on Hardware/Software Codesign and Systems Synthesis [37] A.Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr, and

[22]

(23]

[25]

(26]

(CODES+ISSS °04), pp. 36—41, Stockholm, Sweden, Septem-
ber 2004.

P. 1. Balzola, M. Schulte, J. Ruan, J. Glossner, and E. Ho-
kenek, “Design alternatives for parallel saturating multi-
operand adders,” in Proceedings of IEEE International Confer-
ence on Computer Design: VLSI in Computers and Processors
(ICCD °01), pp. 172-177, Austin, Tex, USA, September 2001.
Y. Lin, H. Lee, M. Woh, et al., “SODA: a low-power architec-
ture for software radio,” in Proceedings of the 33rd International
Symposium on Computer Architecture (ISCA °06), pp. 89-100,
Boston, Mass, USA, June 2006.

A. Lodi, A. Cappelli, M. Bocchi, et al., “XiSystem: a XiRisc-
based SoC with reconfigurable IO module,” IEEE Journal of
Solid-State Circuits, vol. 41, no. 1, pp. 85-96, 2006.

A. Duller, G. Panesar, and D. Towner, “Parallel processing -
the picoChip way!,” in Communicating Process Architectures
(CPA °03), pp. 125-138, Enschede, The Netherlands, Septem-
ber 2003.

B. Mohebbi, E. C. Filho, R. Maestre, M. Davies, and F. J.
Kurdahi, “A case study of mapping a software-defined ra-
dio (SDR) application on a reconfigurable DSP core,” in Pro-
ceedings of the 1st IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, pp. 103—
108, Newport Beach, Calif, USA, October 2003.

A. Hoffmann, “Design innovations for embedded processors:
a universal technique for fast and flexible instruction-set ar-
chitecture simulation,” in Proceedings of the 39th Design Au-
tomation Conference (DAC’02), pp. 22-27, ACM Press, New
Orleans, La, USA, June 2002.

http://www.eetimes.com/story/OEG20020911S0061
http://www.eetimes.com/story/OEG20020911S0061

	Introduction
	SDR-based approach
	Processor background

	The SB3011 SDR platform
	DSP complex
	ARM and ARM peripherals
	External memory
	DSP peripherals
	Power management

	Sandblaster low-power architecture
	Compound instructions
	Vector encoding
	Simple instruction formats
	Low-power idle instructions
	Fully interlocked

	Low-power microarchitecture
	Multithreading
	Decoupled logic and memory
	Caches
	Pipeline
	Interlock checking hardware

	Low-power logic design
	Single write-port register files
	Banked register files
	Single-ported memories
	Minimal control signals
	Clock gating

	Low-power circuit design
	Low-voltage operation
	Minimum dimension transistors
	Delay balancing
	Logic combining and input ordering

	Sandblaster software tools
	Interpreted execution
	Statically compiled simulation
	Dynamically compiled simulation
	Multithreaded programming model
	Compiler technology
	Tool chain generation

	Results
	Processor performance and power results
	Processor tools results
	Applications results

	related work
	Processors
	Tools

	Summary
	REFERENCES

