
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2007, Article ID 24163, 16 pages
doi:10.1155/2007/24163

Research Article
High-Speed Smart Camera with High Resolution

R.Mosqueron, J. Dubois, andM. Paindavoine

Laboratoire Le2i, UMR CNRS 5158, Université de Bourgogne, Aile des Sciences de l’Ingenieur, BP 47870,
21078 Dijon Cedex, France

Received 1 May 2006; Revised 27 November 2006; Accepted 10 December 2006

Recommended by Heinrich Garn

High-speed video cameras are powerful tools for investigating for instance the biomechanics analysis or themovements of mechan-
ical parts in manufacturing processes. In the past years, the use of CMOS sensors instead of CCDs has enabled the development of
high-speed video cameras offering digital outputs, readout flexibility, and lower manufacturing costs. In this paper, we propose a
high-speed smart camera based on a CMOS sensor with embedded processing. Two types of algorithms have been implemented.
A compression algorithm, specific to high-speed imaging constraints, has been implemented. This implementation allows to re-
duce the large data flow (6.55Gbps) and to propose a transfer on a serial output link (USB 2.0). The second type of algorithm is
dedicated to feature extraction such as edge detection, markers extraction, or image analysis, wavelet analysis, and object tracking.
These image processing algorithms have been implemented into an FPGA embedded inside the camera. These implementations
are low-cost in terms of hardware resources. This FPGA technology allows us to process in real time 500 images per second with a
1280× 1024 resolution. This camera system is a reconfigurable platform, other image processing algorithms can be implemented.

Copyright © 2007 R. Mosqueron et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

The human vision presents high capacities in terms of infor-
mation acquisition (high image resolution) and information
processing (high performance processing). Nevertheless, the
human vision is limited because human’s reactions to a stim-
ulus are not necessarily instantaneous. The human vision
presents spatial and temporal resolution limitations. More
precisely, the human vision temporal resolution is close to
100 milliseconds [1]. Moreover, the fast information storage
capacity of the human system is difficult to evaluate. On the
other hand, the human vision system is very performant in
terms of image analysis which extracts relevant information.
In the last few years, technical progresses in signal acquisition
[2, 3] and processing have allowed the development of new
artificial vision system which equals or overpasses human ca-
pacities. In this context, we propose to develop a new type
of smart camera. The three following constraints have to be
considered: a fast image acquisition, images with high resolu-
tion, and real-time image analysis which only keeps necessary
information.

In the literature, either high-speed cameras without em-
bedded image processing [3] or low-speed smart cameras are
presented [4] but we never can find high-speed smart cam-
eras.

Therefore, we propose to develop a new concept of smart
camera. In this way, for the last fifteen years, our labora-
tory has worked in high-speed video system areas [5, 6]
and has obtained results for biological applications like real-
time cellular contractions analysis [7] and human move-
ment analysis [8]. All these developments were made us-
ing CCD (charge-coupled device) imaging technology from
Fairchild and FPGA (field-programmable gate array) tech-
nologies from Xilinx [9]. The main goal of our system was to
provide, at a low price, high-speed cameras (500 images per
second) using standard CCD devices in binningmode, with a
preprocessing FPGA module connected to a PC-compatible
computer. As well as these high-speed camera developments,
our laboratory has worked, during these last years, on smart
cameras based on standard CMOS (complementary metal-
oxide-semiconductor) sensors (25 images per second) and
on FPGA technology dedicated to embedded image process-
ing. In the past five years, the use of CMOS sensors instead of
CCDs has enabled the development of industrial high-speed
video cameras which offer digital outputs, readout flexibility
and lower manufacturing costs [10–12].

In our context, fast images present a video data rate close
to 6.55Gbits, this corresponds to 500 images per second
with a 1.3 Mpixel resolution. In this high-speed acquisition

2 EURASIP Journal on Embedded Systems

context, according to us, the main feature is the huge data
flow provided by the sensor output which can represent a
major constraint for the processing, the transfer, or the stor-
ing of the data. The embedded processings must be adapted
to this high-speed data flow and they represent the main core
of the high-speed smart camera. The embedded processings
enable real-time measurements, such as the fast marker ex-
traction, to be obtained. In the marker extraction applica-
tion, the output flow is considerably reduced, therefore the
transfer and storing of result are simple. On the contrary, if
the output flow is not reduced, then an adapted data inter-
face should be selected. In any case, the data are temporar-
ily stored in a fast RAM (random access memory) memory
(local or external). The RAM is size-limited, therefore the
recording time is only a few seconds long. Our strategy is to
propose a compression mode to perform longer sequences
and simplify the transfer. The compression can be applied
either on the processed images or on the original ones. In
this paper, we only present a compression applied on im-
ages which have not been processed. The targeted applica-
tions are observations of high-speed phenomenon for which
fast acquisitions are required. Depending on the compres-
sion quality and the precision of the measurement required,
an offline processing can be done on the compressed im-
age sequences. In order to optimize the performances of the
image compression, we compared different compression al-
gorithms in terms of image quality, time computation, and
hardware complexity. First, we compared some algorithms
with low hardware complexity like run-length encoding or
block coding. Then, as these first compression algorithms are
poor in terms of compression ratio, we studied some famous
compression algorithms like JPEG, JPEG2000, and MPEG4.
This study allowed us to show that a modified and simplified
JPEG2000 approach is well adapted to the context of real-
time high-speed image compression.

Likewise, in order to implement real-time marker extrac-
tion algorithms which are compatible with high-speed image
data rate, we used simple image segmentation algorithms.
Our camera allows us to record fast image sequences directly
on the PC to propose fast real-time processing such as the
fast marker extraction.

This paper is organized as follows. Our high-speed cam-
era is described in Section 2. The studied image compres-
sion algorithms and their implementations are presented and
compared in Section 3. Then, the studied image processing
algorithms applied to fast marker extraction are introduced
in Section 4. In this section we show a biomechanics applica-
tion example. In order to compare our system’s performances
to some other smart camera, we outline our specifications in
Section 5. Finally, in Section 6, we conclude our paper and
give some perspectives of new developments.

2. HIGH-SPEED SMART CAMERA DESCRIPTION

In order to design our high-speed smart camera, some con-
straints had to be respected. The first one was of course high-
frequency acquisition as well as embedded image processing.
Then, some other important specifications had to be taken

into account such as low price, laptop, and industrial PC
compatiblity. In the literature, most of the high-speed cam-
eras are designed either with embedded memory or using
one or several parallel outputs such as a camera link con-
nected to a specific interface board inserted in the PC. In or-
der to record long sequences, the capacity of the embedded
memory has to be large, and thus the price is growing. In this
paper, we propose a new solution which combines advan-
tages of fast imaging and smart processing without the use of
embedded memories. Fast video data output is transferred
directly to the PC using a fast standard serial link which
avoids the use of a specific board, and thus the full image se-
quences are stored in the PC memories. This solution makes
the most of the continuous progress of PC technologies, in
particular memories capacities.

In this section, we describe the different blocks of our
high-speed camera and we explain the choices of different
components that we used: fast image acquisition using high-
speed CMOS sensor from Micron [13] and embedded real-
time image processing using FPGA from Xilinx. Finally, at
the end of this section, we present the full high-speed smart
camera architecture, and in particular the interface choice
dedicated to high-speed video data transfer.

2.1. Image acquisition using a high-speed
CMOS sensor

Nowadays, in the context of fast imaging, CMOS image
sensors present more and more advantages in comparison
with CCD image sensors that we will summarize hereafter
[14, 15].

(i) Random access to pixel regions: in CMOS image sen-
sors, both the detector and the readout amplifier are
part of each pixel. This allows the integrated charge
to be converted into a voltage inside the pixel, which
can then be read out over X-Y wires (instead of using
a charge shift register like in CCDs). This column and
row adressibility is similar to common RAM and al-
lows region-of-interest (ROI) readout.

(ii) Intrapixel amplification and on-chip ADC (analogic-
digital converter) produce faster frame rates.

(iii) No smear and blooming effects: CCDs are limited by the
blooming effect because charge shift registers can leak
charge to adjacent pixels when the CCD register over-
flows, causing bright lights. In CMOS image sensors,
the signal charge is converted to a voltage inside the
pixel and read out over the column bus, as in a DRAM
(dynamic random access memory). With this architec-
ture, it is possible to add an antiblooming protection in
each pixel. Smear, caused by charge transfer in a CCD
under illumination, is also avoided.

(iv) Low power: CMOS pixel sensor architectures con-
sume much less power—up to 100 x less power—than
CCDs. This is a great advantage for portable high-
speed cameras.

Taking these advantages in consideration, we used the
MTM9M413 high-speed CMOS image sensor from Micron

R. Mosqueron et al. 3

Figure 1: CMOS imager.

in order to design our high-speed camera. The main features
of this image sensor are described as follows and illustrated
in Figures 1 and 2:

(i) array format: 1280× 1024 (1.3 megapixels);
(ii) pixel size and type: 12mm × 12mm, TrueSNAP

(shuttered-node active pixel), monochrome, or color
RGB;

(iii) sensor imaging area: H: 15.36mm, V: 12.29mm, diag-
onal: 19.67mm;

(iv) frame rate: 500 images per second at full-size frame
(1280 × 1024), ≥ 10 000 images per second at partial-
size frame (1280× 128);

(v) output: 10-bit digital through 10 parallel ports (ADC:
on-chip, 10-bit column-parallel);

(vi) output data rate: 660 Mpixel/s (master clock 66MHz
500 images per second);

(vii) dynamic range: 59 dB;
(viii) digital responsitivity: monochrome: 1600 bits per lux-

second at 550 nm;
(ix) minimum shutter exposure time: 100 nanoseconds;
(x) supply voltage: +3.3V;
(xi) power consumption:≺ 500mW at 500 images per sec-

ond.

2.2. Image processingwith an FPGA device

The used high-speed image sensor delivers, in a pipeline
dataflow mode, 500 images per second with a 6.55Gbits per
second data rate. In order to manage this dataflow, it is nec-
essary to add inside our camera a processor able to treat in
real time these informations. Some solutions are conceivable
and one of them is the use of FPGA.

2.2.1. FPGA advantages for real-time image processing

The bulk of low-level image processing can be split into two
types of operations. The first type of operation is where one
fixed-coefficient operation is performed identically on each
pixel in the image. The second type of operation is neighbor-
hood processing, such as convolution. In this case, the result
that is created for each pixel location is related to a window of

pixels centered at that location. These operations show that
there is a high degree of processing repetition across the en-
tire image. This kind of processing is ideally suited to a hard-
ware pipeline implemented in FPGA, that is able to perform
the same fixed mathematical operation over a stream of data.

FPGAs, such as the Xilinx Virtex-II series, provide a large
two-dimensional array of logic blocks where each block con-
tains several flip-flops and lookup tables capable of imple-
menting many logic functions. In addition, there are also re-
sources dedicated to multiplication andmemory storage that
can be used to further improve performance. Through the
use of Virtex-II FPGAs, we can implement image-processing
tasks at very high data flow rates. This allows images to be
processed from the sensor with full resolution (1280× 1024)
at 500 images per second. These functions can be directly
performed on a stream of camera data rate as it arrives with-
out introducing any extra processing delay, significantly re-
ducing and, in some cases, removing the performance bot-
tleneck that currently exists. In particular, the more complex
functions such as convolution can be mapped very success-
fully onto FPGAs. The whole convolution process is amatrix-
multiplication and as such requires several multiplications to
be performed for each pixel. The exact number of multipli-
ers that are required is dependent on the size of the kernels
(window) used for convolution. For a 3 × 3 kernel, 9 mul-
tipliers are required and for a 5 × 5 kernel, 25 are required.
FPGAs can implement these multipliers. For example, with
the one-million-gate Virtex-II, 40 multipliers are available
and in the eight-million-gate part, this number increases to
168.

2.2.2. Main features of the used FPGA

Taking into account the image data rate and image resolution
we selected a VIRTEX-II XC2V3000 FPGA fromXilinx which
has the following summarized specifications:

(i) 3 000 000 system gates organized in 14 336 slices
(15 000 000 transistors);

(ii) 96 dedicated 18-bit× 18-bit multipliers blocks;
(iii) 1728Kbits of dual-port RAM in 18Kbit SelectRAM re-

sources, 96 BRAMs (block RAM);
(iv) 720 I/O pads.

2.3. High-speed camera system

Our high-speed camera system is composed of three boards
as shown in Figure 3.

As illustrated in Figure 4, the first board contains the
CMOS image sensor and is connected to the FPGA board.
This second board has three functions. The first function is
the CMOS sensor control, the second function is the real-
time image compression, and the third function corresponds
to real-time image processing such as edge detection, track-
ing, and so on. The role of the third board (interface board)
is to control, using the USB 2.0 [16] protocol, the image real-
time transfer between the FPGA board and the PC computer.

4 EURASIP Journal on Embedded Systems

TX N
PG N

Row 10

LogicRST

RowSTRT

RowDone

Data shift/
read

R
ow

de
co
de
r

R
ow

dr
iv
er

Row
timing
block

SRAM
read

control

Sample

Shift

Pixel array

S/H

ADC
no. 1

ADC
no. 2

ADC
no. 1280

1280� 10 SRAM
ADC register

1280� 10 SRAM
output register

Column decoder

10� 10
Sense amps

Output ports

Pads

� � �

Figure 2: CMOS imager.

The USB 2.0 has the main advantage of being present on any
standard PC and also permits the connection of the camera
to a PC without any frame grabber. The USB 2.0 features
are fully compatible with our results on the targeted appli-
cations.

2.4. High-speed camera implementation

We propose to separate high-speed imaging applications into
two classes. The first class regroups applications that do not
require real-time operations, for instance offline image pro-
cessing or a visualization of recorded sequences that repre-
sents a high-speed phenomenon. The second class regroups
applications that require online operations like high-speed
feature measurements (motion, boundaries, marker extrac-
tion). Therefore, for this second class, most of the time, the
camera output flow is considerably reduced.

With our camera design, FPGA embedded solutions are
proposed to match with the two presented classes’ features.
In any case, both solutions must deal with the main feature
of high-speed imaging: the important data bandwidth of the
sensor’s output (in our case, up to 660 Mpixels per second),
which corresponds to the FPGA’s input data flow.

For the first class application, we propose a solution
based on an embedded compression (Section 2). With a
data compression, the output bandwidth can be obviously
reduced, therefore the data can be easily transferred. The
compression choice should be defined to match to output
feature (Section 3.1). To demonstrate online capacities of
our camera, feature extraction processing has been imple-
mented (Section 4). As the first class is, the measurement is
performed at the highest frequency of sensor data output.
Hence, the embedded solutions must achieve real-time pro-

cessing on this large input data flow, moreover the hardware
resource should be minimized.

Consequently, some image processing, compression and
feature extraction, has been implemented taking into ac-
count the required performances and the hardware resource
available. In the following sections, two implementation ex-
amples are described, one for each class of applications: an
embedded compression and a real-time marker extraction.
The algorithm selection has been done using hardware con-
siderations.

3. EMBEDDED IMAGE COMPRESSION

The compression type, lossless or lossy, is connected to the
application’s features. For instance, the observation of an-
imal movements can require lossless or lossy compression.
A biologist, who focuses on a mouse’s behavior does not
need images showing the animal’s precise movement. On the
contrary, if the biologist needs precise measurement on the
movement of the mouse’s legs, he may need to track precisely
the markers. Therefore, an image sequence with a lossless
compression may be more relevant. A selection of the lossy
compression would limit the number of applications, never-
theless it would have advantage in terms of compression rate
than in words of data flow.

With our proposed compression, full-resolution images
can be transferred up to 500 frames per second using a simple
USB 2.0 connection.

3.1. Compression algorithms

The high-speed CMOS image sensor delivers images with
a pixel data rate of 1280 × 1024 pixels × 500 images per
second = 655 Mpixels/s. Each pixel is coded on 10 bits, thus
the bit data rate is 655× 10 = 6.55Gbits/s.

R. Mosqueron et al. 5

(a) Camera view

FPGA board

CMOS sensor board Interface board

(b) Internal camera view

JTAG

USB 2

SCSI (test)

Power

(c) Interface view

Figure 3: High-speed camera system.

As described previously, information is sent from our
high-speed camera to a PC computer through a USB 2.0 link,
and this with a peak data rate of 480Mbits/s. We have ob-
tained an average transfer rate equal to 250Mbits/s. In our
case, to transfer data at the sensor’s full speed, the data must
be compressed with a compression ratio at least equal to
(6.55Gbits/s)/(250Mbits/s) = 26.2.

Two main approaches are used in compression algo-
rithms: lossless compression and lossy compression. The
main goal of lossless compression is to minimize the num-
ber of bits required to represent the original image samples
without any loss of information. All bits of each sample must
be reconstructed perfectly during decompression. Some fa-
mous lossless algorithms based on error-free compression
have been introduced like the Huffman coding [17] or LZW
coding [18]. These algorithms are particularly useful in im-
age archiving, for instance in the storage of legal or medi-

CMOS
sensor

Sensor
board

FPGA
board

Interface
board

FPGA USB
interface

PC
Control

100 bits

Control

8 bits

EEPROM
prog.
FPGA

Figure 4: High-speed camera system principle.

Lossy compression
15 : 1

Lossless compression
2 : 1Original

image
Compressed

image

Figure 5: Compression synoptic.

cal records. These methods allow an image to be compressed
and decompressed without losing information. In this case,
the compression ratio is low (ranges from 2 : 1 to 3 : 1).

Lossy compression algorithms result in a higher com-
pression ratio, typically from 10 : 1 to 100 : 1 and even
more. In general the more the compression ratio is high,
the more the image quality is low. Some famous methods,
designed for multimedia applications, have been also intro-
duced like JPEG, JPEG2000, MPEG2, MPEG4, and so forth.
These methods are based on spatiotemporal algorithms and
use different approaches like predictive coding, transform
coding (Fourier transform, discrete cosine transform, or
wavelet coding).

Our compression method choice is based on two main
constraints. The first one concerns the real time considera-
tion: how to compress 500 images/s in real-time? The second
constraint is related to the image quality, our goal in this case
is to compress and to decompress images in order to obtain
a PSNR1 greater than 30 dB. For real-time consideration, the
compression process is implemented into the FPGA device
and the decompression process is operated using a PC after
the image sequence has been recorded.

As shown in Figure 5, we combine lossless compression
and lossy compression. The used lossless compression, based
on the Huffman algorithm, gives a compression ratio close
to 2 : 1. So the lossy compression has to obtain a compres-
sion ratio close to 15 : 1. In order to accomplish this tar-
get, we studied five lossy compression algorithms: block cod-
ing, one-dimensional run-length coding, JPEG, JPEG2000,

1 PSNR means peak signal-to-noise ratio and is calculated as PSNR =
10 log10((2

B − 1)2/MSE), where B represents the number of bits in the
original image. MSEmeans mean square error and is calculated as MSE =
(1/Npixels)

∑
x,y(f (x, y)−g(x, y))2, where Npixels is the number of pixels

in the image, f (x, y) and g(x, y) are, respectively, the grey levels of orig-
inal and processed images at x, y coordinates. Reconstructed images are
obtained after a compression-decompression process.

6 EURASIP Journal on Embedded Systems

8 pixels

4� 4
2� 2 2� 2

2� 2 2� 2

4� 4 4� 4

8 pixels

2 pixels

2 pixels

P(1, 1)

P(2, 1)

P(1, 2)

P(2, 2)

Figure 6: Block coding principle.

MPEG4 and we present our low-cost compression imple-
mentation based on wavelet coding using lifting scheme. We
describe and compare these algorithms hereafter.

3.1.1. Block coding

This compression method consists of processing the image
with an n×n pixels window. For each n×n pixels window, we
test the uniformity of the pixels. Considering the algorithm’s
results, an 8×8 window has been selected. If the uniformity is
not verified, we divide this window into 4×4 and 2×2 pixels
subwindows and we test again the uniformities inside these
subwindows. In Figure 6, we give an example of this method.
If we consider the 4 pixels P(1, 1), P(1, 2), P(2, 1) and P(2, 2)
in the 2 × 2 pixels window, we can compute the following
operations:

Pmoy = P(1, 1) + P(1, 2) + P(2, 1) + P(2, 2)
4

,

if P(i, j) ≤ Pmoy, then

⎧
⎨

⎩

Diff(i, j) = Pmoy − P(i, j),

Sign = 0,

(1)

if P(i, j) > Pmoy, then

⎧
⎨

⎩

Diff(i, j) = P(i, j)− Pmoy,

Sign = 1,

with i, j = 1, . . . , 2.

(2)

The obtained code is Pmoy, Diff(1, 1), Diff(1, 2),
Diff(2, 1), Diff(2, 2), Sign(1, 1), Sign(1, 2), Sign(2, 1),
Sign(2, 2).

As each of the original pixels P(1, 1), P(1, 2), P(2, 1), and
P(2, 2) is coded on 10 bits, the 2×2 original pixels subwindow
contains 40 bits. If we code Pmoy on 10 bits, Diff on 2 bits, and
Sign on 1 bit, the size of the obtained code is (1× 10) + (4×
2) + (4 × 1) = 22 bits and the theoretical compression ratio
is 40/22 = 1.81.

3.1.2. One-dimensional run-length coding

In this method, we consider the variations between neigh-
bor pixels on the same image line. If the variations between
neighbor pixels are small, wemerge these pixels into the same
segment with a unique reference grey-level value. Figure 7 is
an illustration of this method. For each pixel, we execute the

0

g

gi

e r1

r2

e

r3 e

r4
e

r5
e

Pixel no.
0 i n� 1

Original sampling
Obtained new sampling

gi:

r j :
e:
n:

Grey level of the pixel no.i

Grey level of the reference pixel no. j
Error range
Number of pixels per line (1280 here)

Figure 7: One-dimensional run-length coding principle.

following tests:

if r j − e ≤ gi ≤ r j + e, then

⎧
⎨

⎩

pixel(i) merges with r j ,

else r j = gi,

(3)

with gi the current grey-level pixel, r j the grey-level reference
of the jth segment, and e the error range.

The obtained code is r1,n1, r2,n2, . . . , rNseg ,nNseg with nj

the jth segment size and Nseg the segments number detected
on the current image line.

If we code the reference pixels (r j) on 10 bits and the seg-
ment size (nj) on 5 bits, the compression ratio for an n-pixel

image line (here 1280) is (10×n)/
∑Nseg

j=1(10+ 5). This ratio is
variable in function of the image’s content; the more the im-
age contains high variations, the more this compression ratio
is low.

3.1.3. JPEG compression

The principle of the JPEG algorithm [19, 20] for grey-level
images is described (for color image, a similar algorithm is
applied on each chrominance components) in the following
section. The image is split into blocks of 8 × 8 pixels. A lin-
ear transform, DCT (discrete cosine transform) is applied on
each block. The transform coefficients are quantified with a
quantization table defined in JPEG normalization [20]. The
quantization step (or truncation step) is equal to a bit reduc-
tion of the samples. This is the main lossy operation of the
whole process (see Figure 8).

The entropy coding is the next processing step. The en-
tropy coding is a special form of lossless data compression.
It involves arranging the image components in a “zigzag” or-
der employing a run-length encoding (RLE) algorithm that
groups similar frequencies together, inserting length-coding
zeros, and then using statistic coding on what is left. The

R. Mosqueron et al. 7

Original
image

DCT 8� 8 Quantization Statistic
codage

Compressed
image

Table

Figure 8: Synoptic JPEG.

Original
image

Color
transform

DWT Quantization

Statistic
codage

Rate
allocation

Compressed
image

Figure 9: JPEG2000 synoptic.

statistic coding is generally a Huffman coding or an arith-
metic coding.

The JPEG compression reaches high performances. Us-
ing a compression rate of less than 30, a high-quality image
is obtained. Nevertheless, for a higher compression rate, a
block effect is appearing.

3.1.4. JPEG2000 compression

The JPEG2000 compression [20, 21] is not only more effi-
cient than JPEG compression, it also introduces new func-
tionalities. The JPEG2000 permits the gradual transfer of im-
ages, regions-of-interest coding, and a higher errors robust-
ness. The JPEG2000 codec is presented in Figure 9.

The essential processing steps are the color transform,
DWT (discrete wavelet transform), the quantization, the en-
tropic coding, and the rate allocation. The color transform
is optional. In JPEG2000, the 2D DWT based on Mallat’s re-
cursive algorithm is applied on each tile or on the full frame
[22]. The result is a collection of subbands which represent
several approximation scales. These coefficients are scalar-
quantized, giving a set of integer numbers which have to be
encoded bit by bit. The encoder has to encode the bits of
all the quantized coefficients of a code block, starting with
the most significant bits and progressing to less significant
bits by a process called the EBCOT (embedded block cod-
ing with optimal truncation) scheme [23]. The result is a bit
stream that is split into packets, where a packet groups se-
lected passes of all codeblocks from a precinct into one in-
divisible unit. Packets are the key to quality scalability (i.e.,
packets containing less significant bits can be discarded to
achieve lower bit rates and higher distortion).

3.1.5. MPEG4 compression

The MPEG4 standard is one of the most recent compres-
sion codings for multimedia applications. This standard has
been developed to extend capacities of the earlier standard
(as MPEG1, MPEG2) [24, 25]. The fundamental concept in-
troduced by MPEG4 is the audiovisual objects concept. A

Shape
coding

Motion
estimation

Pred. 1

Pred. 2

Pred. 3

Frame
store

Sw
itch

IDCT

Q�1

DCT Q

Motion-
texture
coding

Video
multiplex

+

+
+

Figure 10: MPEG4 synoptic.

video object is represented as a succession of description lay-
ers, which offers a scalable codage. This feature permits to re-
construct the video with optimal quality with respect to the
constraints of the application, the network, and the terminal.
An MPEG4 scene is constituted by one or several video ob-
jects characterized temporarily and spatially by their shape,
texture, and movement. Figure 10 represents the MPEG4 en-
coder.

As in JPEG standard, the first two processing steps are
DCT and quantization. The quantization level can be fixed
or set by the user. The output coming from the quantization
function is further processed by a zigzag coder. A temporal
compression is obtained with themotion estimation. Indeed,
the motion estimation’s goal is to detect the differences be-
tween two frames. The motion estimation algorithm is based
on mean absolute difference (MAD) processing between two
image blocks (8× 8 or 16× 16) extracted from two consecu-
tive images.

3.2. Comparison and analysis for
embedded compression

The performance comparison of the compression algorithms
[26] is not an easy task. Many features should be consid-
ered such as compression rate, image quality, time process-
ing, memory quantity, and so forth. Moreover these features
are linked together, for instance, increasing the compression
rate can reduce the image quality.

In the previous sections, several types of compression
have been described, as well as their performances in terms of
compression rate. Indeed, to be efficient for high-speed ap-
plications, we need to select a compression with a compres-
sion rate greater than 30. The RLE coding and block cod-
ing must be associated with other compressions to reach our
requirements. The three standard compressions respond to
our application’s requirements. The image quality must be
considered taking into account the applications and the pa-
rameter settings (e.g., the selected profile in MPEG4). Any-
way, all of the presented compressions can offer high im-
age quality (e.g., PNSR > 25). In term of image quality,

8 EURASIP Journal on Embedded Systems

JPEG2000 obtains better performances than JPEG for high
compression rates. The MPEG4 codage appears to be well
adapted to applications with a low-motion background.
These three compressions present the advantage of being
standard codages, moreover, all of their functionalities are
optional and do not need to be implemented (gradual im-
age transfer).

For a defined application, the compression rate and the
image quality are not the only parameters to take into ac-
count when selecting an algorithm for hardware implemen-
tation. The choice should also consider hardware resource re-
quirements and the processing time. Considering the high-
speed imaging constraint, we have chosen the compression
algorithm and the proposed hardware implementation. The
main difficulty is the large bandwidth and the large input
data flow (660 Mpixels/s and 10 parallel pixels). We propose
to focus on an implementation based on an FPGA compo-
nent.

Three significant hardware implementations of famous
image compression standards (JPEG, JPEG2000, MPEG4)
are then presented as starting point to the implementation
analysis. These methods are based on spatiotemporal algo-
rithms and use different approaches like predictive coding,
transform coding (Fourier transform, discrete cosine trans-
form, or wavelet coding). First of all, these implementations
perform a compression on the video stream at high fre-
quency. The JPEG, JPEG2000, and MPEG4 IPs (intellectual
property) can process, respectively, 50, 13, and 12 MPixels
per second [27–29]. The hardware resource cost is very high,
particularly for JPEG2000 andMPEG4 implementations. In-
deed, the three standard implementations require, respec-
tively, 3034, 10800, and 8300 slices with a serial pixel access.
Moreover, nearly all these IPs require external memory.

These processing performances do not match with high-
speed constraints (660 Mpixels per second = 66MHz × 10
pixels). Our 10-pixel access at each cycle can be a solution
to increase performances, nevertheless a parallel processing
of the 10 pixels is not an easy task. Indeed, the spatiotem-
poral dependency does not permit the splitting of data flow
between several IPs, the IP must be modified to deal with
the input data flow and it improves the output throughput.
Obviously, the hardware resource cost will then increase. We
propose to restrict the implementation by integrating only
parts of the standard compression.

The DCT or the DWT, the quantization associated with
coding, and the motion estimation represent crucial parts
of the three standards. Unfortunately, their implementations
are also expensive in terms of hardware resources. For in-
stance, the DCT and the motion estimation are the most
time-consuming steps in MPEG4 standard implementation,
therefore many hardware accelerators are still currently pro-
posed [30–32]. Other partial implementations focus on
hardware resources reduction, such as a partial JPEG2000
[33]. In this design, the entropy encoder has not been imple-
mented, therefore the complexity is reduced to 2200 slices.
Nevertheless, the processing frequency is still not sufficient
(33 Mpixels/s), hence the input flow constraint does not
match.

Table 1: Comparison of compression implementation. P = parallel
data flow, S = serial data flow, RLE = run-length encoding, BC =
block coding, Huff =Huffman encoding.

Compression
IP

Input
flow

Slices/BRAM Freq. Mpix/s
External
memory

JPEG S 3034/2 50 No

Part. JPEG2000 S 2200/0 33 Yes

JPEG2000 S 10 800/41 13 Yes

MPEG4 S 8300/21 12 Yes

1D10P-DWT
+RLE

P 2465/9 130 No

1D10P-DWT
+BC +Huff

P 3500/17 660 No

We have focussed on reducing flexibility to reach a solu-
tion with a low cost in terms of hardware resources, that of
course matches the input flow requirements. This solution is
based on a 1D discrete wavelet transform. Therefore, no ex-
ternal memory is required, indeed a 1D transform can be ap-
plied directly on the input data flow. This original implemen-
tation permits to process at each cycle 10 pixels in parallel
(1D 10P-DWT).We propose two implementations where the
wavelet coefficients are, respectively, compressed with RLE,
and with an association of block coding and Huffman cod-
ing. The second implementation reaches the 660 Mpixel/s.
Their performances and the hardware resource cost for the
two implementations are reported in Table 1. The full de-
scription and quality image are discussed in the next section.

3.3. Embedded compression for high-speed imaging

3.3.1. Wavelet coding using lifting scheme

This compression approach uses the wavelet theory, which
was first introduced by Grossmann andMorlet [34], in order
to study seismic reflexion signals in geophysics applications,
and it was then applied to sound and image analyses. Many
authors proposed different wavelet functions, and some of
them have very interesting applications for multiresolution
image analysis [22].

The advantage of wavelet transform coding for image
compression is that resulting wavelet coefficients decorrelate
pixels in the image, and thus can be coded more efficiently
than the original pixels. Figure 11 is an illustration of a 1D
wavelet transformation with 3 levels of decomposition. The
original image histogram shows that grey-level distribution
is relatively large (ranges from 0 to 255), while the wavelet
coefficients histogram is thinner and centered on the zero
value. Using this property, wavelet coefficients can be coded
with better efficiency than the pixels in the original image.
The 1D 10P-DWT implementation and two associated com-
pressions are described in the next section. Nevertheless, as
a comparaison point with standard compression implemen-
tations, their performances and hardware requirements are
reported in Table 1.

R. Mosqueron et al. 9

Original image input

Grey-level histogram
of original image

Grey-level histogram
of image output

Image output

LS 1D
LS 1D

LS 1D

Detail-level 1

Detail-level 2

Detail-level 3

Approx.-level 3

0 100 200 300
0

100
200
300
400
500
600
700
800
900

0 100 200 300
0

500
1000
1500
2000
2500

3000

Figure 11: Wavelet pyramidal algorithm.

Image
input

Split

Odd pixels

Even pixels

1/2

z�1

z�1

1/4

Predict Update

Image
details

Image
approximation

�

�

+

+

�

+

Figure 12: LS-1D algorithm.

3.3.2. Wavelets’ preprocessing and compression

In order to implement a wavelet transform compatible with
hardware constraints, we use the lifting-scheme approach
proposed by Sweldens [35]. This wavelet transform imple-
mentation method is described in Figure 12 where we con-
sider the original-image pixels in a data-flow mode (in a 1D
representation).

The one-dimensional lifting-scheme (LS 1D) approach
is decomposed into three main blocks: split, predict, and up-
date. The split block separates pixels into two signals: odd
pixels and even pixels. The predict and update blocks are
simple digital first-order FIR filters which produce two out-
puts: image details (wavelet coefficients) and image approxi-
mation. The image approximation is used in the next LS 1D
stage. For this camera, the width of data flow is 10 pixels
width and the IPs that we designed are based on it.

The CMOS image sensor send 10 pixels simultaneously,
and therefore a real-time parallel processing is necessary. For
this, the 10 pixels are split into five odd pixels and five even
pixels (Figure 13). For the odd pixel, we designed the IP1 and
for the even the IP2. These two IPs are based on the same
principle of LS 1D [36, 37]. For the IP1, the central pixel is
the odd pixel and we use the two neighbor even pixels with
the appropriate coefficients (Figure 14). For the IP2, the cen-

Sensor
data

Split
10

pixels

DetailOdd
pixel IP1

Even
pixel

IP2
Approx.

DetailOdd
pixel IP1

Even
pixel

IP2
Approx.

DetailOdd
pixel

IP1

Even
pixel IP2

Approx.

DetailOdd
pixel IP1

Even
pixel IP2

Approx.

DetailOdd
pixel IP1

Even
pixel IP2

Approx.

Figure 13: Split 10-pixel IP.

tral pixel is the even pixel and we use the two neighbors odd
pixel and the two neighbors even pixels with the appropriate
coefficients (Figure 15). For each process, we have five detail
pixels and five approximation pixels in the same time. In our
case, a pyramidal algorithm is described where three LS 1D
blocks are cascaded, and this gives a wavelet transform with
three coefficients levels. The same operation is operated for
each level. The approximation pixels are processed 5 by 5,
and then a 10-pixel word is formed to be used at next level.

In implementation, we have four outputs, three for the
detail level and one for the approximation level. The four
outputs are not synchronous as a result of the cascade of

10 EURASIP Journal on Embedded Systems

Detail
pixelOdd

pixel

IP1

�1/2

Even
pixel

Even
pixel

�

�

� +

�1/2

1

Figure 14: Detail IP.

Approximation
pixel

IP2

Even
pixel

Odd
pixel

Even
pixel

Odd
pixel

Even
pixel

�

�

� +

�

�

�1/8

1/4

3/4

1/4

�1/8

Figure 15: Approximation IP.

LS 1D blocks. Therefore, four FIFO (first-in first-out) mem-
ories are used to store the flow. The transform image is gen-
erated row by row, hence the FIFO memory’s readout is se-
quential. Two memory banks are implemented. One bank
is filled with the current row simultaneously, the second is
readout. Therefore, eight FIFO memories are required. The
hardware resources for the 3 levels are 1465 slices (10% of
the selected FPGA’s slices), and 8 BRAMs (8% of the selected
FPGA’s BRAMs).

A compression is then applied on the wavelet coefficients.
We have implemented two types of compressions which are
adapted to the important data flow and the nature of the
wavelet codage.

The first method consists in using a threshold and then
applying an RLE coding for detail pixels. The approximation
pixels are not modified. Online modification of the threshold
is possible. As we have seen in Section 3.3.1, the wavelet co-
efficient histogram is thinner and centered on the zero value.
With the thresholding, the values close to zero are replaced by

FIFO + reformating

Huffman coding

8� 8 block of
wavelet coefficients
binary plane

Output

TU TU TU TU

.. .

Figure 16: (1D10P-DWT + BC +Huffman) synoptic.

zero. The number of consecutive zeros is therefore high. The
RLE coding is then very efficient as the implementation is.
Indeed, the thresholding can be applied on five parallel sam-
ples. The five resulting samples are transferred to the RLE
block. If the block is not homogeneous and equal to zero, the
previous chain is then closed and transferred. The nonequal
resulting coefficients are transferred one by one, then as soon
as possible, a new chain is started. In this configuration, we
obtain a maximum of 7 : 1 compression rate with an accept-
able PSNR (30 dB). This wavelet and compression have been
implemented (1D 10P-DWT+RLE) in the FPGA and require
2465 slices (17% of the selected FPGA’s slices) and 9 BRAMS
(9% of the selected FPGA’s BRAMs). This solution does not
permit a compression rate superior than 26 to be obtained,
therefore, we propose a more efficient solution but it requires
more hardware resources.

The second proposed compression is based on block cod-
ing method. The thresholding is still applied on wavelet co-
efficients in order to eliminate low values, and these resulting
coefficients are coded. This compression method consists of
processing the image with an n × n pixel window. A win-
dow size of 8 × 8 pixels is selected, taking into account the
hardware resources and the algorithm’s performances. The
uniformity of each window is tested. If the window is not
uniform, then it is split into subwindows. The 8 × 8 block
can be split into 4× 4 subwindows, that also can be split into
2× 2 subwindows in case of nonuniformity. The uniformity
test is described in Section 3.1.1. The main difference in the
uniformity test is due to the algorithm utilization. Each sam-
ple is split into binary planes, with a pixel resolution equal
to 10 bits, hence 10 binary planes are obtained. The binary
planes are coded in parallel (Figure 16). The uniformity test
is done with the logical operators due to the binary nature of
the plan. The type of operators are suitable for FPGA imple-
mentation. In this implementation, a code is generated for
each binary plane. The code size is variable. Therefore the re-
formatting stage requires a FIFO memory. The reformatting
adapts the code for Huffman coding block’s data input.

R. Mosqueron et al. 11

The utilization of this compression after a wavelet coding
enables a compression ratio of 15 : 1 to be obtained with a
high image quality (PSNR greater than 30 dB). To obtain a
compression ratio of 30 : 1, a Huffman algorithm is applied
after this processing. The association of wavelet and block
coding (1D 10P-DWT + BC) requires around 3500 slices
(24% of the selected FPGA’s slices) and 17 BRAMs (17% of
the selected FPGA’s BRAMs).

4. EMBEDDED IMAGE PROCESSING
AND FEATURE DETECTION

A lot of fast vision applications do not need to store the full
image because only pertinent information in the image are
necessary like object position detection. To illustrate this ap-
proach, we present in this section a real-time markers extrac-
tion in the context of biomechanics analysis. In the first part
of this section, we describe a preprocessing which allows ob-
ject segmentations and in the second part the marker extrac-
tion.

4.1. Preprocessing

In many applications, objects in the image are extracted from
the background. The image is then binarized: objects are
coded at high logic level and background in low logic level.
Many segmentation methods exist [38] to extract the ob-
ject from the background, we have retained a very simple
one in term of implementation: binarize with a threshold.
In our implementation, the threshold is defined by the user
and is transferred via a USB 2.0 link to the processing block.
The threshold can be processed offline on the PC in view of
the image nature. The user can apply his own segmentation
method, this solution is then very flexible. The threshold de-
termination can be also implemented into the FPGA, some
local adaptative binarization based on robust Niblack algo-
rithm [39] (using 8×8 or 16×16 neighborhood) can be im-
plemented with a moderate hardware cost: 1286 slices (9% of
the selected FPGA’s slices) and 5 BRAMs (5% of the selected
FPGA’s BRAMs). In targeted application, the number of the
segmented regions is low and the resulting high-level regions
are very homogeneous. The information can then be com-
pressed. The transfer is obviously done row by row, there-
fore, on each row, only the beginning and the end of each
high level regions are transferred. For many applications, the
obtained compression rate is over 30, enabling a full-frame
resolution (1280× 1024) of 500 images per second to be ob-
tained. The image frequency increases proportionally with a
reduction of the image size. This solution is very economi-
cal in terms of hardware implementation, only one embed-
ded memory block and then 330 slices (2% of the selected
FPGA’s slices) are required. Most of the logic is mainly due to
the large input data flow (10 pixels).

4.2. Markers extraction

In this section, we present a specific application concerning
the tracking of a mouse running on a moving walkway with

a speed of 12, 20, or 37 cm/s. For this application, biologists
have a simple commercial video camera with a frame rate
of 25 images per second and no embedded processes. After
discussions and tests with biologists, the conclusion was that
standard video acquisition was too slow. A minimum speed
of 250 images per second is necessary for a good observation
of the leg movement. Only the movement of the leg markers
interests the biologists [40]. It is in this perspective that we
proposed an embedded markers extraction. In this case, our
camera works with a 500 images per second mode. We have
implemented inside the FPGA device of our camera some ba-
sic real-time image processing operators like ROI detection,
image thresholding, image edge detection, image merging,
erosion, dilation, and centers of mass calculation (Figure 19).

In particular, we had previously studied the implementa-
tion of real-time centers of mass calculation in the context of
subpixel metrology [41]. We used this result for our applica-
tion.

Figures 17 and 18 illustrate this application and the sim-
ple image processing which can extract theX and Y positions
of specific markers placed on the mouse. Thus, Figure 17(a)
shows the mouse running on the moving walkway. On this
mouse, 7 markers have been placed. The first step of our
algorithm consists of extracting the ROI (where the mark-
ers are) and for this, using a local edge detector, we ob-
tain the right edge of the mouse (located near its nose). As
we know the average length of a mouse, we can easily de-
termine the position of the ROI. With this ROI (shown in
Figure 17(b)), two processing are executed in parallel: image
thresholding (Figure 17(c)) and edge detection using a So-
bel filter (Figure 17(d)). A logic combination between the 3
images (Figures 17(b), 17(c), 17(d)) followed by an erosion
produces the final image shown in Figure 17(e). Erosion al-
lows the suppression on isolated white pixels. The final image
corresponds to the markers extraction. The final step consists
of determining, with a subpixel resolution the coordinates of
the centers of mass (Figure 18) of each detected marker [41].
The resulting regions or only the centers of mass can then be
transferred to reduce the output flow. The marker extraction
implementation then requires 2103 slices (7% of the selected
FPGA’s slices) and 18 BRAMs (19% of the selected FPGA’s
BRAMs) and enables 500 images per second with a full res-
olution (1280 × 1024) to be reached. Moreover, other pro-
cessings can be implemented using the available hardware re-
sources. In order to illustrate our approach, we present in this
section the description of real-time image processing imple-
mentation for edge detection, erosion, dilation, and centers
of mass.

4.2.1. Sobel filter

The choice of the Sobel filter was made considering twomain
reasons. First, as markers that we wish to detect present a
good contrast, the Sobel filter can deliver in this case an edge
detection with a good signal-to-noise ratio. Second, the Sobel
filter is suitable for FPGA implementation due to the pos-
sible hardware implementations. This sum of absolute val-
ues is easy to implement (adders, inverters, and test on bits).

12 EURASIP Journal on Embedded Systems

(a)

ROI Right edge
detected

(b)

(c)

(d)

(e)

Figure 17: Marker extraction on a mouse.

ROI
Marker Center

of mass

Figure 18: Marker’s center of mass.

Moreover, this solution is low-cost in terms of hardware re-
sources. The Sobel implementation has also been selected for
its cost in terms of hardware resources. It has been preferred
to the more complex solution such as Canny-Deriche imple-
mentations that have been explored in the past [42]. If we
consider f (x, y) the grey value of the current pixel, where x
and y are the pixel coordinates, the output g(x, y) of the So-
bel filter edge detector is given by the following equation:

g(x, y) = ∣∣(g1(x, y)
)∣
∣ +

∣
∣
(
g2(x, y)

)∣
∣, (4)

where

g1(x, y) =
(
f (x, y) + 2 f (x − 1, y) + f (x − 2, y)

)

− (f (x, y − 2) + 2 f (x − 1, y − 2)

+ f (x − 2, y − 2)
)
,

g2(x, y) =
(
f (x, y) + 2 f (x, y − 1) + f (x, y − 2)

)

− (f (x − 2, y) + 2 f (x − 2, y − 1)

+ f (x − 2, y − 2)
)
.

(5)

Using the Z transform, respectively, to g1(x, y) and g2(x, y),
we obtain G1(z) and G2(z). Thus,

G1(z) =
(
F(z) + 2Z−1F(Z) + Z−2F(Z)

)

− Z−2N
(
F(z) + 2Z−1F(Z) + Z−2F(Z)

)
,

(6)

where F(z) is the Z transform of f (x, y) andN is the number
of pixels per line. Similarly, we obtain for the g2(x, y) compo-
nent that

G1(z) =
(
F(z) + 2Z−NF(Z) + Z−2NF(Z)

)

− Z−2
(
F(z) + 2Z−NF(Z) + Z−2NF(Z)

)
.

(7)

ROI detection
using local

edge detection

Image
thresholding

Image edge
detection using
Sobel filter

Image merging
erosion-dilation

Objects extraction

Centers of mass
calculation

Figure 19: Marker’s extraction synoptic.

Figure 20 shows the direct implementation of this filter. In
this implementation, 10 adders and 2 FIFOs are needed to
compute g1(x, y) and g2(x, y). As the data from the CMOS
image sensor are delivered in a parallel mode (10 pixels for
each clock cycle), all the calculations have to be executed in
parallel, and thus the number of adders increases (10 × 10
adders) while the number of FIFOs stays the same. In order
to reduce this arithmetic complexity, some authors [43] pro-
posed to factorize original equations. This allows a cascade
of elementary cells to be obtained and the complexity is re-
duced.

We can illustrate this approach as follows. G1(z) can be
factorized as

G1(z) =
(
F(z) · (1 + Z−1

) · (1 + Z−1
))

− Z−2N
(
F(z) · (1 + Z−1

) · (1 + Z−1
))

= F(z) · (1− Z−2N
) · (1 + Z−1

) · (1 + Z−1
)
.

(8)

This last equation shows that the g1(x, y) component can be
calculated using simple first-order digital FIR filters. Simi-
larly, we obtain for the g2(x, y) component that

G2(z) =
(
F(z) · (1 + Z−N

) · (1 + Z−N
))

− Z−2
(
F(z) · (1 + Z−N

) · (1 + Z−N
))

= F(z) · (1− Z−2
) · (1 + Z−N

) · (1 + Z−N
)
.

(9)

Figure 21 shows the optimized cascade implementation of
this filter. In this implementation, only 6 adders are needed
to compute g1(x, y) and g2(x, y) and the architecture is more
regular than the original implementation. This approach is
a compromise: a FIFO memory is added but the number of
adders is considerably reduced. This compromise combined
with our parallel approach permits a low-cost solution to be
proposed for the large and high-speed data flow. Using this
approach, 10 pixels can be processed in parallel using only
60 adders (10 × 6) and 30 FIFOs in comparison with 100
adders and 20 FIFOs used by the direct Sobel implemen-
tation. Moreover, by changing the width of the FIFO from
one pixel to 10 pixels, the memories can be organized in 3
large FIFO memories. This organization is more economi-
cal in terms of hardware resources considering the memory
organization into the selected Xilinx’s FPGA. This type of
FPGA proposes a configurable internal memory organized

R. Mosqueron et al. 13

F(z)
f (x, y)

D register D register

z�1 z�1

(x2)

(x2)

(x2)

(x2)

+

+

+

g1(x, y)

�g1(x, y)�
g(x, y)

�g2(x, y)�

FIFO D register D register

z�N z�1 z�1 +

FIFO D register D register

z�N z�1 z�1

+

+

+

+

+
+

�

g2(x, y)

�

+
�

Figure 20: Direct Sobel filter implementation.

F(z)

f (x, y)

FIFO D register D register
z�N

z�1 z�1 g1(x, y)

�g1(x, y)�

�g2(x, y)�

g2(x, y)

z�N z�N z�2

FIFO FIFO D register

+
+

�
+ +

+ + +

+ g(x, y)

Figure 21: Optimized cascade Sobel filter implementation.

into blocks of RAM (BRAMs). For instance, a FIFO memory
which can store 1023 words of 10 bits can be implemented
using a single BRAM. Due to the architecture of BRAM, only
3 blocks are required to generate a FIFO memory with a
width of 100 bits. Each FIFO can store 511 words of 100 bits.
Therefore, organizing the FIFO memories to store words of
100 bits enables the reduction of the number of BRAMs (the
depth of the FIFO memory should be taken into account).

Finally, using words of 100 bits enables high-speed per-
formances to be reached by processing 10 pixels in parallel.
The described basic block has been adapted to the parallel
pixel access as it was for the wavelet implementation. The
structure of this basic block is essentially the same. Delays are
not necessary between two consecutive pixels in the same 10-
pixel word. The majority of the original structure is repeated,
but many delays and some adders can be economized due to
the presence of the large 100 bits FIFO based on BRAM em-
bedded memory. Therefore, the final architecture can be im-
plemented with 52 adders and 3 FIFOmemories with a width
of 100 bits. This implementation requires 1560 slices (9% of
the selected FPGA’s slices) and 9 BRAMs (9% of the selected
FPGA’s BRAMs).

4.2.2. Erosion and dilatation

The erosion and dilation operations are obtained, respec-
tively, by processing the minimum and the maximum values
inside a selected window. Thus, for a 3 × 3 window, erosion
and Dilation are obtained as follows:

erosion (x, y) = minimum
(
f (x, y), f (x − 1, y)

)
,

. . . ,
(
f (x − 2, y − 2)

)

dilation (x, y) = maximum
(
f (x, y), f (x − 1, y)

)
,

. . . ,
(
f (x − 2, y − 2)

)
.

(10)

An implementation of these two operations is illustrated
in Figure 22. Again, the time calculation with the FPGA de-
vice is less than 15 nanoseconds per pixel. This time depends
on the design and the selected FPGA.

4.2.3. Centers of mass

The general form of center of mass is

Ck =
∑31

i=0 i · pk(i)
∑31

i=0 pk(i)
, (11)

where Ck is the kth center of mass calculated and where the
grey level of pixel i is pk(i).

The division is not performed inside of the camera, only
the numerator and the denominator calculations are pro-
cessed.

This function is applied for a 30-pixel center of mass.
The numerator and the denominator of each center of mass
are processed on 30-pixel windows. The computation step
is 10 pixels, therefore the hardware resources are reduced.
The numerator and the denominator calculations are pro-
cessed on 10 pixels at each cycle. The numerator’s compu-
tation requires 10 multipliers and 9 adders (Figure 23). The
denominator’s computation is more simple and does not re-
quire any multipliers. The numerator value for the 30-pixel

14 EURASIP Journal on Embedded Systems

f (x, y)

f (x � 1, y)

f (x � 2, y)

f (x, y � 1)

f (x � 1, y � 1)

f (x � 2, y � 1)

f (x, y � 2)

f (x � 1, y � 2)

f (x � 2, y � 2)

Comparator
3 inputs

Comparator
3 inputs

Comparator
3 inputs

min. 1

max. 1

min. 2

max. 2

min. 3

max. 3

Comparator
3 inputs

Comparator
3 inputs

min.

max.

min.

max.

Erode (x, y)

Dilate (x, y)

Figure 22: Schematics of erosion and dilation calculation.

Pi Pi + 1 Pi + 2 Pi + 3 Pi + 4 Pi + 5 Pi + 6 Pi + 7 Pi + 8 Pi + 9

� � � � � � � � � �

i i + 1 i + 2 i + 3 i + 4 i + 5 i + 6 i + 7 i + 8 i + 9

+ + + + +

+ +

+ +
Numerator

i = column number
p(i) = pixel value

Figure 23: Numerator for a 10-pixel window.

Numerator
T�3 Numerator

T

Data
(10 pixels)

Numerator
on 10
pixels

D D D

+�

DResult (T � 1)

Result (T)

Figure 24: Numerator of 30 pixels.

window is obtained by substracting a previous numerator
with 3 clock-cycle delays, then by adding the current numer-
ator value (Figure 24). The same method is applied on the
denominator. The calculation is made row by row, and the
starting value is 0. The numerator and the denominator are
sent to the PC where the division is processed.

It is a simple approach, in terms of hardware resources.
The centers of mass implementation requires 636 slices (4%
of the selected FPGA’s slices) and 0 BRAM (0% of the selected
FPGA’s BRAMs).

5. SYSTEM PERFORMANCES ANDDISCUSSION

In this section, we propose to summarize our system’s perfor-
mances and to compare them with other smart cameras. All
the referenced systems propose different processings. There-
fore the comparison is difficult. Nevertheless, we propose to
insist on the processing’s limitations due to the sensor. A
main feature of a CMOS sensor is the possibility to select
a region of interest (ROI), a window. Hence, we propose to
compare the maximum of windows that can be processed in
one second. This number, for a defined size, is directly con-
nected to the sensor’s specifications, nevertheless it can rep-
resent the limitation of the processing. Table 2 has been elab-
orated with the references [39, 44–47]. Our sensor proposes
the highest resolution with the highest speed 4.2.3. There are
some other systems which can be performant on reduced-
size windows (32×32) but none are as efficient as our system
on larger windows as 1024 × 32. Obviously, the number of
windows represents a maximum and it depends on the al-
gorithm being processed and on the processing element. In
order to indicate the shown smart camera’s possibilities, we
precise the nature of the processing element. Our system is
probably less flexible than a smart camera with an embedded
processor such as [39, 47]. Nevertheless, these systems would
not be able to deal with the large input data flow because of
the interface.

The high speed and high resolution are not the only cam-
era features to consider. The system is reconfigurable in terms
of processing. We have summarized in Table 3 the process-
ing implemented in our camera. The hardware resources are
specified for each processing.

6. CONCLUSION AND PERSPECTIVES

In this paper, we showed that embedded processing can be
implemented on a high-speed camera with high-resolution.
A fast marker extraction running at 500 images per second
on the full resolution is presented. We have also showed that
it is possible to implement a real-time image compression
based on wavelet transform coding into an FPGA device.
Hence, we propose a high-speed camera based on a CMOS

R. Mosqueron et al. 15

Table 2: Comparison table. TUDelft = Technische Universiteit Delft, PE = parallel data flow, Wps = windows per second.

Camera Resolution × bits Images per second PE type 1024× 32 (Wps) 32× 32 (Wps)

Our camera 1280× 1024× 10 500 FPGA 16 000 16 000

Berry 640× 480× 8 25 FPGA Not applicable 7500

Muelhmann 1024× 1024× 10 30 FPGA 960 30 720

Lepisto 1280× 1024× 10 18 FPGA 824 26 368

TUDelft and Philips 640× 480× 10 50 Trimedia Not applicable 15 625

Dubois 1280× 1024× 10 25 Trimedia + FPGA 1000 32 000

Table 3: Result table. P = parallel data flow, S = serial data flow,
RLE = run-length encoding, BC = block coding, Huff = Huffman
encoding.

Compression
IP

Input
flow

Slices/BRAM Freq. Mpix/s
External
memory

1D10P-DWT
+ RLE

P 2465/9 130 No

1D10P-DWT
+ BC +Huff

P 3500/17 660 No

Marker
extraction

P 2103/18 660 No

image sensor and an FPGA device. The performance of this
camera allows, firstly, the acquisition of fast images with a
1280× 1024 pixels resolution running at 500 images per sec-
ond, and secondly, the transmission in real-time coded im-
ages with a 30 : 1 compression ratio with a PSNR greater
than 30 dB using a USB 2.0 link. With this performance, it is
possible to store long image records directly inside a PCwith-
out any specific memory requirement, which is an advantage
because we can benefit from continuously increasing PC per-
formance, particularly concerning memory technologies.

In the future, we will design a new version of our camera
using a gigabit ethernet link. This will allow us to decrease
compression ratio (6.5 : 1), and thus will increase the image
quality (PSNR increasing). With this approach, it will also be
possible to design new high-speed cameras with a faster pixel
data rate sensor (like 1 Mpixel at 1000 images per second or
more).

Using the performance of FPGA technology, integration
of new embedded real-time image processing inside the cam-
era is also possible, for example object tracking, image anal-
ysis, or pattern recognition [48].

REFERENCES

[1] S. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the
human visual system,”Nature, vol. 381, no. 6582, pp. 520–522,
1996.

[2] Y. Kondo, H. Maruno, H. Tominaga, H. Soya, and T. G. Etoh,
“An ultrahigh-speed video camera and its applications,” in
25th International Congress on High-Speed Photography and
Photonics, vol. 4948 of Proceedings of SPIE, pp. 53–58, Beaune,
France, September-October 2002.

[3] K. Tajima, K. Tamura, and K. Awano, “Design of 1-M pixels
high-speed video camera,” in 25th International Congress on
High-Speed Photography and Photonics, vol. 4948 of Proceed-
ings of SPIE, pp. 83–88, Beaune, France, September-October
2002.

[4] W. Wolf, B. Ozer, and T. Lv, “Smart cameras as embedded sys-
tems,” Computer, vol. 35, no. 9, pp. 48–53, 2002.

[5] E. Fauvet, M. Paindavoine, and F. Cannard, “Human move-
ment analysis with image processing in real time,” in 19th In-
ternational Congress on High-Speed Photography and Photon-
ics, vol. 1358 of Proceedings of SPIE, pp. 620–630, Cambridge,
UK, September 1991.

[6] F. Bouffault, J. Febvre, C. Milan, M. Paindavoine, and J. C.
Grapin, “A high-speed video microsystem,” Measurement Sci-
ence and Technology, vol. 8, no. 4, pp. 398–402, 1997.

[7] F. Bouffault, C. Milan, M. Paindavoine, and J. Febvre, “High-
speed cameras using a CCD image sensor and a new high-
speed image sensor for biological applications,” in 21st Inter-
national Congress on: High-Speed Photography and Photonics,
vol. 2513 of Proceedings of SPIE, pp. 252–258, Taejon, Korea,
August-September 1994.

[8] M. Paindavoine, D. Dolard, and J.-C. Grapin, “Real-time
imaging system applied to human movement analysis,” in Ad-
vanced Signal Processing Algorithms, Architectures, and Imple-
mentations IX, vol. 3807 of Proceedings of SPIE, pp. 150–156,
Denver, Colo, USA, July 1999.

[9] Xilinx, http://www.xilinx.com.
[10] Nac, “Memrecam fx K4 High-Speed Color Video System,”

http://www.nacinc.com.
[11] Photron, “Ultima APX-RS Fastcam,” http://www.photron.

com.
[12] Weinberger, htpp://www.weinbergervision.com.
[13] Micron, http://www.micron.com.
[14] E. R. Fossum, “Active pixel sensors: are CCDs dinosaurs?” in

Charge-Coupled Devices and Solid State Optical Sensors III,
vol. 1900 of Proceedings of SPIE, pp. 2–14, San Jose, Calif, USA,
February 1993.

[15] D. Litwiller, “CCD vs. CMOS: facts and fiction,” Photonics
Spectra, vol. 35, no. 1, pp. 154–158, 2001.

[16] USB2.0, http://www.usb.org.
[17] D. A. Huffman, “A method for construction of minimum-

redundancy codes,” Proceedings of IRE, vol. 40, no. 9, pp. 1098–
1101, 1952.

[18] J. Ziv and A. Lempel, “A universal algorithm for sequential
data compression,” IEEE Transactions on Information Theory,
vol. 23, no. 3, pp. 337–343, 1977.

[19] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data
Compression Standard, Kluwer Academic, Norwell, Mass,
USA, 1992.

[20] JPEG Commitee, http://www.jpeg.org.

http://www.xilinx.com
http://www.nacinc.com
http://www.photron.com
http://www.photron.com
htpp://www.weinbergervision.com
http://www.micron.com
http://www.usb.org
http://www.jpeg.org

16 EURASIP Journal on Embedded Systems

[21] D. S. Taubman and M. W. Marcellin, JPEG 2000: Image Com-
pression Fundamentals, Standards and Practice, Kluwer Aca-
demic, Norwell, Mass, USA, 2001.

[22] S. G. Mallat, “A theory for multiresolution signal decomposi-
tion: the wavelet representation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674–693,
1989.

[23] D. Taubman, “High performance scalable image compression
with EBCOT,” IEEE Transactions on Image Processing, vol. 9,
no. 7, pp. 1158–1170, 2000.

[24] F. C. Pereira and T. Ebrahimi, The MPEG-4 Book, Prentice-
Hall PTR, Upper Saddle River, NJ, USA, 2002.

[25] MPEG Commitee, http://www.mpeg.org.
[26] D. Santa-Cruz, T. Ebrahimi, J. Askelof, M. Larsson, and C.

A. Christopoulos, “JPEG 2000 still image coding versus other
standards,” in Applications of Digital Image Processing XXIII,
vol. 4115 of Proceedings of SPIE, pp. 446–454, San Diego, Calif,
USA, July 2000.

[27] http://www.cast-inc.com/cores/jpeg-e/.
[28] P. Schumacher, M. Paluszkiewicz, R. Ballantyne, and R. Tur-

ney, “An efficient JPEG2000 encoder implemented on a plat-
form FPGA,” in Applications of Digital Image Processing XXVI,
vol. 5203 of Proceedings of SPIE, pp. 306–313, San Diego, Calif,
USA, August 2003.

[29] P. Schumacher and W. Chung, “FPGA-based MPEG-4 codec,”
DSP Magazine, pp. 8–9, 2005.

[30] J. Dubois, M. Mattavelli, L. Pierrefeu, and J. Miteran, “Con-
figurable motion-estimation hardware accelerator module for
theMPEG-4 reference hardware description platform,” in Pro-
ceedings of IEEE International Conference on Image Processing
(ICIP ’05), vol. 3, pp. 1040–1043, Genova, Italy, September
2005.

[31] M. Alam, W. Badawy, and G. Jullien, “A new time distributed
DCT architecture for MPEG-4 hardware reference model,”
IEEE Transactions on Circuits and Systems for Video Technol-
ogy, vol. 15, no. 5, pp. 726–730, 2005.

[32] T. Chiang, M. Mattavelli, and R. D. Turney, “Introduction to
the special issue on integrated multimedia platforms,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 15, no. 5, pp. 589–592, 2005.

[33] A. Staller, P. Dillinger, and R. Männer, “Implementation of the
JPEG 2000 standard on a virtex 1000 FPGA,” in Proceedings of
the 12th International Conference on Field-Programmable Logic
and Applications (FPL ’02), pp. 503–512, Montpellier, France,
September 2002.

[34] A. Grossmann and J. Morlet, “Decomposition of hardy func-
tions into square integrable wavelets of constant shape,” SIAM
Journal on Mathematical Analysis, vol. 15, no. 4, pp. 723–736,
1984.

[35] W. Sweldens, “Lifting scheme: a new philosophy in biorthog-
onal wavelet constructions,” in Wavelet Applications in Signal
and Image Processing III, vol. 2569 of Proceedings of SPIE, pp.
68–79, San Diego, Calif, USA, July 1995.

[36] A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal
bases of compactly supported wavelets,” Communications on
Pure and Applied Mathematics, vol. 45, no. 5, pp. 485–560,
1992.

[37] C. Diou, L. Torres, and M. Robert, “Implementation of a
wavelet transform architecture for image processing,” in Pro-
ceedings of the 10th International Conference on Very Large Scale
Integration (VLSI ’99), pp. 101–112, Lisbon, Portugal, Decem-
ber 1999.

[38] O. D. Trier and A. K. Jain, “Goal-directed evaluation of bina-
rization methods,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 17, no. 12, pp. 1191–1201, 1995.

[39] J. Dubois and M. Mattavelli, “Embedded co-processor archi-
tecture for CMOS based image acquisition,” in Proceedings of
IEEE International Conference on Image Processing (ICIP ’03),
vol. 2, pp. 591–594, Barcelona, Spain, September 2003.

[40] M. G. Ribotta, J. Provencher, D. Feraboli-Lohnherr, S. Rossig-
nol, A. Privat, and D. Orsal, “Activation of locomotion in adult
chronic spinal rats is achieved by transplantation of embry-
onic raphe cells reinnervating a precise lumbar level,” Journal
of Neuroscience, vol. 20, no. 13, pp. 5144–5152, 2000.

[41] D. Rivero, M. Paindavoine, and S. Petit, “Real-time sub-pixel
cross bar positionmetrology,” Real-Time Imaging, vol. 8, no. 2,
pp. 105–113, 2002.

[42] E. Bourennane, P. Gouton, M. Paindavoine, and F. Truchetet,
“Generalization of Canny-Deriche filter for detection of noisy
exponential edge,” Signal Processing, vol. 82, no. 10, pp. 1317–
1328, 2002.

[43] A. Pirson, J.-L. Jacquot, T. Court, and D. David, “A highly effi-
cient method for synthesizing some digital filters,” in Proceed-
ings of European Signal Processing Conference (EUSIPCO ’88),
Grenoble, France, September 1988.

[44] F. Berry and P. Chalimbaud, “Smart camera and active vision:
the active detector formalism,” Electronic Imaging, vol. 14,
no. 1, pp. 2–9, 2004.

[45] U. Muehlmann, M. Ribo, P. Lang, and A. Pinz, “A new high
speed CMOS camera for real-time tracking applications,” in
Proceedings of IEEE International Conference on Robotics and
Automation (ICRA ’04), vol. 5, pp. 5195–5200, New Orleans,
La, USA, April-May 2004.

[46] N. Lepistö, B. Thörnberg, and M. O’Nils, “High-performance
FPGA based camera architecture for range imaging,” in Pro-
ceedings of the 23rd NORCHIP Conference, pp. 165–168, Oulu,
Finland, November 2005.

[47] W. Caarls, P. Jonker, and H. Corporaal, “Smartcam: devices
for embedded intelligent cameras,” in Proceedings of the 3rd
PROGRESS Workshop on Embedded Systems, pp. 1–4, Utrecht,
The Netherlands, October 2002.

[48] F. Yang and M. Paindavoine, “Implementation of an RBF neu-
ral network on embedded systems: real-time face tracking and
identity verification,” IEEE Transactions on Neural Networks,
vol. 14, no. 5, pp. 1162–1175, 2003.

http://www.mpeg.org
http://www.cast-inc.com/cores/jpeg-e/

	1. INTRODUCTION
	2. HIGH-SPEED SMART CAMERA DESCRIPTION
	2.1. Image acquisition using a high-speed CMOS sensor
	2.2. Image processing with an FPGA device
	2.2.1. FPGA advantages for real-time image processing
	2.2.2. Main features of the used FPGA

	2.3. High-speed camera system
	2.4. High-speed camera implementation

	3. EMBEDDED IMAGE COMPRESSION
	3.1. Compression algorithms
	3.1.1. Block coding
	3.1.2. One-dimensional run-length coding
	3.1.3. JPEG compression
	3.1.4. JPEG2000 compression
	3.1.5. MPEG4 compression

	3.2. Comparison and analysis for embedded compression
	3.3. Embedded compression for high-speed imaging
	3.3.1. Wavelet coding using lifting scheme
	3.3.2. Wavelets’ preprocessing and compression

	4. EMBEDDED IMAGE PROCESSING AND FEATURE DETECTION
	4.1. Preprocessing
	4.2. Markers extraction
	4.2.1. Sobel filter
	4.2.2. Erosion and dilatation
	4.2.3. Centers ofmass

	5. SYSTEM PERFORMANCES AND DISCUSSION
	6. CONCLUSION AND PERSPECTIVES
	REFERENCES

