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Abstract

Dark silicon has recently emerged as a new problem in VLSI technology. Maximizing performance of chip-multiprocessors
(CMPs) under power and thermal constraints is very challenging in the dark silicon era. Providing next-generation
analytical models for future CMPs which consider the impact of power consumption of core and uncore components
such as cache hierarchy and on-chip interconnect that consume significant portion of the on-chip power consumption is
largely unexplored. In this article, we propose a detailed power model which is useful for future CMP power modeling. In
the proposed architecture for future CMPs, we exploit emerging technologies such as non-volatile memories (NVMs) and
3D techniques to combat dark silicon. Results extracted from the simulations are compared with those obtained from the
analytical model. Comparisons show that the proposed model accurately estimates the power consumption of CMPs
running both multi-threaded and multi-programed workloads.

Keywords: Chip-multiprocessor (CMP), Non-volatile memory (NVM), 3D integration, Dark silicon, Uncore components,
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1 Introduction
In today’s chip-multiprocessor (CMP) architectures,
power consumption is the primary constraint during sys-
tem design. In the nanometer era, leakage power de-
pletes the power budget and has substantial contribution
in overall power consumption. A study by Kao and col-
leagues has shown that over 50% of the overall power
dissipation in a 65-nm generation is due to the leakage
power [1] and this percentage is expected to increase in
the next generations [2, 3].
Due to the breakdown of Dennard scaling, the fraction

of transistors that can be simultaneously powered on
within the peak power and temperature budgets is drop-
ping exponentially with each process generation. This
phenomenon has been termed as the dark silicon era
which is one of the newest challenges in multicore design
[4]. Research shows that the increasing leakage power
consumption is a major driver of unusable portion or dark
silicon in future many-core CMPs [4]. Uncore compo-
nents such as memory and on-chip interconnect play a
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significant role in consuming a large portion of power.
Also, uncore components, especially those in the cache
hierarchy, are the dominant leakage consumers in multi/
many-core CMPs. Therefore, power management of these
components can be critical to maximize design perform-
ance in the dark silicon era. Predictions in recent studies
indicate that more than 50% of chips will be effectively
dark, idle, dim, or under-clocked dark silicon [5], and this
percentage will increase by scaling down in transistor
dimension. Therefore, it is extremely important to provide
next-generation architectural techniques, design tools,
and analytical models for future many-core CMPs in the
presence of dark silicon [6, 7]. Prior studies on dark silicon
only focus on core designs to address the problem. In this
work, we show that uncore components such as cache
hierarchy and on-chip interconnect are significant con-
tributors in the overall chip power budget in the nanoscale
era and play important roles in the dark silicon age. Since
the increase in the CMOS device’s power density leads to
the dark silicon phenomenon, the emerging power-saving
materials manufactured with nanotechnology might be
useful for illuminating the dark area of future CMPs.
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The long switch delay and high switch energy of such
emerging low-power materials are the main drawbacks
which prevent manufactures from completely replacing
the traditional CMOS in future processor manufacturing
[8]. Therefore, architecting heterogeneous CMPs and in-
tegrating cores and cache hierarchy made up of different
materials on the same die emerges as an attractive design
option to alleviate the power constraint. In this work, we
use emerging technologies, such as three-dimensional inte-
grated circuits (3D ICs) [9, 10] and non-volatile memories
(NVMs) [11–13] to exploit the device heterogeneity and
design of dark silicon-aware multi/many-core systems. 3D
die-stacking helps core and uncore components manufac-
tured in different technologies to be integrated into a single
package to reduce global wire lengths and improve per-
formance. Among several benefits offered by 3D integra-
tions compared to 2D technologies, mixed-technology
stacking is especially attractive for stacking NVM on top of
CMOS logics, and designers can take full advantage of the
attractive benefits that NVM provides.
In this paper, we propose an accurate power model

that formulates the power consumption of 3D CMPs
with stacked cache layers. This model can be used for
both of the homogenous and heterogeneous cache
layers. Unlike the previous research on dark silicon
which considers only the portion of power consumption
related to on-chip cores [4, 14–16], the proposed model
considers power impact of uncore components, such as
cache hierarchy and on-chip interconnect, as important
contributors in the total CMP power consumption.
In future many-core CMPs, at 22 nm and beyond,

emerging leakage-aware technologies such as FinFETs,
FDSOI structures, and non-volatile memories are mate-
rials for architecting heterogeneous components. The
proposed power model in this work can be applied for
different technologies with changing power and latency
parameters of the new technology.
McPAT [17] (an integrated power, area, and timing

modeling framework for multithreaded, multicore, and
many-core architectures) cannot estimate the power con-
sumption of 3D CMPs. The maximum number of cores
which McPAT supports for power modeling in a
many-core processor is 128 when attached to GEM5 [18]
and the reason is limitations of existing 2D integration.
NVmain [19] (a user-friendly memory simulator to model
(non-) volatile memory systems) is a tool just for estimat-
ing the power consumption of memory components. It
does not consider the power consumption of core and
uncore components simultaneously. To the best of our
knowledge, the proposed model is the first work in power
modeling of network-on-chip (NoC)-based CMPs with
stacked cache hierarchy as future CMPs.
In this paper, we make the following novel

contributions:
1. We propose an accurate power model for future
CMPs with stacked cache layers that support the
impact of power consumption of core and uncore
components in parallel.

2. The proposed power model for 3D CMPs supports
power analysis for both multi-programed and
multi-threaded workloads.

3. In the proposed power model, we target CMPs with
a large number of cores (e.g., more than eight
(many-core CMPs)) built based on scalable
networks-on-chip (NoCs) and nonuniform cache
architectures (NUCA) for the first time.

4. Our experimental results show that the value of the
proposed model is truly close to the value derived
by the simulation for each benchmark.

The rest of this paper is organized as follows. A brief
background on traditional and NVM technology is ex-
plained in Section 2. Section 3 describes the related
work. Section 4 analyzes the power consumption of core
and uncore components in multicore processors. Section
5 explains the target heterogeneous 3D CMP architec-
ture used in this work. Section 6 presents the power
model for the target 3D CMP with the stacked cache
hierarchy. In Section 7, evaluation results are presented.
Finally, Section 8 concludes the paper.

2 Background
Since the proposed power model can be used for both of
the homogenous and heterogeneous stacked cache
layers, we first compare characteristics of different trad-
itional and non-volatile memory technologies with each
other. Then, we review the STT-RAM technology as a
well-known type of NVM technologies.
The traditional and high-performance SRAM technology

has been widely used in the on-chip caches due to its stand-
ard logic compatibility, high endurance, and fast access time
features [20]. However, low-density SRAM technology dissi-
pates high leakage power by its six-transistor implementa-
tion [21] and has become a bottleneck for energy-efficient
designs. By increasing demand of larger memories in com-
puting systems, using conventional SRAM-based caches
becomes more expensive. DRAM technology has become a
viable alternative for implementing on-chip caches due to its
high density, high capacity, low leakage, and high write
endurance features. It is possible to have large reliable
last-level caches with high bandwidth by stacking low-leak
and high-density DRAM as an on-die cache. However, con-
ventional eDRAM technology tends to be slow compared
with SRAM technology and consumes a significant amount
of energy in the form of refresh energy to retain stored data
which have negative impact on performance.
Compared with traditional memory technologies such

as SRAM and eDRAM, NVM technologies such as
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STT-RAM and PRAM commonly offer many desirable
features like near-zero leakage power consumption,
non-volatile property, high cell density, and high resili-
ence against soft errors. Based on the mentioned charac-
teristics for NVMs, the most important feature of the
NVM technologies suitable to combat recent dark sili-
con challenge is near-zero leakage power consumption.
As shown in Fig. 1, due to the magnetic characteristic of
the MTJ blocks in NVM memory cells, there is not any
leakage path between the source line and bit line; there-
fore, the static power consumption is near zero. However,
it should be noted that NVMs suffer from shortcomings
such as limited number of write operations and long write
operation latency and energy. Compared with other tech-
nologies, PRAM is too slow and is not suitable for
low-level caches but can be used as a large last-level cache.
Table 1 provides a brief comparison between SRAM,
STT-RAM, eDRAM, and PRAM technologies in 32-nm
technology. The parameter values have been estimated by
NVSim [22] and CACTI [23] in this table.
In this section, STT-RAM as a well-known type of

NVM technologies, shown in Fig. 1, is briefly explained.
As shown in Fig. 1c, a STT-RAM cell consists of a

magnetic tunnel junction (MTJ) to store bit information.
A MTJ as a fundamental building block in NVM tech-
nologies consists of two ferromagnetic layers separated
by a dielectric layer. While the direction of one ferro-
magnetic layer is fixed, the other layer can be controlled
by passing a large enough current through the MTJ. If
this current exceeds the critical value, the magnetization
direction of the two layers will become antiparallel and
MTJ will be in high resistance indicating a “1” logic
(Fig. 1b); otherwise the magnetization directions of the
two layers are parallel and MTJ is in low resistance indi-
cating a “0” logic (Fig. 1a). It should be noted that the
resistance of the MTJ relates not only to the current in-
tensity but also to the current direction matters. If the
electrons flow from the reference to the free layer, the
magnetic momenta become parallel resulting in a low
Reference Layer

Tunnel Barrier

Free Layer

Reference Layer

Tunnel Barrier

Free Layer

a b

Fig. 1 a A parallel MTJ. b An anti-parallel MTJ. c A STT-RAM cell
resistance and the bit 1. If the electrons flow in the reverse
direction, we obtain antiparallel momenta and bit 0.

3 Related work
A majority of prior low-power techniques focus on power
management at the processor level and the only knob that
they use to control the power of a multicore processor is
the voltage/frequency level of the cores [24, 25]. A number
of researches have proposed some proactive techniques
such as thread scheduling, thread mapping, shutting-down
schemes, and migration policies to reduce the power con-
sumption in multicore systems [26–30]. However, these ap-
proaches limit their scope only to cores.
Management of a problem recently known as dark sili-

con related to limited power budget is a new challenge
in future multicore designs [4, 14–16, 31]. To address
the challenges of the dark silicon, Esmailzadeh et al. [4]
focused on using only general-purpose cores. They
ignored the power impact of uncore components; how-
ever, they explained that this was a limitation of their
work. The research in [14, 15] works on synthesis of
heterogeneous CMPs to extract better energy efficiency
and performance in the dark silicon era. Turakhia et al.
[14] proposed a design time framework for synthesis of
heterogeneous dark silicon CMPs. Raghunathan et al.
[15] exploited process variation to evaluate the benefits
of selecting a more suitable subset of cores for an appli-
cation in a given fixed dark silicon power budget to
maximize performance. Venkatesh et al. [16] introduced
the concept of “conservation cores.” They are specialized
processors that focus on reducing energy instead of
increasing performance, used for computations that can-
not take advantage of hardware acceleration. All of these
prior works [4, 14–16] on the dark silicon phenomena
over the past 6 years focus on core rather than uncore
components. Dorostkar et al. in [31] proposed an
optimization problem to minimize energy consumption
of uncore components in heterogeneous cache hierarchy
and 3D NoC under power budget constraint.
Reference
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Table 1 Different memory technology comparisons at 32 nm

Technology Area (mm2) Read latency (ns) Write latency (ns) Leakage power at 80°C (mW) Read energy (nJ) Write energy (nJ)

1 MB SRAM 3.03 0.702 0.702 444.6 0.168 0.168

4 MB eDRAM 3.31 1.26 1.26 386.8 0.142 0.142

4 MB STT-RAM 3.39 0.880 10.67 190.5 0.278 0.765

16 MB PRAM 3.47 1.760 43.7 210.3 0.446 0.705
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In these days, providing analytical models for future
multi/many-core CMPs in the presence of dark silicon is
essential [6]. None of the previous studies have presented
analytical models for the future CMPs. To the best of our
knowledge, this is the first work which proposes an accur-
ate power model that formulates the power consumption
of 3D CMPs with stacked cache layers. Unlike the previ-
ous researches on power management techniques and
dark silicon which consider only the portion of power
consumption related to on-chip cores [4, 14–16], the pro-
posed model considers the power impact of uncore com-
ponents as important contributors in the total CMP
power consumption in parallel with cores. This accurate
power model can help researchers to propose new power
management techniques in future CMPs.
In addition, we note that all the power budgeting tech-

niques and performance optimization under a given
power budget proposed so far in the multicore systems
[25–27, 32–34] only focus on multi-programed work-
loads where each thread is a separate application. These
models are inappropriate for multi-threaded applica-
tions. With increasing parallelization of applications
from emerging domains such as recognition, mining,
synthesis, and, particularly, mobile applications, this
issue has become important that in future many-core ar-
chitectures, workloads are expected to be multi-threaded
applications. To the best of our knowledge, this is the
first study that presents an accurate power model for
both multi-programed and multi-threaded workloads.
Therefore, an analytical power model is extremely essential

in order to verify that power budgets are met by different
parts of CMP including cores and uncores with different
technology and different performance or low-power tech-
niques and also model power consumption in heterogeneous
and homogeneous CMP under running both multi-threaded
and multi-programed applications in future CMP. To the
best of our knowledge, this is the first work which proposes
an accurate power model that formulates the power con-
sumption of 3D CMPs with stacked cache layers for both
multi-programed and multi-threaded workloads.

4 The contribution of core and uncore
components in total future multicore processor
power consumption
In this section, we analyze the power consumption of
core and uncore components in multicore systems. To
better understand the power distribution of a multicore
processor, we use McPAT [17] and evaluate the power dis-
sipation of core and uncore components including L2/L3
cache levels, the routers and links of NoC, integrated
memory controllers, and integrated I/O controllers.
In recent years, more and more applications are shift-

ing from compute bounding to data bounding; therefore,
a hierarchy of cache levels and data storage components
to efficiently store and manipulate large amounts of data
is required. In this context, an increasing percentage of
on-chip transistors is invested on the uncore compo-
nents and architects have dramatically increased the size
of cache levels in cache hierarchy, in an attempt to
bridge the gap between fast cores and slow off-chip
memory accesses in multi/many-core CMPs. We select
canneal as a representative of future memory-intensive
applications in Fig. 2.
Figure 2 illustrates the power breakdown of a multi-

core system with increasing number of cores under lim-
ited power budget. Cores in this multicore platform are
based on Niagra2 processors [35] with an additional
shared L3 as the last-level cache (LLC).
The size of LLC increases with increasing number of

cores as shown in Fig. 2. We assume multicore systems
in this experiment run canneal application from PAR-
SEC [36]. We use technology 32 nm in this study. As
shown in this figure, the power consumption of uncore
components becomes more critical when the number of
cores is increased in a multicore system and the power
budget is a design limitation. In this work, we assume
idle cores can be gated off (dark silicon) while other
on-chip resources stay active or idle under limited power
budget. Actually, the uncore components remain active
and consume power as long as there is an active core on
the chip. As illustrated in Fig. 2, more than half of the
power consumption is due to the uncore components in
the 16-core and 32-core systems.
In addition, Fig. 3 illustrates when technology scales

from 32 to 22 nm, the ratio of leakage power increases
and is expected to exceed the dynamic power in the fu-
ture generations. We use 1 GHz frequency and 0.9 V
supply voltage for an 8-core system in 32- and 22-nm
technologies in Fig. 3. This figure shows that leakage
power dominates the power budget in the nanoscale
technologies and is a major driver for unusable portion
or dark silicon in future many-core CMPs.
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In this context, for architecting new classes of low-power
architectures, using emerging technologies such as NVMs
with near-zero leakage power and three-dimensional inte-
grated circuits (3D ICs) for stacking different technologies
onto CMOS circuits brings new opportunities to the design
of multi/many-core systems in the dark silicon era.
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Fig. 3 Dynamic power vs. leakage power for an 8-core system in 32- and 2
5 Target CMP architecture
With increasing parallelism levels of new applications
(from emerging domains such as recognition, mining,
synthesis, and especially mobile applications), which can
efficiently use 100 to 1000 cores, shifting to multi/man-
y-core designs has been aimed in recent years. Due to
Leakage
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the scalability limitations and performance degradation
problems in 2D CMPs, especially, in future many-cores,
in this work, we focus on 3D integration to reduce glo-
bal wire lengths and improve performance of future
CMPs. For instance, Apple’s iPhone 4S is supposed to
use the A5 processor, an SoC with two LPDDR2
SDRAM chips on top of the core layer, in the proposed
system [37].
The architecture model assumed in this work is based

on a 3D CMP with multi-level hybrid cache hierarchy
stacked on the core layer similar to Fig. 4a. As shown in
Fig. 4a, each cache level is assumed to be implemented
using a different memory technology. For motivating
about the proposed architecture for future CMPs in this
paper, we design a scenario. In this scenario, we consider
a 3D CMP with homogenous cache hierarchy as shown
in Fig. 4b. In this scenario, we assume there is one layer
per level in the homogenous cache hierarchy stacked on
the core layer. Also, we assume there are four cores in
the core layer, each of them running art application
from SPEC 2000/2006 [38]. Figure 4b illustrates an ex-
ample of the proposed architecture shown in Fig. 4a
with four homogenous cache levels in the hierarchy and
the core layer with four cores with more details about
on-chip interconnection. Table 2 gives the properties of
average memory access time (AMAT), as a suitable per-
formance parameter for evaluation of the cache systems
a b

Fig. 4 a The target CMP architecture. b A 3D CMP architecture with homo
performance and system power consumption when the
stacked cache levels in the homogenous hierarchy are
made from SRAM, eDRAM, STT-RAM, or PRAM. Note
that normalization reported in Table 2 is done based on
the best case, that is, power consumption is normalized
with respect to the SRAM, whereas AMAT is normal-
ized with respect to the PRAM. Based on these views,
SRAM is the fastest and a higher power-hungry option
and it is better to be used in lower levels of the cache
hierarchy to support faster accesses. According to the
observations in Table 2, we decided to use SRAM in the
L2 cache level, eDRAM in the L3 cache level, STT-RAM
in the L4 cache level, and PRAM in the L5 cache level
as shown in Fig. 4a. Details of all the experimental setup
and power and performance estimation used in this mo-
tivation example will be shown in Section 7.
Because of strong thermal correlations between a core

and cache banks directly stacked on the core, the core
and the cache banks in the same stack is called a core
set in our architecture (as shown in Fig. 5a).

6 Proposed power model for NoC-based CMPs
with stacked cache hierarchy
In this section, we present an analytical power model for
the 3D chip-multiprocessors (CMPs) with stacked cache
hierarchy as future CMPs. Table 3 lists the parameters
used in this model.
genous cache hierarchy



Table 2 Comparison of AMAT and system power consumption

Technology AMAT Power consumption

SRAM 0.09 1

eDRAM 0.16 0.62

STT-RAM 0.3 0.37

PRAM 1 0.22
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The total power consumption of a CMP mainly comes
from three on-chip resources: cores, cache hierarchy,
and interconnection network. CMPs with a large num-
ber of cores (more than eight) require building architec-
tures through a scalable network-on-chip (NoC).

6.1 Components of the total power consumption of a
3D CMP
The total power consumption of a 3D CMP can be cal-
culated as the sum of the power of individual on-chip
resources (core and uncore components).

PTotal ¼ Pcores þ Puncores ð1Þ

PTotal ¼ Pcores þ Pcache hierarchy þ Pinterconnection ð2Þ

6.1.1 Modeling of core power consumption
We denote the power consumption of core i as Pcore

i .

Pcores ¼
Xn
i¼1

Pcore
i ð3Þ

The power consumption of core i is comprised of dy-
namic and leakage power components. The total power
consumption of core i is written as:

Pcore
i ¼ PD;i þ PL;i; ∀i ð4Þ
a b

Core
set2

Core
set1

Prog4Prog3Prog2Prog1

Prog8Prog7Prog6Prog5

Prog12

Prog16

ThrThrd1

Thrd5

region

Fig. 5 The style of using cache hierarchy in a a multi-programed workload
PD;i ¼ Pmax
f i

2

f max
2 ; ∀i ð5Þ

Since operating voltage of a core depends on the oper-
ating frequency, it is assumed that the square of the volt-
age scales linearly with the frequency of operation [39].
In Eq. 5, Pmax is maximum power budget and fmax is
maximum frequency of the core.
The leakage power dissipation depends on temperature.

The leakage power of core i can be written as Eq. 6. Tt is
ambient temperature at time t and hi is empirical coeffi-
cient for temperature-dependent leakage power dissipation.
hi coefficients in cores with the same microarchitectures
have the same value. hi is based on the thermal behavior of
a core and is calculated as presented in [40, 41].

PL;i ¼ hi � Tt ; ∀i; t ð6Þ

In this work for core power modeling, we can consider
the peak leakage power as other works [14, 15]. There-
fore, in this model, we can use the maximum sustainable
temperature for the chip.

PL;i ¼ hi � Tmax; ∀i ð7Þ

6.1.2 Modeling of cache hierarchy power consumption

6.1.2.1 Cache hierarchy power consumption modeling
for multi-programed workloads As shown in Fig. 4a,
the number of cache levels is N and each cache level is
indexed as Lk, (k = 1, 2, 3,…,N). There are Mk layers in the
kthcache level, Lk. The lth cache layer (l = 1, 2, 3,…,Mk) in
the Lk is represented as Ak, l .
We assume that in multi-programed applications, each ap-

plication mapped on each core effectively sees only its own
slice of the dedicated cache banks in the cache hierarchy.
Multithreaded application
(16 threads)Thrd4Thrd3d2

Thrd8Thrd7Thrd6

Thrd12

Thrd16
1 region2

region 3 region4

and b a multithreaded workload



Table 3 Parameters used in the power model

Parameter Definition

n Number of cores in the core layer

fi Operation frequency of core i

Pcorei Power consumption of core i

PD, i Dynamic power consumption of core i

PL, i Leakage power consumption of core i

Pcache hierarchy
i

Sum of power consumption related to the dedicated
cache banks in each level of the cache hierarchy stacked
on core i from the 1st to the kth level

Pstatick ðTÞ Static power consumed by each layer of the kth cache
level (Lk) at temperature T °C

N Number of cache levels L1, L2, …, LN

Ck Capacity of the kth cache level (Lk)

bi, k Number of active cache layers in the region-set bank
i stacked on core i at the kth cache level

Bi, k Accumulated cache capacity in the region-set bank
i stacked on core i at the kth cache level

ar, aw Number of read and write accesses of an application

HiTk Hit time per hit access

APPHk Average power consumption per hit access

γ Number of accesses per second

α Sensitivity coefficient from the cache misses power law

En Data sharing factor [53]

Ts Total execution time of the mapped applications

Esinterconnection Energy consumption of the interconnection
between nodes in Ts

Pinterconnection Power consumption of the interconnection network
between nodes

Pq
n;n0 ;n}

Static power consumption of an interconnection network
based on mesh topology with n nodes in dimension 1, n′

nodes in dimension 2, and n′′ nodes in dimension 3

PstaticLinks Static power consumption of links

PstaticTSVs
Static power consumption of TSVs

EsNP Average total energy dissipated in the on-chip interconnection
network for transferring of NP packets in Ts

PqCR Static power consumption of a router
(without any packet)

PcR Static power consumption of a router with one virtual
channel (without any packet)

PcLink Static power consumption of a link (without any packet)

PcTSV Static power consumption of a TSV (without any packet)

TSV Total number of TSVs

EsNP Average total energy dissipated in the on-chip interconnection
network for transferring of NP packets in Ts

Es1 Average total energy dissipated for transferring of one
packet from the source to the destination in the on-chip
interconnection network

EPR Average constant energy dissipated in a router and
the related link for a packet transfer

E f
R

Average constant energy dissipated in a router and
the related link for a flit transfer

Table 3 Parameters used in the power model (Continued)
Parameter Definition

Dmesh The average distance of the mesh topology (the average
number of links which a packet transits from the source
to reach the destination)

v Number of virtual channels per link

l Size of a packet based on number of flits
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Pcache hierarchy ¼
Xn

i¼1
Pcache hierarchy
i ð8Þ

Pcache hierarchy
i ¼ Pcache hierarchy

dynamici
þ Pcache hierarchy

statici ð9Þ

The first part of Eq. 9, Pcache hierarchy
dynamici

, depends on dynamic

energy. Dynamic energy consumed by cache depends on
average memory access time (AMAT). Reducing AMAT
leads to lower cache dynamic energy. Therefore, for formu-
lating the first part of Eq. 9 based on accessible variables in
the model, first we model the AMAT. The AMAT for a
cache hierarchy with N levels is shown in Eq. 10. As shown
in this equation, the AMAT is a function of miss rate and
access time at each cache level.

AMAT ¼ HiT 1 þ
XN−1

k¼1

HiTkþ1 � Rmiss
k ð10Þ

where HiTk denotes hit time at the kth cache level and
Rmiss
k is the product of cache miss rates from the 1st to

the kth cache level. The average HiTk at the kth cache
level is computed as Eq. 11 due to the different access
time of reading and writing in non-volatile memories
(i.e., STTRAM-based or PRAM-based cache):

HiTk ¼ ark � τrk þ awk � τwk
ark þ awk

ð11Þ

where ark and awk are the number of read and write ac-
cesses of the running program at the kth cache level, re-
spectively. τrk and τwk are latencies of read and write at
the kth cache level.
In this trend, we can compute the average power per

access (APPA) by:

APPA ¼ APPH1 þ
XN−1

k¼1

APPHkþ1 � Rmiss
k ð12Þ

APPHk ¼ ar � τrk � prk þ aw � τwk � pwk
ar þ aw

ð13Þ

where prk and pwk are power consumption of read and
write at the kth cache level, respectively. We can rewrite
Eq. 13 as:



Fig. 6 An example of a multi-threaded application with D parallel threads
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APPHk ¼ ark � Ereadk þ ark � Ewritek

ark þ ark
ð14Þ

where Ereadk and Ewritek are read and write energy at the
kth cache level, respectively.

Rmiss
k ¼ μ� Bk

σ

� �−α

ð15Þ

where σ is baseline cache size. μ is baseline cache miss
rate. α is power law exponent and typically lies between
0.3 and 0.7 [42]. Bk is the sum of allocated cache capacity
from the 1st to the kth cache level and is obtained by:

Bk ¼
Xk
m¼1

cm � bm ð16Þ

where cm and bm are the capacity of each cache layer
and the number of active cache layers at the mth cache
level, respectively.

We can rewrite the first part of Eq. 9, Pcache hierarchy
dynamici

,

based on the accessible variables as:

Pcache hierarchy
dynamici

¼ γ � APPH1 þ
XN−1

k¼1

APPHkþ1 � μ� Bi;k

σ

� �−α
 !

ð17Þ
where γ is the number of accesses to cache layer per sec-
ond. In Eq. 18, di is a constraint that shows the
time-to-deadline of the program allocated to core i.

γ ¼ ar þ aw

di
ð18Þ

As one of the worst cases, we can assume all of the ac-
cesses of the mapped application are to the Nth cache
level of the hierarchy with biggest latency. Therefore, we
can set di as:

di ¼ ar � τrN þ aw � τwN ð19Þ

The second part of Eq. 9, Pcache hierarchy
statici , is the total

leakage power consumption related to the dedicated
cache banks to core i which is the main contributor to
the total power consumption.

Pcache hierarchy
statici ¼

XN
k¼1

bi;k � Pstatick Tmaxð Þ ð20Þ

bi;k ¼ Bi;k−Bi;k−1

ck
ð21Þ

In Eq. 20, Pstatick ðTmaxÞ is the static power consumed by
each layer of the kth cache level, Lk, at temperature Tmax.
Equation 21 shows the number of active cache layers in
the region set bank i stacked on core i at the kth cache
level, bi, k, that is proportional to the difference between
accumulated cache capacity at the kth cache level, Bi, k,
and that at the (k − 1)th level, Bi, k − 1. ck shows the capacity
of the kth cache level, Lk.

6.1.2.2 Cache hierarchy power consumption modeling
for multi-threaded workloads Equations 8–21 model
cache power consumption in multi-programed work-
loads which each program only using the dedicated
cache banks in its own core set privately as shown in
Fig. 5a. Larger classes of multi-threaded applications are
based on barrier synchronization and consist of two
phases of execution (shown in Fig. 6): a sequential phase,
which consists of a single thread of execution, and a
parallel phase in which multiple threads process data in
parallel. The parallel threads of execution in a parallel
phase typically synchronize on a barrier. In parallel
phase, all threads must finish execution before the appli-
cation can proceed to the next phase. In multi-threaded
workloads, cache levels are shared across the threads. In
parallel phase, threads share regions at each layer of the
cache levels in the hierarchy as shown in Fig. 5b. For
example, for a performance-maximization problem with
respect to power budget, first, we dedicate region 1 in
each level to the threads, as an initialized value. Then
based on power budget and other constraints in the
optimization problem, we can increase the number of
regions or keep it fixed in each level in order to obtain
the maximum performance.
Since multi-threaded applications use cache hierarchy

in shared style, we can rewrite Eq. 9 for them as follows:

Pcache hierarchy ¼ Pcache hierarchy
dynamic þ Pcache hierarchy

static ð22Þ

Because of the impact of multi-threaded data sharing
on the cache miss rate, we replace Eq. 15 with Eq. 23:

Rmiss
j;k ¼ μ� Bj;k

n� σ

� �−α

� En ð23Þ

where En is data sharing impact on miss rate. n is num-
ber of cores in the core layer. μ and σ are the same as
these parameters in Eq. 15 [42].



Table 4 Specification of CMP configurations evaluated in this
work

Component Description

Number of cores Experiment 1, 16, 4 × 4 mesh
Experiment 2, 64, 8 × 8 mesh

Core configuration Alpha21164, 3 GHz, area 3.5 mm2, 32 nm

L1 cache SRAM, 4 way, 32B line, size 32 KB private
per each core

L2/L3/L4 caches L2: SRAM, L3: SRAM, L4: SRAM (baseline)
L2: SRAM, L3: eDRAM, L4: STT-RAM (hybrid)

Network router 2-stage wormhole switched, XYZ routing, virtual
channel flow control, 2 VCs per port, a buffer with
depth of 5 flits per each VC, 8 flits per data packet,
1 flit per address packet, each flit is set to
be 16-byte long

Network topology 3D network, each layer is a 4 × 4 mesh, each node
in layer 1 has a router, 16 TSV links which are 128b
bi-directional in each layer

Pmax, Tmax 110 W, 80°C
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Bk ¼
Xk
m¼1

Xregnm
j¼1

j� x j;k � cm
regnm

ð24Þ

Xregnk
j¼1

x j;k ¼ 1; ∀k ð25Þ

Let xj, k, xj, k ∈ {0, 1}, j ∈ [1, regnk], k ∈ [1,N], be a bin-
ary variable. xj, k is set to 1, when the multi-threaded appli-
cation uses j regions (region 1, region 2, …, region j − 1
and region j) at the kth cache level. Its optimal value is
founded by performance-maximization problem. Note
that regnk represents the total number of regions in the
kth cache level of the hierarchy. Equation 25 guarantees
that the value of xj, k is unique and just j regions is used at
the kth cache level.

The first part of Eq. 22, Pcache hierarchy
dynamic , based on access-

ible variables, is as follows:

Pcache hierarchy
dynamic ¼ γ � APPH1 þ

XN−1

k¼1

Xregnk
j¼1

APPHkþ1 � μ
Bk

n� σ

� �−α

� En

� � !

ð26Þ
where γ is the number of accesses per second in Eq. 26
and is computed by using Eqs. 18 and 19.

The second part of Eq. 22, Pcache hierarchy
static , can be mod-

eled as follows:

Pcache hierarchy
static ¼

XN
k¼1

Xregnk
j¼1

j� x j;k � Pstaticregk Tmaxð Þ

ð27Þ
Equations 12, 13, and 14 in the multi-programed cache

power modeling are repeated again for a multi-threaded
workload.

6.1.3 Modeling of on-chip interconnection power
consumption
Energy consumption of the on-chip interconnection net-
work in the total execution time of mapped workload,
Ts, is calculated by Eq. 28 [43], which contains static en-
ergy of an interconnection network and dynamic energy
of transferring packets to the network.

Es
interconnection ¼ Estatic þ Edynamic

¼ Pq
n;n0;n00 � Ts þ Es

NP ð28Þ

Es
NP ¼ NP � Es

1 ¼ NP � Dmesh þ 1ð Þ � EP
R

¼ NP � Dmesh þ 1ð Þ � l � E f
R

ð29Þ

Total dynamic energy dissipation contains energy dissi-
pated for transferring NP packets, where each packet dis-
sipates Es

1 on average for transferring from the source to
the destination in the on-chip interconnection network.
When one packet is forwarded from the source to the des-
tination, on average, it goes across Dmesh + 1 routers and
links (EP

R is average constant energy dissipated in a router
and the related link for a packet transferring). It should be

noted that a packet contains l flits and in this context, E f
R

is the average of energy dissipated in a router and the re-
lated link for a flit transferring. Therefore, to transfer
NP packets in Ts in the on-chip interconnection network,
dynamic energy dissipation ðEs

NPÞ of an on-chip intercon-
nection will be formulated as Eq. 29.
In a mesh topology with d dimensions, where there

are ki nodes in the ith dimension, the average distance
that a packet must traverse to reach the destination can
be calculated by Eq. 30 [44]:

Dmesh ¼ 1
3
�
Xd

i¼1
ki−

1
ki

� �
ð30Þ

In a 2D mesh with n nodes in each dimension (d = 2
and k1, 2 = n), the average distance between two nodes
can be calculated as follows:

Dmesh ¼ 2n
3
−

2
3n

ð31Þ

In a many-core platform based on 2D mesh topology
(n ≥ 32), the value of the second part in Eq. 31 will be
negligible and can be ignored. Therefore, the average
distance is:

Dmesh≅
2n
3

ð32Þ

Pq
n;n0;n} is the static power consumption of an intercon-

nection network based on mesh topology with n nodes
in dimension 1, n′ nodes in dimension 2, and n′′ nodes
in dimension 3 and contains power consumption of



Table 6 Multi-threaded workloads used in the experiment

Multi-threaded workload blackscholes, bodytrack, canneal, dedup,
facesim, swaption, ferret, fluidanimate,
vips, freqmine, × 264

Table 5 Multi-programed workloads used in the experiment

Test program suite Benchmarks

Memory Bounded set1 (MB1) zeusmp(3), libquantum(3), lbm(3), GemsFDTD(3), art(2), swim(2)

Memory Bounded set2 (MB2) zeusmp(2), libquantum(2), lbm(2), GemsFDTD(2), art(4), swim(4)

Medium set1 (MD1) mcf(3), sphinx3(3), leslie3d(2), gcc(2), cactusADM(2), milc(2), omnetpp(2)

Medium set2 (MD2) mcf(2), sphinx3(2), bzip2(2), calculix(2), leslie3d(2), gcc(2), cactusADM, milc, omnetpp, wupwise

Computation Bounded set1 (CB1) parser(2), applu(2), face_rec(2), equake(2), astar(2), hmmer(2), bzip2(2), calculix(2)

Computation Bounded set2 (CB2) parser(2), applu(2), face_rec(2), equake(2), astar(2), hmmer(2), bzip2, calculix, mpeg_dec(2)

Mixed set1 (Mix1) sphinx3(2), mcf, astar(2), hmmer, gamess(2), perlbench(2), soplex, gromacs, gcc(2), leslie3d(2)

Mixed set2 (Mix2) sphinx3, mcf, astar(2), hmmer(2), gamess(2),perlbench(2), gromacs(2), tonto(2), gcc, leslie3d
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TSVs, links, and routers without packets. There is n ×
n' × n" routers with v virtual channels, n × n′ links on the
core layer, and TSV TSVs in the 3D network on chip.
Finally, power consumption of on-chip interconnec-

tion between nodes can be calculated as:

Pinterconnection ¼ Es
interconnection

Ts
¼ Pq

n;n0 ;n00
þ Es

NP

Ts

¼ n� n
0 � n

00 � PqC
R þ Pstatic

Links þ Pstatic
TSVs

� �
þ Es

NP

Ts

¼ n� n
0 � n

00 � ν� Pc
R þ n� n

0 � Pc
link þ TSV � Pc

TSV þ Es
NP

Ts

ð33Þ

Since Eq. 33 is the function of total execution time of
the mapped applications, Ts, and Ts has a big value com-
pare to ENP, the last term of Eq. 31 can be ignored;
therefore,

Pinterconnection ¼ n� n0 � n00 � ν� Pc
R þ n� n0

� Pc
link þ TSV � Pc

TSV ð34Þ

As described in [45–47], also based on observation
from Fig. 3, particularly problematic for NoC structures
is leakage power, which is dissipated regardless of com-
munication activity. At high network utilization, static
power may comprise more than 75% of the total NoC
power at the 22-nm technology and this percentage is
expected to increase in future technology generations.
This fact is captured by Eq. 34.

6.2 Dark silicon constraint
Equations 35 and 36 represent the dark silicon constraints
for CMPs with multi-programed and multi-threaded
workloads when, for example, the goal is maximizing per-
formance of the system. Maximizing performance under
power constraint is an important target in digital system
design in these days. The peak power dissipation during
the entire execution must be less than the maximum
power budget.
Xn
i¼1

Pcore
i þ

Xn
i¼1

Pcache hierarchy
i

þ Pinterconnection≤Pbudget ð35Þ
Xn
i¼1

Pcore
i þ

XN
k¼1

Xregnk
j¼1

j:xj;k :P
cache hierarchy
j þ Pinterconnection≤Pbudget

ð36Þ
Equations 35 and 36 can be used in design time and

run time optimization techniques and other power man-
agement methods to combat dark silicon.
The proposed model is linear polynomial since all for-

mulas are linear and degree of variables is one. To solve
the models, we use CVX [48], an efficient convex
optimization solver. Solving this model can be exhaust-
ively done (in polynomial time) to determine the best
solution that maximizes performance within the dark sil-
icon peak power budget. The overall runtime overhead
for this polynomial computation is negligible in our
experiment.

7 Experimental evaluation
7.1 Platform setup
In order to validate the efficiency of 3D CMP architec-
tures in this work, we employed a detailed simulation
framework driven by traces extracted from real applica-
tion workloads running on a full-system simulator. The
traces have been extracted from the GEM5 full-system
simulator [17]. For simulating a 3D CMP architecture,
the extracted traces from GEM5 were interfaced with
3D Noxim, as a 3D NoC simulator [49]. GEM5 was aug-
mented with McPAT and 3D Noxim with ORION [50]
to calculate the power consumption in this paper. The
cache capacities and energy consumption of SRAM and
NVMs were estimated from CACTI and NVSIM [22],
respectively. A full-system simulation of a 16-core CMP



Table 7 Workload characteristics (cache hierarchy)

WL LLC_Util (%) Miss rate (%) Hit rate (%) WL LLC_Util (%) Miss rate (%) Hit rate (%)

blackscholes 0.14 5 95 MB1 97 79 21

bodytrack 0.15 8 92 MB2 92 73 27

canneal 74 73 27 MD1 62.4 61 39

dedup 25.3 61 39 MD2 58.6 57 43

facesim 10.7 57 43 CB1 3.6 4 96

ferret 9.1 55 45 CB2 2 3 97

swaptions 0.16 7 93 Mix1 7.8 9 91

fluidanimate 27.6 59 41 Mix2 14.3 17 83

freqmine 0.72 41 59

vips 5 33 77

× 264 5.3 30 70
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architecture with three cache levels in the hierarchy at
the 32-nm technology is performed for evaluation in this
work. In each cache level of the stacked hierarchy, there
are three layers. In the hybrid architecture, the capacity
of each layer of L2 cache is 16 × 1 MB SRAM bank, the
capacity of each layer of L3 cache is 16 × 4 MB eDRAM
bank, and the capacity of each layer of L4 cache is deter-
mined 16 × 4 MB STT-RAM bank. In the baseline archi-
tecture, the capacity of each layer of L2, L3, and L4
caches is 16 × 1 MB SRAM bank. The detailed proper-
ties of cache banks in different technologies are listed in
Table 1. The system configuration used for evaluation in
this work is listed in Table 4.
We use multi-programed workloads consisting of 16

applications and multi-threaded workloads with 16
threads for performing our experiments. The applications
in multi-programed workloads are selected from the
SPEC2000/2006 benchmark suites [38]. Based on memory
demand intensity of benchmark applications, we classified
them into three groups: memory-bounded, medium, and
computation-bounded benchmarks. From this classifica-
tion, we generated a range of workloads (combinations of
Table 8 Workload characteristics (NoC)

WL Packet latency (ns) No. of packet transfer

blackscholes 0.01 1,000,000

bodytrack 0.016 1,150,000

canneal 0.61 9,700,000

dedup 0.52 6,000,000

facesim 0.49 5,300,000

ferret 0.39 4,880,005

swaptions 0.013 1,000,010

fluidanimate 0.59 8,000,400

freqmine 0.29 3,000,000

vips 0.21 2,700,000

×264 0.20 2,870,000
16 benchmarks), as summarized in Table 5. Note that the
number in parentheses is the number of instances. In our
setup, programs in a given workload are randomly
mapped to cores to avoid a specific OS policy. Table 6
summarizes the multi-threaded workloads based on
PARSEC [51] used in this work.

7.2 Experimental results
In this subsection, we evaluate the target 3D CMP with
stacked cache hierarchy in two different cases: the CMP
with SRAM-only stacked cache levels on the core layer
(baseline) and the proposed CMP with hybrid stacked
cache levels on the core layer (hybrid). Results extracted
from the simulations are compared with those obtained
from the analytical model. We define a new parameter
named LLC_Util which shows the utilization of the
last-level cache in the hierarchy and is the best param-
eter to show the workload characteristics among the
other parameters. Workloads with LLC_Util less than
5% are computation intensive. Tables 7 and 8 show used
workload characteristics based on the related LLC_Util
parameter, number of cache hits, number of cache
WL Packet latency (ns) No. of packet transfer

MB1 0.98 11,000,000

MB2 0.92 10,000,000

MD1 0.67 7,400,000

MD2 0.65 7,100,000

CB1 0.12 2,000,100

CB2 0.11 1,900,000

Mix1 0.31 2,700,000

Mix2 0.34 3,000,050
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Fig. 8 Validation of the power model under multi-programed workloads for a 16-core CMP and b 64-core CMP
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Fig. 7 Validation of the power model under multi-threaded workloads for a 16-core CMP and b 64-core CMP
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Table 10 Difference of simulation and proposed model under
multi-programed workloads for a 16-core CMP

Workload CMP Cores (%) Cache hierarchy (%) NoC (%)

MB1 Baseline 0.084 6.871 20.929

Hybrid 4.545 11.111 16.667

MB2 Baseline 3.357 5.852 16.847

Hybrid 5.149 13.725 12.903

MD1 Baseline 3.774 4.755 2.069

Hybrid 2.449 9.222 4.643

MD2 Baseline 3.846 5.797 3.226

Hybrid 5.263 7.018 6.452

CB1 Baseline 3.333 3.279 6.250

Hybrid 1.754 8.333 3.448

CB2 Baseline 3.226 6.154 3.030

Hybrid 1.695 6.000 − 3.125

Mix1 Baseline 3.509 2.941 6.667

Hybrid 1.852 5.769 − 3.226

Mix2 Baseline 3.448 2.899 6.452

Hybrid 9.091 1.754 3.333
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misses, packet latency, and number of packets trans-
ferred. When the utilization of the last-level cache of the
hierarchy is high (LLC_Util > 5%), the number of cache
miss rate increases and the workload needs a larger
cache capacity to better fit the active memory footprint.
For the SPEC benchmarks, we fast-forward 500M in-

structions and run in detailed mode for the next 1 billion
instructions. For PARSEC benchmarks, we run 1 billion
instructions starting from the region of interest (ROI),
using the simlarge input set. We used Ruby in the Gem5
that considers stalls in cores and blocking time effect in
generating traces for the workloads. The proposed model
considers the stalls and packet blocking time as well ac-
cording to the use of the concept of stall time and block-
ing effect modelling in recent studies [43, 52].
Figures 7 and 8 compare the result of power consump-

tion for the simulation and analytical model of baseline and
proposed architecture under running both multi-threaded
and multi-program workload, respectively.
According to Table 7, canneal and MB1 applications, with

the largest LLC_Util, are memory-intensive workloads which
utilize the last-level cache heavily. In these applications, as
Average Baseline 3.072 4.819 8.184

Hybrid 3.975 7.867 5.137Table 9 Difference of simulation and proposed model under
multi-threaded workloads for a 16-core CMP

Workload CMP Cores (%) Cache hierarchy (%) NoC (%)

blackscholes Baseline 4.225 0.714 6.452

Hybrid 3.077 3.279 1.754

bodytrack Baseline 4.348 4.412 3.226

Hybrid 3.077 3.636 3.448

canneal Baseline 5.000 9.091 3.333

Hybrid 4.762 14.151 0.000

dedup Baseline 6.977 1.282 0.000

Hybrid 7.692 3.846 0.000

facesim Baseline 3.077 3.077 3.333

Hybrid 1.639 3.704 3.571

ferret Baseline 1.991 0.915 3.333

Hybrid 1.613 3.774 3.448

swaptions Baseline 4.360 4.425 3.226

Hybrid 2.326 1.852 0.000

fluidanimate Baseline 4.878 6.410 3.333

Hybrid 5.263 5.455 3.448

freqmine Baseline 2.985 2.941 3.333

Hybrid 1.563 3.704 3.333

vips Baseline 5.172 16.923 3.333

Hybrid 1.818 1.852 3.448

x264 Baseline 1.695 2.899 3.448

Hybrid 1.754 1.852 0.000

Average Baseline 3.726 4.424 3.029

Hybrid 3.144 4.282 2.041
shown in Figs. 7a and 8a, cache hierarchy consumes more
power consumption compared with cores because cores are
mostly in stall stage. Swaption and CB2 applications, with
the smallest LLC_Util, are computation-intensive workloads
and, as shown in Figs. 7a and 8a, have higher core power
consumption compared with other workloads. Compared
with baseline CMP, the proposed hybrid CMP improves the
power consumption of cores, cache hierarchy, and on-chip
interconnection by about 6.3, 22.5, and 5.0% on average
under execution of multi-threaded workload. The hybrid
CMP improves cores and cache hierarchy power consump-
tion by about 6.14 and 24.14%, respectively, and worsens the
on-chip interconnection power consumption by about 0.14%
on average that is negligible.
Table 11 Standard deviation of the simulation and proposed
model

Workload CMP Cores Cache hierarchy NoC

Multi-threaded (16 cores) Baseline 0.0153 0.0472 0.0144

Hybrid 0.0198 0.0345 0.0169

Multi-threaded (64 cores) Baseline 0.0653 0.0471 0.0336

Hybrid 0.0393 0.0311 0.0435

Multi-program (16 cores) Baseline 0.0123 0.0159 0.0692

Hybrid 0.0258 0.0364 0.0696

Multi-program (64 cores) Baseline 0.0123 0.0108 0.0250

Hybrid 0.0258 0.0272 0.0435
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In this trend, we evaluate the scalability of our proposed
model for a 64-core CMP as shown in Figs. 7b and 8b. By
increasing the number of cores in memory-intensive
workloads, the increasing of power consumption is much
higher due to higher uncore power consumption in
comparison with computation-intensive applications in
both multi-threaded workloads and multi-programed
workloads. It should be noted that the power consump-
tion of the target architecture is limited under power
budget and temperature limit that are given by a
designer-specified value.
As shown in Figs. 7 and 8, the proposed power model

estimates the power consumption of heterogeneous (hybrid)
and homogenous (baseline) 3D CMPs, with a good degree of
accuracy, under running both multi-programed and
multi-threaded workloads. Tables 9 and 10 show the differ-
ence of values between the simulation and proposed model
for both multi-threaded and multi-program workloads in a
16-core CMP. To evaluate the degree of accuracy, we calcu-
late standard deviation (STDEV) of the simulation and pro-
posed model under different benchmarks and architectures.
As reported in Table 11, the value of the proposed model is
truly close to the value of the simulation. The STDEV of the
baseline and hybrid CMP is negligible and about 0.0198 and
0.0153 for estimation of core power under running
multi-threaded workloads for a 16-core CMP. In addition,
we estimate the cache hierarchy power consumption with
STDEV of 0.0472 and 0.159 for the baseline CMP and about
0.0345 and 0.0364 for hybrid CMP under the multi-threaded
and multi-program workloads.

8 Conclusions
In this work, we proposed an accurate power model that for-
mulates the power consumption of 3D CMPs with stacked
cache layers. The proposed model that considers power im-
pact of uncore beside the cores for the first time is appropri-
ate for heterogeneous and non-heterogeneous CMPs under
multi-threaded and multi-programed workloads. In the fu-
ture, we can use this model in the optimization problems to
minimize power consumption or maximize performance of
CMPs under latency and temperature constraints. Moreover,
we can use this power model in the prediction functions of
machine learning-based power/thermal management tech-
niques for future power-aware CMPs.
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