
EURASIP Journal on
Embedded Systems

Fibich et al. EURASIP Journal on Embedded Systems (2019) 2019:2
https://doi.org/10.1186/s13639-019-0088-7

RESEARCH Open Access

FIJI: Fault InJection Instrumenter
Christian Fibich1*, Stefan Tauner1, Peter Rössler1, Martin Horauer1, Martin Matschnig2

and Herbert Taucher2

Abstract

FPGAs are increasingly used in safety-critical applications (e.g., in aerospace and automotive engineering). Safety
standards stipulate that implemented countermeasures against run-time faults such as detection and isolation of
affected components, automatic reconfiguration, and redundancy mechanisms must be adequately verified. To that
end, fault injection tests by various means have been established as a suitable method.
For such tests, faults can be provoked by radiation, simulation, or manipulating the design, for example, by inserting
additional logic or manipulating the synthesis flow. This work briefly summarizes the various fault injection
approaches with a focus on methods that are capable of stressing critical nets of a design running on actual hardware
without requiring to re-synthesize. While the state-of-the-art tools can work with complex designs, they often lack
controllability of the exact timing of the injection events (which is important to track the system’s response on faults
in a logic simulation) and/or use a high amount of FPGA resources. To overcome these issues, we propose a
resource-saving netlist-based fault injection framework Fault InJection Instrumenter (FIJI) that can target individual nets
at test runtime. This paper presents FIJI’s work flow, implementation details, and an evaluation in terms of FPGA
resources, timing impact, and performance during instrumentation and test execution. The FIJI framework has been
made publicly available by the authors under an open-source license.

Keywords: Fault injection, FPGA, Safety-critical system, Verification, Electronic design automation

1 Introduction
FPGAs are increasingly used in safety-critical systems
such as (partially) autonomous cars, airplanes, space-
crafts, and industrial applications. For the respective
applications, they offer several advantages to possible
alternatives such as ASICs or general purpose processors.
The most distinctive ones are customizability, short time
to market, and (fast) run-time reconfiguration [1].
However, due to their architecture, the usual harsh envi-

ronmental conditions they operate in, and strict (legal)
requirements on high availability and safety, many aspects
need to be considered before using them in such applica-
tions. A survey on the legal and methodological standards
by Bernardeschi et al. [2] concludes: “The main issues
related to the design of FPGA-based systems and their
adoption in safety-critical application fields are the lack
of standards specifically addressing the FPGA technol-
ogy and the severe susceptibility of FPGA devices to the

*Correspondence: fibich@technikum-wien.at
1University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200
Vienna, Austria
Full list of author information is available at the end of the article

effects of radiations”. However, the frequent use of FPGAs
in other sectors and their unique features increases the
pressure on regulatory bodies and manufacturers alike
to consider applicability of standards to reconfigurable
logic in general and FPGAs in particular. For exam-
ple, the European Cooperation for Space Standardization
(ECSS) (responsible for standards mandatory for contrac-
tors working for ESA) published a set of requirements
for FPGA development in space projects [3]. FPGAs have
also widely been used in projects subject to the DO-254
aviation standard [4].
Today, the predominant type of FPGAs rely on SRAM

to hold their configuration during operation. This con-
figuration specifies not only the behavior of functional
blocks within the FPGA but also their interconnections.
Thus, it is of utmost importance to retain the content
of this memory for correct system behavior. Due to the
vulnerability of SRAM cells to radiation-induced single
event upsets (SEUs), FPGAs using other types of mem-
ory for configuration (e.g., flash or antifuses) might come
to mind that do not exhibit the same vulnerability. How-
ever, due to the advantages of fast reconfigurability, there

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13639-019-0088-7&domain=pdf
mailto: fibich@technikum-wien.at
http://creativecommons.org/licenses/by/4.0/

Fibich et al. EURASIP Journal on Embedded Systems (2019) 2019:2 Page 2 of 19

is much interest in using SRAM-based devices instead.
Also, flash-based devices come with their own set of
problems that make them unsuitable for long-term space
missions. To asses the fault coverage asmandated bymany
of the standards and to evaluate possible countermea-
sures, fault injection (FI) tests have been established as
a suitable method where analytical approaches are too
complex [5]. During FI tests, the normal behavior of a sys-
tem is changed by irritating some of its parts by different
means.
The remainder of this section gives an overview of pre-

vious research in this context. This includes FI by (i) Using
radiation to induce upsets in actual hardware, (ii) Simu-
lating errors in the configuration memory of FPGAs, (iii)
Attempting to modify the FPGA’s configuration bitstream
file directly, and (iv) Modifying the FPGA’s configura-
tion during operation using some run-time reconfigu-
ration methods. A review of scientific work that deals
with injecting arbitrary errors in a more directed manner
follows in Section 2.
Due to SRAM’s susceptibility to SEUs, retention of the

configuration memory’s contents in the presence of (dif-
ferent types of) radiation cannot be taken for granted at
all. Extensive research has been conducted in the past on
the effects of radiation, reproducing them for testing as
well as effective mitigation techniques [5]. The respective
experiments are very costly and can only give probabilistic
results due to their rather unfocused nature.
Simulating the errors occurring within an FPGA device

on different levels of abstractions poses a cheap and
more directed alternative to physically inducing them.
Bernardeschi et al. present a simulation framework that
improves the accuracy of simulated errors in the configu-
rationmemories over traditional stuck-at fault models and
models emulating logic components only without taking
the interconnect into account [6]. To assess the impacts
of SEUs in the memory specifying the routing within the
FPGA, they derive and exploit information on configu-
ration memory of Xilinx FPGAs. This has the advantage
of directly disturbing the in-device description of the cir-
cuit function and great observability (e.g., possibility to
determine affected circuit elements and resulting fault
modes). However, this requires detailed knowledge about
the FPGA architecture and as simulation techniques usu-
ally require impractical amounts of run time with complex
designs.
Somewhat less specifics need to be known when tar-

geting the bitstream of the devices to introduce ran-
dom faults. The bitstream is the representation of the
FPGA’s configuration for a distinct application in the
form of a file that is downloaded to the device before/on
startup. The exact semantics of bitstreams are propri-
etary vendor secrets that have increased in complexity
over the years. If enough details are known to modify

them, FI can be applied by modifying the bitstream as
output by the vendor’s implementation tool. With this
technique, Asadi et al. [7] perform evaluation of the effects
of configuration defects in Altera Flex10K SRAM-based
FPGA devices by generating one faulty bitstream file for
each targeted FPGA resource. The resulting designs are
then consecutively downloaded to the FPGA and sub-
jected to the same test patterns as a fault-free bitstream
to determine any effects on the behavior/outputs of the
design.
Such targeted FI into a generated bitstream file is

only possible if the vendor’s bitstream file format is
available. For modern devices of the two largest FPGA
vendors, Intel (Altera) and Xilinx, almost no infor-
mation on their bitstream format is publicly avail-
able. A fault injection tool targeting the bitstream file
would have to support the specifics of each distinct
FPGA device to be used and be able to produce cor-
rect checksums if need be. Moreover, manipulating the
FPGA’s bitstream allows insertion of permanent faults
only.
For these reasons, a large number of FI approaches

for FPGA hardware makes use of the ability of modern
FPGA to access the configuration memory at runtime.
Approaches from academia as described by Sterpone and
Violante [8], Legat, Biasizzo and Novak [9], Straka, Kastil
and Kotasek [10], Mogollon et al. [11], and Azkarate-
askasua et al. [12] mainly target Xilinx FPGAs due to the
availability of the relatively open Internal Configuration
Access Port (ICAP) and external SelectMAP/JTAG inter-
faces which make it possible to read, modify, and write
back configuration frames.
The FI system described by Sterpone and Violante [8]

is controlled by a hard-core processor (PowerPC), which
communicates with a host workstation over a serial inter-
face. Fault patterns are stored in an on-chip memory and
subsequently applied via ICAP. A very similar approach
is taken by Legat, Biasizzo, and Novak [9], who use a
soft-core MicroBlaze CPU and off-chip memory instead.
Straka, Kastil, and Kotasek [10] use the host PC directly

as FI generator via the FPGA’s JTAG port by exploiting
Xilinx ChipScope’s TCL bindings. The design is dupli-
cated to act as a golden sample on the one hand while
its configuration in the second instance is modified to
simulate faults on the other hand. The comparison of out-
puts between these instances is done directly on-chip, and
results are exported via a UART.
FTUNSHADES2, described by Mogollon et al. [11], is

an even more elaborate FI test system that uses two ded-
icated FPGAs to generate the stimuli and evaluate results
respectively. The system consists of a motherboard host-
ing a Control FPGA and two or more daughterboards
connected via PCIe, each hosting a target T-FPGA and a
stimuli-generating S-FPGA. In FPGA testing mode, one

Fibich et al. EURASIP Journal on Embedded Systems (2019) 2019:2 Page 3 of 19

of the daughterboard’s FPGA is configured with a golden,
fault-free bitstream, while the other FPGAs are configured
with faulty bitstreams. Stimuli are applied by the S-FPGA
and the supervising control FPGA configures them via
SelectMAP and compares their outputs.
Azkarate-askasua et al. [12] focus their work on inject-

ing faults into complex multi-core Network on Chip
(NoC) designs implemented in Xilinx FPGAs. The gen-
eral approach is similar to that of Legat [9] as they also use
the ICAP interface to change the FPGA’s configuration at
runtime and control the process with a soft-core MicroB-
laze CPU. Their monitor sits on the same NoC connect-
ing the independent cores thus greatly reducing the load
of the monitor by exploiting the inherent fault tolerant
features.
Lately, both Xilinx and Intel (Altera) provide function-

ality to perform FI tests with less effort:
Xilinx’s Vivado Design Suite includes an IP core referred

to as Soft Error Mitigation (SEM) Core [13] that is pri-
marily meant to automatically detect and correct any
errors in the configuration data during runtime but is
also able to perform FI on the FPGA’s configuration.
Each injection is toggling a single bit in the configu-
ration memory that can be selected by the user via a
logical (linear) or physical address. Neither is clearly spec-
ified by the vendor to easily allow the user to select
the logic targeted by the error. Additionally, the SEM IP
does not provide exact control over the timing of the FI
operations.
Altera provides the Fault Injection Debugger [14] as a

component of its Quartus II implementation tool since
version 14.0. It is similar in function and scope to Xilinx’
SEM core. One difference is that the location of injec-
tions can be limited to single-design partitions, which
form logical boundaries in design hierarchies. Since the
granularity of design partitions is at the level of HDL enti-
ties it is not possible to target individual nets with this
mechanism.
In summary, information generally not disclosed by the

FPGA vendors is necessary for targeted FI using simulated
or actual errors in the FPGA’s configuration memory. To
work around this some researches rely on cumbersome
and inaccurate methods to map between addresses and
design elements [15], or tedious reverse engineering of the
internal structure of configuration frames [9]. If this infor-
mation is not present at all, at best only random tests can
be carried out, making duplication of error conditions vir-
tually impossible if the design changes. Even if this fact
is accepted, the reconfiguration-based FI method remains
highly vendor-dependent.
While probabilistic assessments on fault tolerance

as described above are certainly an important part
of the overall evaluation of any safety critical sys-
tem it might not be sufficient for some steps in the

design process. When implementing and validating fea-
tures that are meant to improve the safety of an HDL
design, it is necessary to manipulate the state of indi-
vidual nets which is not possible with the methods
discussed so far. These injections not only require to
target arbitrary nets but might need to synchronize
faults precisely with the behavior of the remaining
design.
In the next section, alternative FI methods are discussed

that are capable of being locally and temporally con-
strained. After demonstrating their downsides, we intro-
duce our FI framework in Section 3, followed by
implementation details of some distinct parts of the
framework in Section 4. An analysis of key performance
indicators of the framework as well as a comparison with
its strongest competitor can be found in Section 5. At the
end, in Section 6, a summary of the paper and an outlook
on further work is given.

2 Related work
This section elaborates on FI techniques that can inject
into arbitrary nets in an HDL design and/or can be pre-
cisely timed in relation to the design under test (DUT)
(which is not possible with bitstream-related approaches,
see Section 1).
Existing academic literature in this area modify either (i)

The design’s HDL description on RTL, or (ii) The design’s
post-synthesis netlist.

2.1 HDL-level approaches
Approaches that modify the DUT’s HDL representation
are performed by Baraza et al. [16], Grinschgl et al. [17],
and Jeitler, Delvai, and Reichör (FuSE) [18]. Baraza et al.
describe two main ways of injecting faults into an HDL
description: (i) Saboteurs are distinct HDL modules that
are instantiated in the targeted design unit to manip-
ulate individual signals. These modules are capable of
changing the original value of the signal to emulate the
presence of a fault. (ii) Mutants, on the other hand, are
created by modifying the functionality implemented in
the HDL description of the targeted design unit itself,
e.g., by modifying signal assignments or conditions of if
statements.
Baraza et al. address simulation only, while Jeitler, Del-

vai, and Reichör target a specific simulation accelerator
with dedicated hardware.
Grinschgl et al. use the saboteur approach only but

focus on actual hardware. Here, the FI process is con-
trolled by a distinct design unit referred to as fault
injection controller, which makes use of a hard-core
CPU embedded in the target FPGA. In their case study,
Grinschgl et al. inject faults into a LEON3 CPU. Nei-
ther addresses the problem of accurately timing FI
events.

Fibich et al. EURASIP Journal on Embedded Systems (2019) 2019:2 Page 4 of 19

2.2 Netlist-level approaches
Zheng, Fan, and Yue (FITVS) [19] as well as Mansour
and Velazco (NETFI) [20], and Pellegrini et al. (Crash-
Test) [21] implement FI at the netlist level. All share
the basic approach of synthesizing the DUT description
first into Verilog or EDIF netlists before instrumenting
these and/or the underlying technology-independent syn-
thesis libraries with custom tools. The result contains
wrappers for the original primitives providing additional
combinational logic and inputs to emulate faults. Addi-
tionally, the control inputs and result outputs for the
FI have to be integrated and forwarded through the
hierarchy.
Zheng, Fan, and Yue use a custom fault emulation con-

troller within the FPGA to download FI data from a host
workstation and orchestrate the FI process, while Man-
sour and Velazco use a hard-core PowerPC CPU embed-
ded in a distinct Controller FPGA and some controlling
logic in theDUT-FPGA for this task. The additional FPGA
was later replaced by a soft-core MicroBlaze CPU synthe-
sized into the same device as the DUT in the NETFI-2
flow [22].
In their CrashTest flow, Pellegrini et al. first synthesize

the original HDL design into a Verilog gate-level netlist
using the GTECH library of Synopsys Design Compiler
(DC). This netlist is then parsed by a Perl script that
automatically selects nets to be targeted by FI. These
nets are then broken up, and FI logic emulating either
stuck-at, stuck-open, bridging, delay, or transient faults
is inserted. The respective fault model is selected at
instrumentation time, and only one fault model can be
implemented per instrumented netlist. Register chains
are added for configuring and activating the FI logic at
runtime. However, the activation of faults happens asyn-
chronously to the DUT in software of an attached CPU
thus no accurate timing is possible. Controlling the FI pro-
cess was originally done by a hard-core PowerPC CPU
in a Xilinx Virtex-2 but eventually was implemented in
a soft-core MicroBlaze CPU providing a serial terminal
to a host workstation [23]. In the published case stud-
ies [21], faults are injected into a Sparc (LEON3) and a
MIPS-like (DLX) CPU, as well as an NoC router core.
Additionally, there is also a use case available online tar-
geting an unmodified version of Sun’s OpenSPARC imple-
mentation. The source code for both the instrumentation
tool and the HDL designs are publicly available from the
authors.

2.3 Discussion
While less problematic with respect to vendor depen-
dence and available information than the approaches in
Section 1, one possible drawback of FI at RTL is that
real-world designs often include components described in
both VHDL and Verilog. A real-world FI tool thus must be

able to parse and generate code in both languages, which
increases complexity and thus the likelihood for bugs in
the software that modifies the HDL. Moreover, “sabo-
taged” and “mutated” HDL may result in entirely different
logic after synthesis than the original design due to differ-
ent logic optimizations being applied, including retiming
and resource sharing. Thus, it is difficult to ensure that
the faults are actually inserted at the intended hardware
location and have no unforeseen consequences on the
DUT.
FI at the netlist level seems to be the most reasonable

approach for injecting faults in a running FPGA design:
(i) The process becomes reasonably vendor-independent
with the usage of a distinct logic synthesis tool such
as Synopsys’ Synplify or Mentor Graphics’ Precision.
(ii) It does not require any non-disclosed knowledge about
the targeted FPGA device such as bitstream format or
location of resources in the configuration memory. (iii)
It provides reasonable accuracy of the location of the
injected fault, as injection is done in an already optimized
post-synthesis netlist.
Arguably, the only drawback of this method is that

some signals present at the HDL level may not be present
anymore in the post-synthesis netlist.
Approaches like FITVS [19] and NETFI [20] that mod-

ify the FPGA primitives library are problematic because
this modification has to be done for each FPGA family and
vendor to be supported. Moreover, no separation between
FI logic and the DUT’s logic is possible as the output is
only one fault-injected netlist. Finally, it is often not nec-
essary to inject faults in each and every cell present in
an FPGA design potentially increasing the resource usage
beyond applicability.
Although CrashTest is publicly available and uses a

netlist-based flow, it has the following drawbacks: (i) The
dependence on Synopsys’ DC instead of a less expen-
sive FPGA synthesis tool such as Synopsys’ Synplify
or Mentor Graphics’ Precision that generate netlists in
a standardized format (e.g., EDIF or Verilog), (ii) The
impossibility to trigger different fault models in a sin-
gle netlist or switch between them at runtime, (iii) The
lack of a control over the FI timing—making simula-
tion or even reproduction of the same error condi-
tion impossible, and (iv) Most importantly, the high
hardware consumption caused by the MicroBlaze-based
FI controller, which is (v) Available for Xilinx FPGAs
only.
Hardware overhead incurred by the instrumentation of

a design with FI logic is a critical factor [24]: A FI sys-
tem with high hardware overhead may not fit into the
target FPGA together with the design under test. Proving
that test results obtained with a larger FPGA device are
equally valid in the (smaller) target FPGAmay be difficult,
as a different device may lead to changed implementation

Fibich et al. EURASIP Journal on Embedded Systems (2019) 2019:2 Page 5 of 19

results. This virtually forbids the usage of full-scale soft-
core processors for controlling FI in the context of fault-
tolerant designs subject to regulations for certification.
Using hard-core CPUs is also problematic as the DUT
most likely already depends on these resources for its
main application.
The ability to control the exact (cycle-accurate) tim-

ing of the injected faults is also an important feature
of a FI tool in order to track the system’s response on
faults in a logic simulation. Figure 1 shows an example:
A state machine observes signal s_activate in State
ACT_2 and moves either to State IDLE (if s_activate
= 0) or State ACT_3 (if s_activate = 1) respectively.
The dotted line of s_activate shows the case when an
SEU fault is injected during State ACT_2, that inverts
s_activate for one clock cycle and, thus, causes the
state machine to move on to State IDLE. If the timing
of the SEU fault cannot be reproduced cycle-accurately
in a logic simulation (s_activate must be set to logic
0 during State ACT_2) the behavior that is seen dur-
ing simulation would be different (the state machine
would move on to State ACT_3). As already mentioned in
Section 1, bitstream-related FI approaches based on, e.g.,
[13] and [14], do not provide exact control over the tim-
ing of the FI operations. Therefore, it would be difficult
to reproduce fault scenarios in a simulation using these
approaches.

3 The FIJI framework
As all of the previously existing FI solutions described in
the academic state of the art either require access to the
configuration memory format, rely on expensive tools, or
are resource intensive through the use of either an entire
hard-core or a soft-core CPU (see [24] and Section 5.4),
the decision was made to develop a FI framework to
improve on all these disadvantages.
In this work, we present Fault InJection Instrumenter

(FIJI), an open-source netlist-level FI framework for
FPGAs. [25, 26] FIJI provides tools to select nets
from a structural Verilog netlist, to instrument these

nets with FI logic (i.e., saboteurs), and to execute
FI tests. The scope of this framework is to evalu-
ate the effects of faults on selected nets on the over-
all behavior and functionality of (usually fault-tolerant)
designs. The following subsections give an overview of
the architecture, tool flow, and some distinct features
of FIJI.

3.1 Fault injection hardware architecture
The FI logic that is part of FIJI is provided as a parameter-
izable HDL design. Due to the absence of any technology-
dependent components such as BRAMs, PLLs/clock
managers, or hard CPU macros, the FI hardware can be
implemented on any FPGA device. Additionally, the FI
hardware was implemented as resource-saving as possible
and does not make use of complex hardware such as soft
CPU cores.
Figure 2 depicts a complete FIJI system comprising the

DUT (bottom right), together with the FIJI logic (top
right) in an FPGA connected to a controlling host com-
puter (left).
FIJI works by instrumenting individual nets of a given

netlist of a DUT with FI logic according to a predefined
FI configuration. For each affected net there exists exactly
one Fault Injection Unit (FIU) that can alter the respective
signal. A single fault injection controller (FIC) manages
these FIUs and other components of the FIJI logic. It can
be parametrized to fit the original design and required test
properties for low resource usage. The FIC is connected to
a host computer via a UART unit to allow remote changes
of the FIU configurations and control the execution of the
system.
FIJI automates most of the required steps to create such

a system, including the generation of a top-level design
that hosts FIJI’s FI logic and the instrumented DUT, as
explained in the next subsection.

3.2 Netlist transformation and execution flow
This section briefly describes the steps required from a
given user HDL design to the execution of FI experiments

Fig. 1 Example illustrating the importance of exact FI timing

Fibich et al. EURASIP Journal on Embedded Systems (2019) 2019:2 Page 6 of 19

Fig. 2 Hardware overview (DUT and FI logic)

of an instrumented version of that design. An overview of
the tool flow implemented by FIJI can be seen in Fig. 3.
The flow starts with the creation of an original Verilog

netlist of the design that can be obtained using a logic syn-
thesis tool from the original HDL design. In the second
step, the user configures various aspects of the instrumen-
tation via FIJI’s Setup tool. This tool allows the user to
enter nets to be targeted and options of the FI hardware
subsystem such as interaction points with the DUT for
resetting, timing, and triggering.
FIJI Setup generates a configuration file that is to

be forwarded to the instrumentation tool together with
the unmodified original netlist. The instrumentation
tool parses this netlist, alters it by inserting saboteurs
at selected places according to the configuration, and
embeds the now instrumented DUT design into a gen-
erated wrapper containing the other components of the
FIJI hardware and their interconnect. The wrapper has
essentially the same input and output ports as the origi-
nal netlist (apart from some additional pins), allowing to
re-use existing pin constraints.

The user is then required to synthesize and imple-
ment (i.e., place and route) this wrapper to produce a
bitstream. Some constraints that may be needed to imple-
ment the design (e.g., clock constraints, pin locations)
have to be ported manually from the original design due
to this hierarchy change. Once a device is configured with
this bitstream via a download tool, and the relevant FIJI
ports connected to a host PC, the design is ready for FI
campaigns.
Finally, FIJI provides an execution engine that commu-

nicates with the generated FI logic over a serial interface
and lets the user direct the FI operations. Faults can be
injected either in a one-shot manner with manually set
parameters, as a pre-configured sequence, or in a con-
strained random sequence. After a test run, the execution
engine allows to export simulation templates to recreate
the executed FI run in either RTL or gate-level simulation.

3.3 Fault models
FIJI supports the injection of faults according to four dif-
ferent fault models. The intent in the selection of these

Fibich et al. EURASIP Journal on Embedded Systems (2019) 2019:2 Page 7 of 19

Fig. 3 FIJI tool flow

models was to be able to emulate a large share of the
low-level fault modes to be expected in an integrated
circuit either due to aging effects or due to soft errors.
The selection of the fault models has also been inspired
by the CrashTest framework [21] but omits its bridging
fault model. Adding this and other theoretically useful
fault models was taken into account when designing and
implementing FIJI and thus should be straightforward if
need be.
The fault models supported by FIJI are explained below

and visualized in Fig. 4:

• Stuck-at-faults (0/1) allow to model a large share of
faults that are experienced in an integrated circuit,
e.g., faults in LUTs.

• Stuck-open allows to model a floating net, e.g., due to
an interconnect fault by toggling the net randomly.

Fig. 4 Timing diagrams of fault modes

This is done by connecting the net to the output of an
Linear Feedback Shift Register (LFSR).

• Delay allows to model faults that arise due to timing
violations, e.g., due to temperature or capacitance
effects.

• The SEU fault model allows to invert an
instrumented net for one clock cycle. The aim of this
fault model is to emulate the effect of a particle strike.

3.4 Fault injection timing
FIJI allows selecting the desired fault model at runtime.
This selection, as well as the timing and other control
capabilities described in the remainder of this section, are
controlled by a host PC via an external serial interface. The
protocol that is exchanged over this interface is message-
based; one FI message contains two fault models for each
FIU to be applied subsequently.
In order to be able to emulate faults of precise dura-

tion and frequency, FIJI provides capabilities to time the
application of the selected fault models with clock-cycle
accuracy. This is especially important when attempting to
recreate a fault condition found using FIJI in simulation
later on.
Timing of the injected faults is implemented entirely

in the FI hardware subsystem, with a hardware timer
of configurable width. As stated earlier, FIJI allows to
configure two fault patterns per configuration mes-
sage that are applied in two different phases of the FI
whose duration is influenced by the hardware timer.
An overview of a single FI sequence can be seen
in Fig. 5.

Fibich et al. EURASIP Journal on Embedded Systems (2019) 2019:2 Page 8 of 19

Fig. 5 Overview of FI phases

Initially, when no FI message has been received by the
FI hardware, all FIUs are configured as pass-through, i.e,
they do not influence the original signal.
The sequence begins when the first configuration is

downloaded in phase CONF. After successful reception,
the hardware commences an optional WAIT phase if
instructed to do so by the configuration message. The
hardware can wait for an edge on an internal or external
trigger signal. This allows for precise synchronization of
injection with stimuli generated by external hardware or
signals of the DUT.
The following phase RESET is optional (and selectable

via the FI message) as well. If enabled, an output signal
is activated that can be used to reset (parts of) the DUT.
Its duration in clock cycles and its level can be set at
configuration time.
Phase COUNT is the last phase that merely changes

the timing behavior. Its duration is determined by the
first of two timer values transmitted per configuration.
Afterwards, the FIUs are instructed to apply the first fault
model. The first timer value t1 thus specifies the duration
to wait after the reception of the message, the potential
registering of a trigger edge, and the potential application
of the internal reset signal before applying the first fault
model.
In the FAULT1 phase, the second timer value t2 is

counted down. Afterwards, the second downloaded fault
model is applied by the FIUs during FAULT2. The second
timer value t2 thus specifies the number of clock cycles
the first fault pattern is applied by the FI logic. During
the FAULT1 phase, the FI hardware is ready to receive
the next fault configuration message consisting of the two
next timer values and fault patterns. If this message was
received before FAULT1 phase was completed, the cycle
restarts with the optionalWAIT phase as soon as FAULT1
ends. The second fault pattern thus stays active until the
timer value t1 of the next configuration has been counted
down. This overlapping of FI operations and the reception
of the next fault pattern allows the seamless back-to-back
injection of faults, further facilitating the recreation of
fault effects in simulation.

4 Practical aspects of FIJI
In this chapter themost important implementation details
of the framework are given. First, the messages exchanged
between the host and the FI logic are explained. The

two following parts describe the inner workings of FIJI’s
hardware, as well as the software handling configuration,
instrumentation, and run-time execution of the FI. Even-
tually, the small use case intended to allow new users to
become familiar with FIJI and experiment with its various
options is introduced.

4.1 Communication protocol between host and FIC
Figure 6 depicts the fields in a fault configuration mes-
sage sent from the host to the FIC. It contains six bits
per FIU for the configuration of two fault patterns. A
number of padding bits is prepended to the message to
align the FIC configuration data (timer values, design ID,
. . .) to byte boundaries. The exact format depends on the
parametrization of the FI hardware subsystem, i.e., the
timer width and the number of FIUs.

Fig. 6 Host-to-FIJI message for a system with 3 FIUs and N-bit timers

Fibich et al. EURASIP Journal on Embedded Systems (2019) 2019:2 Page 9 of 19

The following bytes specify attributes applying to all the
instrumented nets for the sequence of phases determined
by this instance of configuration message. This data con-
sists of two timer reload values determining the length of
theCOUNT and FAULT1 phases and a configuration byte.
The latter determines the reset (R: “reset enable”) and trig-
ger behavior (TE: “trigger enable”, XT : “external trigger”)
of the sequence. Setting bit U instructs the FIC to discard
the fault patterns and only send a status update back to the
host.
The configuration message is concluded with a 16-

bit design ID. The purpose of this ID is to prevent the
unintentional use of a configuration mismatching the
instrumented netlist. For the configuration to be actually
applied, this ID must match the one embedded into the
design at instrumentation time. The design ID is gener-
ated by the Instrumentation Tool by hashing the original
DUT netlist and FIJI’s parametrization via VHDL con-
stants. Additionally, the integrity of configuration mes-
sages is protected via an 8-bit CRC (CCITT polynomial
x8 + x2 + x + 1).
The messages returned by the hardware to the host are

single-byte status words as depicted in Fig. 7 that describe
the current state of the system. Additionally, the value of
two fault detection nets are output that may be used to
detect the propagation of an injected error through the
design and verify that fault detection within the DUT is
working. The integrity of the single-byte status word is
protected by a parity bit.

4.2 Fault injection hardware
The HDL wrapper generated by the instrumentation tool
instantiates the modified netlist. This netlist has the same
input and output ports as the original netlist, but in addi-
tion has the broken-up nets exposed as ports, with the
original driver now connected to an output, and all the
driven cells’ inputs connected to an input port.

Fig. 7 FIJI-to-host message

By parameterizing the wrapper, the entire FI capabil-
ity can be turned on and off. Either the FI hardware
subsystem is instantiated for the instrumented nets to
pass through, or each instrumented output is directly
connected to the corresponding input effectively recon-
necting the split nets (just outside the DUT). This allows
the use of the same instrumented netlist of the DUT for
FI tests as well as in the final design (i.e., without any FI
capabilities).
Additionally, separation constraints can be set to pro-

duce a bitstream that contains the DUT and the FIJI logic
in distinct physical blocks of the FPGA device and pro-
hibit optimizations beyond DUT boundaries. That way
any unintended influences between FIJI and the DUT
are avoided. Figure 8 shows an exemplary floorplan with
physical separation between the DUT’s logic and FIJI.
Details of the FI hardware subsystem can be seen in

Fig. 9. In the remainder of this subsection, the functional-
ity and the specifics of the major blocks will be described.
The three major components are the UART that estab-
lishes the communication to the host PC, the FIUs that

Fig. 8 Example floorplan of an FPGA design containing FIJI

Fibich et al. EURASIP Journal on Embedded Systems (2019) 2019:2 Page 10 of 19

Fig. 9 Overview of the FIJI hardware

directly tap into the instrumented nets, and the FIC that
reacts to configuration messages sent by the host and
orchestrates the whole FI.

4.2.1 Fault injection controller
At runtime, the behavior of the FIC can be controlled via
a serial interface. This interface consists of a data signal,
a shift-enable signal indicating that the data line is valid,
and a framing signal that indicates the start of a new byte.
Additionally, an error signal is used to inform the FIC of
detected transmission errors.
A finite state machine (FSM) in the FIC forwards the

received data to its internal registers corresponding to the
fields in the protocol for the general configuration infor-
mation and to the FIUs for the fault pattern information.
In addition to directing the received data, the FIC also
handles the activation of the FIUs, and, if configured, the
activation of a reset signal for the DUT according to the
trigger and timer values.
In particular, the FIC can be instructed via the config-

uration message to defer execution of the fault patterns
until an edge is registered on either a trigger signal coming
from the DUT or an external trigger. The polarity of these
edges can be configured at instrumentation time. Timing
for the application of the fault patterns is controlled by a
timer unit in the FIC. The width of this timer unit can be
configured at instrumentation time and is loaded by the
FIC with the transmitted timer values at runtime.

Furthermore, the FIC can be configured to generate a
reset pulse of adjustable duration if the FIC-to-DUT reset
is enabled at instrumentation time. The entire FI hardware
subsystem can either be reset by a signal from an external
port or from a net of the DUT (the latter, of course, only if
the FIC-to-DUT reset capability is disabled).
The internal state of the FIC provides the majority of the

status bits transmitted back to the host via the UART (cf.
Fig. 7).
Finally, the FIC module also hosts the LFSR that is

used by the FIUs to emulate a floating net caused by a
stuck-open error. Its width and generator polynomial are
selectable at instrumentation time. Each FIU uses a subset
of its output bits to create the signal of the “floating” net.

4.2.2 External communication interface
The intended use case for the FI hardware subsystem
is to be controlled via a host external to the FPGA. An
asynchronous serial interface allows bidirectional com-
munication while requiring just two additional IO pins
of the FPGA device and a justifiable amount of FPGA
hardware resources.
The UART module handles the synchronization of the

incoming data signal as well as the detection of the data
framing (start and stop bits). Data is forwarded to the FIC
via its serial interface; detected framing errors are signaled
using the error line. Furthermore, the parallel outgoing
data from the FIC is serialized and a parity bit appended

Fibich et al. EURASIP Journal on Embedded Systems (2019) 2019:2 Page 11 of 19

before it is sent to the host, as a CRC for this direction of
data transfer would be inefficient.
During normal operation, a configuration message that

is sent by the host to the FIC results in an immediate
CONF_DONE message by the FIC, followed by a READY
message at the end of the fault phase, i.e., after the timer
duration t1 has been counted down (cf. Section 3.4). Fur-
thermore, an UNDERRUN message is sent if the host did
not send a new configuration during the first injection
phase as specified by t2.
As both t1 and t2 can be as short as a single clock cycle,

the READY and UNDERRUN messages need to be buffered
before being sent over the serial link. For this purpose,
FIJI instantiates a small FIFO buffer that can hold three
messages to be transmitted.

4.2.3 Fault injection units
For each instrumented net, the generated FI wrapper
instantiates an FIU. The purpose of each FIU is to inject
a fault into its corresponding net when instructed by the
FIC. Each FIU is configurable to support at runtime either
all fault models (stuck-at-0/1, delay, SEU, stuck-open) or
only a single fault model. This reduces the amount of
hardware resources and the path delay introduced by the
biggermultiplexer thus helping tomaintain clock frequen-
cies when instrumenting critical nets.
Each FIU contains two sets of six-bit registers: a shift

register that is used to shift in the configuration issued
by the FIC, and a pattern register holding the currently
active fault patterns. The shift registers in all the FIUs are
daisy-chained and filled by the FIC as it receives configu-
ration data (cf. Fig. 6). A separate signal activated by the
FIC instructs the FIUs to update the pattern register with
the newly shifted-in data. This allows the current config-
uration to stay active while shifting in new data, as well as
discarding an invalid configuration (e.g., if the message’s
CRC is incorrect) before it affects the DUT.
A multiplexer that is controlled by the currently applied

fault pattern bits selects which signal is fed into the DUT.
This can be the value of the original net or any faulty
version of the signal if a fault is to be injected. The FIU
realizes each of the supported fault models as config-
ured. To that end, the multiplexer can select between
various flawed inputs, such as constant lows and highs
(for stuck-at-0/1 errors), a register with the previous value
of the original net (to emulate delay faults), and parts of
the LFSR. A user-defined mask is used to customize the
frequency and sequence for the simulated stuck-open out-
puts of the FIUs. This mask specifies which of LFSR bits
to AND together to form the faulty signal.

4.3 FIJI software components
The three main software parts of FIJI are written in
Perl 5. For graphical user interfaces, they rely on Perl/Tk

while netlists are parsed and manipulated with the help
of Verilog-Perl [27], which is a library written in Perl
and C++ for parsing Verilog and SystemVerilog. Because
Verilog-Perl could not distinguish nor manipulate individ-
ual signals of concatenations or vectored nets, we added
support for these features and contributed it back to the
community in an iterating process with helpful reviews
from the upstream maintainer Wilson Snyder. The first
upstream release including these changes is version 3.440.
The four main Perl programs utilized in FIJI’s flow are

depicted as reddish blocks with round corners in Fig. 3
and will be described in the following sections.

4.3.1 Setup tool
FIJI Setup (fiji_setup.pl, see Fig. 3) is a graphical
configuration tool that provides the user a comfortable
way to specify the various options of a FIJI project and
to save/restore it in/from a text-based configuration file.
Figure 10 presents a typical instance of FIJI Setup that
depicts the tab used to configure the individual FIUs. On
the top and bottom, there are some widgets commonly
shown for all tabs. Among other things, the status bar
on the bottom shows the deviation of FPGA resources
relative to a simple default configuration of FIJI (virtual
resource factors) to allow the engineer to estimate the
resource usage of changed settings without the need to
completely synthesize the whole design. The graphical
representation of the system shown on the left of the win-
dow is also always visible and dynamically rearranged to
reflect the current configuration data. This diagram like
many other widgets in FIJI Setup provides more detailed
information when hovering the mouse over respective
elements by way of tooltips. Additionally, all input wid-
gets validate user inputs and signal possible errors or
inconsistencies including the causes.
In the FIU tab, which is active in the screenshot, the

engineer can create new FIUs or edit, rearrange, and
delete existing ones. The select buttons open dialogs
allowing to search for elements of a loaded netlist by sim-
ple substrings, typical globbing, or regular expressions.
They are used to define the instrumented net of the
respective FIU (i.e., the locations where to inject faults)
and select the driver thereof in case of ambiguity. The
Model and LFSR mask settings refer to the fault model
and selection of random bits as explained at the end of
Section 4.2.3.
Additionally, the FIUs can be named individually for

easier discernibility in the configuration file(s) and latter
steps.

4.3.2 Instrumentation tool
The main task of the instrumentation tool (fiji_
instrument.pl, see Fig. 3) is to actually perform the
modifications of the DUT netlist according to the infor-
mation in the FIJI Settings. In particular, it breaks up

Fibich et al. EURASIP Journal on Embedded Systems (2019) 2019:2 Page 12 of 19

Fig. 10 FIJI setup tool: FIUs tab

each selected net and inserts a saboteur in between as fol-
lows. User interaction is not required during this process;
therefore, the tool was implemented as a command-line
program.
For each [FIUn] entry in the settings file, it splits the

corresponding net into an original and a modified net
as shown in Fig. 11. The driver attached to the original
net is then connected to a newly created output port of
the module where it is instantiated, while the driven pins
via the modified net are connected to a new input. Both
get passed on to the existing top-level entity where they
are further exported by adding them to the entities exter-
nal interface. This modified netlist is written to a new
file, alongside with a wrapper that instantiates and con-
nects both the modified netlist and the parametrized FI
hardware subsystem (which includes the FIC and FIUs)
as shown in Fig. 2. The wrapper has essentially the same
input and output ports as the original netlist, allowing
to re-use existing pin constraints. It, however, also intro-
duces a small number of additional pins needed by the
FI subsystem (e.g., to communicate with the host). Addi-
tionally, the instrumentation tool also produces a set of
template constraint files for the chosen P&R tool to logi-
cally and/or physically separate the FI logic and the DUT
netlist.
All steps of the instrumentation need to take busses

into account. Moreover, FIJI supports instrumentation of
multiple bits of a single bus (with one dedicated FIU per
bit). To test our Verilog-Perl changes required to accom-
plish that as well as the instrumentation code itself, several
unit tests were set up consisting of minimal netlists and
associated FIJI Settings. These tests cover many differ-
ent combinations of instrumentation targets (e.g., pins,

internal nets) and drivers of these targets which helped to
find many bugs in corner cases.
First, the unit tests instrument the netlists with the

instrumentation tool. The instrumented netlists are
quickly checked for syntax errors and the like by syn-
thesizing them with Synplify and filtering out benign
warnings. In addition to the syntax check, a behavioral
simulation tries to find discrepancies between an instru-
mented and untouched entity of the respective netlist. To
that end, the test instantiates them in a testbench and
compares their output when fed auto-generated input.
The tests are not exhaustive but very effective since instru-
mentation bugs usually affect the signal path in a very
direct manner and more formal techniques are unneces-
sary in this particular use case.

4.3.3 Execution engine
While the exact timing of the individual FI phases is han-
dled by the hardware, the FIJI software on the host PC

Fig. 11 Splitting of a target net during instrumentation

Fibich et al. EURASIP Journal on Embedded Systems (2019) 2019:2 Page 13 of 19

controls the broader aspects of the execution by provid-
ing FI configurations to the hardware (cf. Section 3.4). It is
therefore responsible to supply the FIC with new patterns
to sustain a cycle-accurate FI if this is desired. This will be
discussed in more detail in Section 5.5.
There are two options available to control the FIJI logic

at run time (as can be seen in Fig. 3). The FIJI Execu-
tion Engine (FIJIEE) tool is a command-line tool which
facilitates downloading pre-defined or random test pat-
terns but can also be controlled interactively. The FIJIEE
GUI tool (shown in Fig. 12) provides a graphical user
interface for roughly the same functionality. Both com-
municate with the FIJI logic in the target FPGA via serial
connection (UART) to download test patterns and read
back status information.
The FIJIEE GUI can create a sequence of fault patterns

to be downloaded one after another. For each test pat-
tern, the timer values can be changed, the reset and trigger
options enabled, and the individual FIUs configured. Such

a sequence of patterns together with settings applying
to the whole sequence (e.g., conditions when to halt the
test execution) can be saved to a file and reloaded later
or exerted by the command-line tool (e.g., in automated
tests).
Both applications support a manual mode where the

parameters of a single fault configuration can be entered
and executed. Additionally, random tests can be set up
where the user determines the global probability of the
various fault models as well as lower and upper bounds
on t1 and t2. The probabilities are then used to determine
the state of the FIUs in each message sent in two possi-
ble ways: Either a single FIU is selected at random and
armed according to the global probabilities, or each FIU
is subject to possible faults according to these probabili-
ties, which potentially leads to multiple injected faults in a
single phase.
Once a FI test has been completed (either a com-

plete sequence has been downloaded, a fault detect line

Fig. 12 FIJI execution engine

Fibich et al. EURASIP Journal on Embedded Systems (2019) 2019:2 Page 14 of 19

reported an error, the user aborted the sequence or man-
ual downloading, or a transmission error occurred), the
current test run can be exported by the FIJIEE GUI for
reproducing it at a later time in hardware or in simulation.
For simulations, two ways are supported: For RTL sim-

ulation, FI logic templates can be created that have to be
integrated into the various RTL modules manually. Addi-
tionally, a scheduling process that controls these templates
using hierarchical identifiers is exported.
Alternatively, FIJIEE can also prepare a gate-level simu-

lation for re-executing the test patterns that ran in actual
hardware. To that end, FIJIEE tools are able to export the
executed tests as a VHDL architecture for the top-level
entity of the FI logic. This architecture replaces the FIC
and the FIUs with a simulation-only description that sets
the modified net outputs according to the timing of the
test run previously executed in hardware.

4.4 Demo design
FIJI was put to practical use in an FPGA-based safety
demonstrator containing a triplicated MC8051 soft CPU
core that allows for limited N-version programming
[28]. As this demonstrator is quite complex and rather
heavyweight concerning synthesis tool runtimes, the first
public release of FIJI (cf. “Availability of data and mate-
rials” section) also contains a reduced version of this
demonstrator as a demo design. This design is intended
to guide the user through the first steps with the FIJI
framework.
The demo design consists of a simple VGA controller

that moves a small airplane sprite across the screen.
Although initially designed for a few low-cost FPGA
boards only (i.e., Terasic DE0 (Altera/Intel Cyclone III),
Digilent Basys 3 (Xilinx Artix-7) and Zybo (Xilinx Zynq-
7010)), it is easily portable to other development boards
that provide a DIP switch, at least two buttons, and a VGA
connector.
An overview of the design is shown in Fig. 13. The

design contains a module that is responsible for generat-
ing the VGA timing signals, as well as row and column
information for the sprite engine that moves the airplane
image across the screen. The output of this sprite engine
are the red, green, and blue color signals for the VGA
interface. Triple modular redundancy (TMR) has been
applied to the sprite engine, with majority voting over
each color signal. The voter can be disabled using a DIP
switch.
By instrumenting nets in the netlist of this demo design,

the user can explore the effects of failures injected into
different portions of the design. For example, errors in the
VGA timing controller cannot be masked by TMR, mak-
ing this design unit a single point of failure. Faults in one of
the three sprite engine instances can be tolerated without
effect if the majority voter is enabled.

Figure 14 shows the behavior of the demo design
in simulation under the injection of each supported
fault type. The respective faults are injected into
the MSB output signal of the sprite engine’s shift
register that holds the current line of the airplane
image. The original value of this signal is denoted as
fiji_s_sprite_line_31_ori_o in Fig. 14, while
the faulty versions of this signal are denoted as
as fiji_s_sprite_line_31_inj_i. In the demo
design (see Fig. 13), this shift register output is used to
generate the values of the RGB output registers at each
VGA pixel clock cycle. The blue output register is dis-
played in Fig. 14 as s_blue_tmr_partitions_1. In
this example, the injected stuck-at and stuck-open faults
propagate to the design’s output, i.e., they affect the VGA
signal. Moreover, the example illustrates that in some
cases—if a delay fault or an SEU fault is injected—a fault
is masked by the state of the DUT. Thus, the fault effect is
visible on the shift register output but does not propagate
to the design’s boundary.

5 Evaluation
This section provides an overview over empirically deter-
mined tool runtimes for a number of designs with differ-
ent netlist sizes, as well as the influence of FIJI’s hardware
instrumentation on a design’s performance and resource
usage. The resource overhead incurred by FIJI is com-
pared to the overhead caused by CrashTest [21] for an
OpenSparc T1 use case. Additionally, latency benchmarks
in a typical environment (USB-to-serial converter) are
provided to allow an estimation of the maximum FI rate.
If not stated otherwise all measurements below were

taken on an Intel i7-6600U (2.60 GHz) machine with
20 GiB RAM running Debian GNU/Linux.

5.1 Instrumentation performance
The framework presented in this work is expected to work
with netlists that may include tens of thousands of cells,
hundreds of modules, and millions of nets interconnect-
ing them. In order to allow estimation of runtimes and
memory requirements for real-world netlists, benchmarks
were conducted on a set of netlists of different sizes. The
netlists were generated by Synplify Pro 2014.09-SP2 from
designs included in the Titan Benchmark Suite [29], the
AO486 project [30], and the Sparc64 project [31]. In each
netlist, FIJI was set up to instrument a single net in the
first run. In the second run, ten nets were instrumented.
The time and memory (maximum resident set) needed
by the instrumentation tool to generate the altered netlist
was measured using GNU time. The results are shown
in Table 1. It can be seen that both the loading time
and the time to instrument a given net depend on the
netlist size. The netlist size is given in in library cells in
Table 1. The netlist’s structure also seems to be a factor

Fibich et al. EURASIP Journal on Embedded Systems (2019) 2019:2 Page 15 of 19

Fig. 13 TMR VGA demo design

in instrumentation time, as the increase between 1 and
10 nets in the larger ao486_hier netlist (hierarchical) is
by far less dramatic than its flat counterpart ao486_flat.
This effect is also—albeit not as pronounced—observed in
the sparc64soc_flat and sparc64soc_hier benchmarks. The
bitcoin_miner_hier benchmark did not complete within
the specified timeout of 20 min.

5.2 FPGA resource usage
A minimal system comprising the FIJI control logic and
a single FIU requires approximately 300 registers and 300
LUTs in a Xilinx Artix-7 FPGA device. To measure the

determining factor influencing the resource usage, we
obtained values while varying the timer width (8, 16, 32,
and 64 bits), baud rates (115,200 Bd and 3 MBd), and
instrumented nets (i.e., the number of FIUs). The clock
constraint was set to 200 MHz and the LFSR width was
fixed at 16 bit. Figure 15 plots the number of FFs and
LUTs over the number of FIUs. The error bars indicate
the influence of the other variables, which is comparably
small. The measured values clearly indicate the strongest
correlation exists between the number of FIUs and the
required hardware resources. This is expected since the
other variables mentioned above influence only parts that

Fig. 14 Behavior of the TMR VGA demo design under fault injection

Fibich et al. EURASIP Journal on Embedded Systems (2019) 2019:2 Page 16 of 19

Table 1 Time and resource consumption of the instrumentation process

Netlist Library Cells Time (1 Net) [mm:ss] Time (10 Nets) [mm:ss] Peak Memory (1 Net) [GiB] Peak Memory (10 Nets) [GiB]

leon3_hier 12020 0.11 0.19 0.40 0.41

wb_conmax_top_hier 13118 0.13 0.17 0.50 0.51

ucsb_152_tap_fir_hier 15566 0.14 0.16 0.60 0.61

sudoku_check_hier 19480 0.17 0.23 0.58 0.59

uoft_raytracer_hier 22337 0.19 0.31 0.70 0.71

jpeg_hier 35522 0.29 1.14 0.98 0.99

ch_dfsin_hier 36316 0.32 1.34 1.02 1.03

smithwaterman_hier 49078 0.47 2.54 1.46 1.47

ao486_flat 86309 1.25 5.26 2.52 2.52

ao486_hier 86309 1.04 1.21 2.45 2.46

system90_hier 107021 1.36 1.51 3.77 3.78

sim32_10x10_hier 141491 2.22 2.52 5.36 5.37

LU230PEEng_hier 159822 2.48 7.24 4.94 4.97

sparc64soc_flat 228581 2.42 4.02 5.84 5.83

sparc64soc_hier 228581 3.12 4.33 7.27 7.27

bitcoin_miner_hier 1032434 – – – –

are instantiated exactly once per design while each added
FIU directly and indirectly requires a constant amount
of additional resources. Other factors that impact the
resource count are the configured timer width and LFSR
length.

Fig. 15 FIJI resource usage vs. number of FIUs (Xilinx Artix-7 FPGA
device)

5.3 Timing penalty
FIJI may impact the timing in two ways: The maximum
clock frequency of the FIC and the FIU configuration
path, and the logic that is inserted into the path of the
instrumented signals. The maximum achievable clock fre-
quency of the FIC itself mainly depends on the width of
the timer as shown in Fig. 16. For each timer width, tim-
ing results for a Xilinx Artix-7 FPGA device were obtained
with designs containing between 10 and 256 FIUs, and at
baud rates 115,200 Bd and 3 MBd. The error bars show
how the other variables manifest themselves in the timing.
Their influence on the timing is greater than on resources
because they change the width of some timers too (e.g.,
slower UART baud rates require a larger counter in the
UART).
The logic function inserted into the paths of the original

netlist is either an 8-to-1 demux if the FIU’s fault model
can be set at run-time, or a 2-to-1 demux if the fault model
is configured statically. Thus, the timing penalty incurred
on each net is constant and does not vary with any other
configuration parameter of the design.

5.4 Comparison with CrashTest
Of the netlist-based FI approaches in the current state
of the art, CrashTest [21] is most closely related to the
FIJI framework presented in this work. The main differ-
ence to FIJI are the supported fault models and the FI
control logic. CrashTest uses an embedded CPU (hard-
core PowerPC or soft-core MicroBlaze) to control the FI
execution, while FIJI provides custom-built logic for this
task. Moreover, FIJI allows to instrument individual nets

Fibich et al. EURASIP Journal on Embedded Systems (2019) 2019:2 Page 17 of 19

Fig. 16Maximum frequency vs. timer width in bytes (Xilinx Artix-7
FPGA device)

for multiple fault models that can be selected at runtime,
while CrashTest only allows to select a single fault model
at instrumentation time.
To evaluate FIJI against this pre-existing tool,

resource usage and timing were selected as met-
rics. The authors of CrashTest provide use case
designs based on an OpenSparc T1 and a Leon3 CPU
core on their website [32]. The comparison for this
work was done based on the instrumented netlist
sparc_exu_alu.stuck_at_128.ct.v that has 128
nets in the ALU of the OpenSparc T1 CPU instrumented
by CrashTest. The same nets were instrumented by FIJI.
Both instrumented netlists were synthesized together
with the surrounding OpenSparc T1 design, and with
FIJI’s FI logic in the FIJI variant, in a second step using
Synplify Pro. Both designs were placed and routed using
Xilinx ISE 11.5, for which the authors of CrashTest
provide a project that also instantiates the necessary
MicroBlaze CPU, memories, and interface logic to the
instrumented netlist. For the FIJI variant, these design
components were removed, as the wrapper generated
by FIJI also contains all necessary FI logic. A resource
and timing comparison of CrashTest and FIJI is provided
in Table 2. The resource values have been reported by
Xilinx XPS/ISE 11.5 for a complete system (including
all FI control logic). It has to be noted that the MicroB-
laze CPU in the CrashTest design may also be used for
communication with the OpenSparc CPU, and thus can
also be partly seen as a part of the design logic itself. The
provided fmax value is the maximum frequency of the
instrumented DUT (Sparc) netlist only as estimated by

Table 2 CrashTest vs. FIJI: resource usage and timing

Framework LUT Reg BRAM fmax [MHz]

CrashTest 40540 32027 111 50.7

FIJI 30567 22285 92 52.6

Synplify Pro 2014.09-SP2, as with CrashTest, a clean dis-
tinction between fault control logic and the instrumented
DUT is not possible after place&route.
In the preliminary work of the authors [24], a compar-

ison of FIJI with other related work has been conducted
which also shows the low number of resources consumed
by FIJI. For example, Pellegrini et al. [21] make use of an
FPGA-internal SDRAM controller that implies a signifi-
cant overhead of FPGA resources (about 300 LUTs plus
400 FFs at minimum). The approach from Mansour and
Velazco [20] even requires a number of external com-
ponents like a second FPGA, memories, or an Ethernet
controller. The same applies to the work of Mogollon et
al. [11]. The resource count on LUTs and FFs of FIJI and
the work described by Grinschgl et al. [17] is similar to
FIJI but; however, a hard-core CPU plus additional Block
RAM (to implement the CPU’s memories) is needed by
[17]. For the bitstream-related approaches [9, 13, 14], a
dedicated Altera/Xilinx IP core is required for fault injec-
tion that consumes a relatively high number of resources,
especially when only a few nets need to be instrumented
(5000 LUTs/5400 FFs for Altera’s Fault Injection Debugger
IP Core, resp. 750 LUTs/350 FFs/7 kByte Block RAM for
Xilinx’s Soft Error Mitigation IP Core) see [24] for further
details.

5.5 Execution latency
A cycle-accurate seamless succession of injected faults
as needed when reconstructing a fault in simulation can
only be achieved by FIJI when a subsequent fault pat-
tern is ready to be applied upon completion of duration t2
of the previous pattern (see descriptions in Section 3.4).
Thus, t2 has to be large enough to accommodate the
FIC-to-Host latency for the READY message, processing
time of the host, and the Host-to-FIC latency and trans-
mission time of the next configuration. Figure 17 shows
the measured minimal duration t2 needed to download
seamless fault configurations for a given number of FIUs
and baud rate reliably (no underruns for 1024 configura-
tions). To reduce jitter in the measurements introduced
by the host’s operating system the results were obtained
while facilitating a kernel with the realtime patch set
(Debian Linux Kernel 4.11.0-1-rt-amd64). FIJIEE was exe-
cuted pinned to a single (exclusively reserved) CPU core
with locked memory pages while frequency scaling and
scheduling of the process was disabled. As a USB-to-serial
converter, the FTDI FT2232C dual-FIFO chip provided

Fibich et al. EURASIP Journal on Embedded Systems (2019) 2019:2 Page 18 of 19

Fig. 17Minimal duration t2

by Digilent’s Basys 3 development board was used. Min-
imal t2 was evaluated for three different common baud
rates: 115,200 Bd, 1 MBd, and 3 MBd. It can be seen that
even for small configurations (e.g., 10 FIUs), the latency of
the entire SW/HW stack limits the minimal t2 to approx-
imately 20ms regardless of the baud rate. Starting from
there, the minimal t2 grows linearly with larger configu-
rations due to the additional bits required for each FIU in
host-to-FIC messages (cf. Fig. 6). Latency and full-stack
data throughput seem to be the limiting factors for min-
imal t2 rather than the baud rate at which messages are
sent. Due to the modular structure of the FIJI hardware,
one approach to increase the number of tests per time
unit may be to replace the UART module with another
means of communication, e.g., a buffer in on-chip mem-
ory that is loaded with configurations for one entire FI
campaign. Such approaches would, however, consume a
higher amount of FPGA resources.

6 Conclusion and outlook
This paper gives an overview of state-of-the-art methods
to inject faults into HDL-based hardware designs. Frame-
works manipulating individual signals in HDL code or
netlists are described in detail and their pros and cons
are discussed. Due to their disadvantages the Fault InJec-
tion Instrumenter (FIJI) framework was conceived and
is made available as open-source software [25, 26]. FIJI
is a netlist-based fault injection framework capable of

precisely targeting individual signals in a clock-accurate
manner with fault models that are switchable during test
execution. Its hardware components can be configured
depending on the available FPGA resources and timing
slack to be tuned to the respective use case. Furthermore,
separation constraints can be set to to avoid any unin-
tended influences between FIJI and the DUT that could
compromise the certification process of the final system.
Additionally, the FI logic can be replaced with simple stubs
that forward the unmodified nets. These points make it
possible to use almost the exact same design during devel-
opment, certification and deployment without changing
the target FPGA.
FIJI contains extensive documentation including a demo

design and automates most of the necessary steps from
an existing design to instrumentation of the netlist and
execution of fault injection runs. An evaluation highlights
its applicability and its ability to inject faults into rela-
tively large designs where gate-level simulations would be
infeasible in reasonable amounts of time.
Finally, the following items relate potential for future

improvements:

• The instrumentation benchmark results show that in
some cases the addition of instrumented nets
significantly increases instrumentation time. The
overhead of instrumenting each net may be reduced
by thoroughly profiling the application in order to
speed up instrumentation of a larger number of nets.

• Multi-clock designs where injections into nets of
different clock domains are required are not directly
supported by the framework. Instrumenting them
with FIJI currently requires multiple instrumentation
runs to add n fault injection controllers to
accommodate faults in n clock domains. At present,
FIJI’s run-time execution is not able to synchronize
fault events between different clock domains, thus
losing its clock-accurate injection capabilities.

• In some use cases it would be useful to communicate
with the fault injection controller from within the
DUT, e.g., by connecting it with selected ports of a
hard-core processor within the FPGA for
self-diagnosis.

• The available fault models work on the low-level
states of individual nets. However, bus systems and
other entities driven by FSMs could be more easily
tested if they could be dealt with using more abstract
semantics. For example, certain protocol errors with
multiple conditions on multiple signals could then be
injected more effectively.

Acknowledgments
We thank Wilson Snyder for his engagement in shaping our contributions to
Verilog-Perl, and our colleagues at the University of Applied Sciences
Technikum Wien for their feedback that helped to improve the manuscript.

Fibich et al. EURASIP Journal on Embedded Systems (2019) 2019:2 Page 19 of 19

Funding
This work has been supported by Siemens Austria AG, the Austrian Federal
Ministry for Digital and Economic Affairs (BM:DW) and the National
Foundation for Research, Technology and Development as related to the Josef
Ressel Center “Verification of Embedded Computing Systems” (VECS) and the
Josef Ressel Center “Innovative Platforms for Electronic-Based Systems” (INES),
managed by the Christian Doppler Research Association.

Availability of data andmaterials
The initial release of Fault InJection Instrumenter (FIJI) described in this work
has been archived [25]. Its parts are licensed under various open-source
licenses (main scripts: GPLv1+ or Artistic, documentation: CC-BY-SA, HDL:
Solderpad 2.0). For any updates and additional information please visit the
project’s website [26].

Authors’ contributions
All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1University of Applied Sciences TechnikumWien, Höchstädtplatz 6, 1200
Vienna, Austria. 2Siemens AG Österreich, Corporate Technology, Research
Group Electronic Design, Siemensstraße 90, 1210 Vienna, Austria.

Received: 23 October 2018 Accepted: 7 February 2019

References
1. Bobda, C. (2007). Introduction to Reconfigurable Computing: Architectures,

Algorithms, and Applications, 1st edn. Dordrecht, The Netherlands: Springer
Science & Business Media. https://doi.org/10.1007/978-1-4020-6100-4.

2. Bernardeschi, C., Cassano, L., Domenici, A. (2015). SRAM-Based FPGA
systems for safety-critical applications: A survey on design standards and
proposed methodologies. Journal of Computer Science and Technology,
30(2), 373. https://doi.org/10.1007/s11390-015-1530-5.

3. Standardization, E.C.F.S. (2008). ECSS-Q-ST-60-02C Space Product
Assurance— ASIC and FPGA Development. https://escies.org/download/
webDocumentFile?id=19656. Accessed 25 Apr 2018.

4. Kornecki, A.J., & Zalewski, J. (2010). Hardware certification for real-time
safety-critical systems: State of the art. Annual Reviews in Control, 34(1),
163–174. https://doi.org/10.1016/j.arcontrol.2009.12.003.

5. Siegle, F., Vladimirova, T., Ilstad, J., Emam, O. (2015). Mitigation of radiation
effects in SRAM-based FPGAs for space applications. ACM Computing
Surveys (CSUR), 47(2), 37. https://doi.org/10.1145/2671181.

6. Bernardeschi, C., Cassano, L., Domenici, A., Sterpone, L. (2014). IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 33(9), 1342–1355. https://doi.org/10.1109/TCAD.2014.2329419.

7. Asadi, G., Miremadi, S.G., Zarandi, H.R., Ejlali, A. (2003). Fault injection into
SRAM-based FPGAs for the analysis of SEU effects, In Proceedings. 2003
IEEE International Conference on Field-Programmable Technology (FPT).
https://doi.org/10.1109/FPT.2003.1275794 (pp. 428–430).

8. Sterpone, L., & Violante, M. (2007). A New Partial Reconfiguration-Based
Fault-Injection System to Evaluate SEU Effects in SRAM-Based FPGAs. IEEE
Transactions on Nuclear Science, 54(4), 965–970. https://doi.org/10.1109/
TNS.2007.904080.

9. Legat, U., Biasizzo, A., Novak, F. (2010). Automated SEU fault emulation
using partial FPGA reconfiguration, In 13th IEEE Symposium on Design and
Diagnostics of Electronic Circuits and Systems. https://doi.org/10.1109/
DDECS.2010.5491825 (pp. 24–27).

10. Straka, M., Kastil, J., Kotasek, Z. (2011). SEU Simulation Framework for Xilinx
FPGA: First Step towards Testing Fault Tolerant Systems, In 2011 14th
Euromicro Conference on Digital SystemDesign. https://doi.org/10.1109/
DSD.2011.32 (pp. 223–230).

11. Mogollon, J.M., Guzmán-Miranda, H., Nápoles, J., Barrientos, J., Aguirre,
M.A. (2011). FTUNSHADES2: A novel platform for early evaluation of
robustness against SEE, In 2011 12th European Conference on Radiation
and Its Effects on Components and Systems. https://doi.org/10.1109/
RADECS.2011.6131392 (pp. 169–174).

12. Azkarate-askasua, M., Iturbe, X., Martinez, I., Obermaisser, R. (2011). FI4SoC:
A fault injection framework for transient fault effects in embeddedMPSoCs,
(pp. 81–86). Regensburg: 2011 Proceedings of the Ninth International
Workshop on Intelligent Solutions in Embedded Systems. http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
6086024&isnumber=6086005.

13. Xilinx Corporation (2017). Soft Error Mitigation Controller V4.1. Xilinx
Corporation https://www.xilinx.com/support/documentation/
ip_documentation/sem/v4_1/pg036_sem.pdf. Accessed 25 Apr 2018.

14. Altera Corporation (2014). Debugging Single Event Upsets Using the
Fault Injection Debugger. Altera Corporation. https://www.altera.com.cn/
content/dam/altera-www/global/en_US/pdfs/literature/hb/qts/
qts_qii53026.pdf. Accessed 25 Apr 2018.

15. Meisner, S., & Platzner, M. (2016). Thread shadowing: On the effectiveness
of error detection at the hardware thread level, In 2016 International
Conference on ReConFigurable Computing and FPGAs (ReConFig). https://
doi.org/10.1109/ReConFig.2016.7857193 (pp. 1–8).

16. Baraza, J.C., Gracia, J., Blanc, S., Gil, D., Gil, P.J. (2008). Enhancement of Fault
Injection Techniques Based on the Modification of VHDL Code. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 16(6), 693–706.
https://doi.org/10.1109/TVLSI.2008.2000254.

17. Grinschgl, J., Krieg, A., Steger, C., Weiss, R., Bock, H., Haid, J. (2011).
Automatic saboteur placement for emulation-based multi-bit fault
injection, In 6th International Workshop on Reconfigurable
Communication-Centric Systems-on-Chip (ReCoSoC). https://doi.org/10.
1109/ReCoSoC.2011.5981521 (pp. 1–8).

18. Jeitler, M., Delvai, M., Reichor, S. (2009). FuSE - a hardware accelerated HDL
fault injection tool, In 2009 5th Southern Conference on Programmable
Logic (SPL). https://doi.org/10.1109/SPL.2009.4914906 (pp. 89–94).

19. Zheng, H., Fan, L., Yue, S. (2008). FITVS: A FPGA-Based Emulation Tool For
High-Efficiency Hardness Evaluation, In 2008 IEEE International Symposium
on Parallel and Distributed Processing with Applications. https://doi.org/10.
1109/ISPA.2008.46 (pp. 525–531).

20. Mansour, W., & Velazco, R. (2013). An Automated SEU Fault-Injection
Method and Tool for HDL-Based Designs. IEEE Transactions on Nuclear
Science, 60(4), 2728–2733. https://doi.org/10.1109/TNS.2013.2267097.

21. Pellegrini, A., Constantinides, K., Zhang, D., Sudhakar, S., Bertacco, V.,
Austin, T. (2008). CrashTest: A fast high-fidelity FPGA-based resiliency
analysis framework, In 2008 IEEE International Conference on Computer
Design. https://doi.org/10.1109/ICCD.2008.4751886 (pp. 363–370).

22. Solinas, M., Coelho, A., Fraire, J.A., Zergainoh, N.E., Ferreyra, P.A., Velazco, R.
(2017). Preliminary results of NETFI-2: An automatic method for fault
injection on HDL-based designs, In 2017 18th IEEE Latin American Test
Symposium (LATS). https://doi.org/10.1109/LATW.2017.7906748 (pp. 1–4).

23. Pellegrini, A., Bertacco, V., Austin, T. (2010). CrashTest: Fast and Accurate
Fault Analysis Platform. https://vhosts.eecs.umich.edu/crashtest/files/
docs/CrashTest_v4.pdf. Accessed 25 Apr 2018.

24. Fibich, C., Rössler, P., Tauner, S., Taucher, H., Matschnig, M. (2015). A
netlist-level fault-injection tool for FPGAs. e & i Elektrotechnik und
Informationstechnik, 132(6), 274–281. https://doi.org/10.1007/s00502-
015-0315-4.

25. Tauner, S., & Fibich, C. (2018). FIJI: Fault InJection Instrumenter. Zenodo.
https://doi.org/10.5281/zenodo.1246734.

26. Fibich, C., & Tauner, S. FIJI (Fault InJection Instrumenter) Website. https://
embsys.technikum-wien.at/projects/vecs/fiji.

27. Snyder, W. Introduction to Verilog-Perl. https://www.veripool.org/wiki/
verilog-perl. Accessed 25 Apr 2018.

28. Fibich, C., Rössler, P., Tauner, S., Matschnig, M., Taucher, H. (2017). A
fpga-based demonstrator for safety-critical applications, In 2017
AustrochipWorkshop onMicroelectronics (Austrochip). https://doi.org/10.
1109/Austrochip.2017.13 (pp. 35–40).

29. Murray, K.E., Whitty, S., Liu, S., Luu, J., Betz, V. (2013). Titan: Enabling large
and complex benchmarks in academic CAD, In 2013 23rd International
Conference on Field Programmable Logic and Applications. https://doi.org/
10.1109/FPL.2013.6645503 (pp. 1–8).

30. ao486— an x86 compatible Verilog core. https://github.com/alfikpl/
ao486. Accessed 25 Apr 2018.

31. sparc64soc—OpenSPARC-based SoC. http://opencores.org/project,
sparc64soc. Accessed 25 Apr 2018.

32. CrashTest — A Fast High-Fidelity FPGA-Based Resiliency Analysis
Framework. https://vhosts.eecs.umich.edu/crashtest/. Accessed 25 Apr
2018.

https://doi.org/10.1007/978-1-4020-6100-4
https://doi.org/10.1007/s11390-015-1530-5
https://escies.org/download/webDocumentFile?id=19656
https://escies.org/download/webDocumentFile?id=19656
https://doi.org/10.1016/j.arcontrol.2009.12.003
https://doi.org/10.1145/2671181
https://doi.org/10.1109/TCAD.2014.2329419
https://doi.org/10.1109/FPT.2003.1275794
https://doi.org/10.1109/TNS.2007.904080
https://doi.org/10.1109/TNS.2007.904080
https://doi.org/10.1109/DDECS.2010.5491825
https://doi.org/10.1109/DDECS.2010.5491825
https://doi.org/10.1109/DSD.2011.32
https://doi.org/10.1109/DSD.2011.32
https://doi.org/10.1109/RADECS.2011.6131392
https://doi.org/10.1109/RADECS.2011.6131392
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6086024&isnumber=6086005
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6086024&isnumber=6086005
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6086024&isnumber=6086005
https://www.xilinx.com/support/documentation/ip_documentation/sem/v4_1/pg036_sem.pdf
https://www.xilinx.com/support/documentation/ip_documentation/sem/v4_1/pg036_sem.pdf
https://www.altera.com.cn/content/dam/altera-www/global/en_US/pdfs/literature/hb/qts/qts_qii53026.pdf
https://www.altera.com.cn/content/dam/altera-www/global/en_US/pdfs/literature/hb/qts/qts_qii53026.pdf
https://www.altera.com.cn/content/dam/altera-www/global/en_US/pdfs/literature/hb/qts/qts_qii53026.pdf
https://doi.org/10.1109/ReConFig.2016.7857193
https://doi.org/10.1109/ReConFig.2016.7857193
https://doi.org/10.1109/TVLSI.2008.2000254
https://doi.org/10.1109/ReCoSoC.2011.5981521
https://doi.org/10.1109/ReCoSoC.2011.5981521
https://doi.org/10.1109/SPL.2009.4914906
https://doi.org/10.1109/ISPA.2008.46
https://doi.org/10.1109/ISPA.2008.46
https://doi.org/10.1109/TNS.2013.2267097
https://doi.org/10.1109/ICCD.2008.4751886
https://doi.org/10.1109/LATW.2017.7906748
https://vhosts.eecs.umich.edu/crashtest/files/docs/CrashTest_v4.pdf
https://vhosts.eecs.umich.edu/crashtest/files/docs/CrashTest_v4.pdf
https://doi.org/10.1007/s00502-015-0315-4
https://doi.org/10.1007/s00502-015-0315-4
https://doi.org/10.5281/zenodo.1246734
https://embsys.technikum-wien.at/projects/vecs/fiji
https://embsys.technikum-wien.at/projects/vecs/fiji
https://www.veripool.org/wiki/verilog-perl
https://www.veripool.org/wiki/verilog-perl
https://doi.org/10.1109/Austrochip.2017.13
https://doi.org/10.1109/Austrochip.2017.13
https://doi.org/10.1109/FPL.2013.6645503
https://doi.org/10.1109/FPL.2013.6645503
https://github.com/alfikpl/ao486
https://github.com/alfikpl/ao486
http://opencores.org/project,sparc64soc
http://opencores.org/project,sparc64soc
https://vhosts.eecs.umich.edu/crashtest/

	Abstract
	Keywords

	Introduction
	Related work
	HDL-level approaches
	Netlist-level approaches
	Discussion

	The FIJI framework
	Fault injection hardware architecture
	Netlist transformation and execution flow
	Fault models
	Fault injection timing

	Practical aspects of FIJI
	Communication protocol between host and FIC
	Fault injection hardware
	Fault injection controller
	External communication interface
	Fault injection units

	FIJI software components
	Setup tool
	Instrumentation tool
	Execution engine

	Demo design

	Evaluation
	Instrumentation performance
	FPGA resource usage
	Timing penalty
	Comparison with CrashTest
	Execution latency

	Conclusion and outlook
	Acknowledgments
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

