Madsen and Perera EURASIP Journal on Embedded Systems (2018) 2018:2
https://doi.org/10.1186/s13639-018-0084-3

EURASIP Journal on
Embedded Systems

RESEARCH Open Access
@ CrossMark

Efficient embedded architectures for fast-
charge model predictive controller for
battery cell management in electric
vehicles

Anne K. Madsen and Darshika G. Perera "

Abstract

With the ever-growing concerns about carbon emissions and air pollution throughout the world, electric vehicles
(EVs) are one of the most viable options for clean transportation. EVs are typically powered by a battery pack such
as lithium-ion, which is created from a large number of individual cells. In order to enhance the durability and
prolong the useful life of the battery pack, it is imperative to monitor and control the battery packs at the cell level.
Model predictive controller (MPC) is considered as a feasible technique for cell-level monitoring and controlling of
the battery packs. For instance, the fast-charge MPC algorithm keeps the Li-ion battery cell within its optimal operating
parameters while reducing the charging time. In this case, the fast-charge MPC algorithm should be executed on an
embedded platform mounted on an individual cell; however, the existing algorithm for this technique is designed for
general-purpose computing. In this research work, we introduce novel, unique, and efficient embedded hardware and
software architectures for the fast-charge MPC algorithm, considering the constraints and requirements associated with
the embedded devices. We create two unique hardware versions: register-based and memory-based. Experiments are
performed to evaluate and illustrate the feasibility and efficiency of our proposed embedded architectures. Our
embedded architectures are generic, parameterized, and scalable. Our hardware designs achieved 100 times speedup
compared to its software counterparts.

Keywords: Embedded architectures, Model predictive control, FPGAs, Hardware accelerators, Electric vehicles, Battery

cell management

1 Introduction

The adoption of alternative fuel vehicles is considered as
one of the major steps towards addressing the issues re-
lated to oil dependence, air pollution, and most import-
antly climate change. Among many options, electricity
and hydrogen fuel cells are the top contenders for the al-
ternative fuel for vehicles. Despite numerous initiatives,
both from the government and the private sector around
the world, to enhance the usage of electric vehicles
(EVs), we continue to face many challenges to promote
the wider acceptance of EVs by the general public. Some
of these major challenges include charging time of the
battery and the maximum driving distance of the vehicle
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[1]. In recent years, major EV manufacturers such as
Tesla have been making numerous strides in the electric
vehicle industry; however, we still have to overcome the
distance traveled, high cost, and charging time con-
straints to gain the market acceptance.

The electric vehicles (EVs) are often powered by en-
ergy storage systems such as battery packs, fuel cells, ca-
pacitors, super capacitors, and combinations of the
above. From the aforementioned energy storage systems,
lithium-ion (Li-ion) battery packs are widely employed
in EVs mainly because of their light weight, long life,
and high energy density traits [2]. In this case, the bat-
tery packs are typically created from individual Li-ion
cells arranged as series and/or parallel modules. The
long-term performance (durability) of the Li-ion battery
pack is significantly affected by the choice of the
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charging strategy. For instance, exceeding the current
and voltage constraints of the Li-ion battery cell can
cause irreversible damage and capacity loss that would
degrade the long-term performance and curtail the ef-
fective life of the battery pack [3]. Conversely, operating
within the current and voltage constraints would en-
hance the durability and prolong the useful life of the
battery pack. This requires monitoring and controlling
the battery packs at the cell level. However, most of the
existing research on the battery management system
(BMS) focuses on system-level or pack-level control and
monitor, as in [2], instead of cell level. Thus, it is crucial
to investigate and provide efficient techniques and de-
sign methodologies, to monitor and control the battery
packs at cell levels and to optimize the parameters of the
individual cells, in order to enhance the durability and
useful life of the battery packs.

Model predictive controller (MPC) has been investi-
gated as a viable technique for cell-level monitoring and
controlling of the battery packs [3]. MPC is a popular
control technique that enables incorporating constraints
and generating predictions, while allowing the systems
to operate at the thresholds of those constraints. For
some time, MPC algorithm has been utilized in the in-
dustrial processes, typically in non-resource-constrained
environments; however, in recent years, this algorithm is
gaining interest in the resource-constrained environ-
ments, including cyber-physical systems and hybrid
automotive fuel cells [3], to name a few. The effective-
ness of the MPC algorithm for cell-level monitor/control
depends on the accuracy of the mathematical model of
the battery cell. These mathematical models include
equivalent circuit models (ECMs) and physics-based
models. From these, ECM models are more popular due
to their simplicity. In [3], the authors prove the efficacy
of controlling and providing a fast-charge mechanism
for Li-ion battery cells by integrating the MPC algorithm
with an ECM model. This fast-charge MPC mechanism
incorporates various constraints such as maximum
current, current delta, cell voltages, and cell state of
charge, which keep the Li-ion battery cell within its opti-
mal operating parameters while reducing the charging
time. Thus far, this fast-charge MPC algorithm has been
designed and developed in Matlab and executed on a
desktop computer [3]. However, in a real-world scenario,
it is imperative to execute this fast-charge MPC algo-
rithm on an embedded platform mounted on an individ-
ual cell, in order to utilize this algorithm to monitor and
control the individual cells in a battery pack.

Since the existing algorithm for the fast-charge MPC
is designed for general-purpose computers such as desk-
tops [3, 4], it cannot be executed directly on embedded
platforms, in its current form. Furthermore, embedded
devices have many constraints, including stringent area
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and power limitations, lower cost and time-to-market
requirements, and high-speed performance. Hence, it is
crucial to modify the existing algorithm significantly in
order to satisfy the requirements and constraints associ-
ated with the embedded devices.

Although MPC is becoming popular, the measure-
predict-optimize-apply cycle [5] of the MPC algorithm is
compute-intensive and requires a significant amount of
resources including processing power and memory re-
sources (to store data and results). In this case, the smaller
the control and sampling interval (or time), the larger the
resource cost. This sheer amount of resource cost also im-
pacts the feasibility and efficiency of designing and devel-
oping the MPC algorithms on embedded platforms.

We investigated the existing research works on MPC
algorithms, as well as the existing research works on em-
bedded systems designs for MPC algorithms in the lit-
erature. Most of the research on discrete linearized
state-space MPC focused on reducing either the com-
plexity of the quadratic programming (QP) or increasing
the speed of the computation of the QP, or both. The
existing works on online MPC methods include fast
gradient [6, 7], active set [8—10], interior point [11-16],
Newton’s method [9, 17, 18], and Hildreth’s QP [19], and
others [20]. In [21], a faster online MPC was achieved by
combing several techniques such as explicit MPC,
primal barrier interior point method, warm start, and
Newton’s method. In [9, 18], the logarithmic number
system (LNS)-based MPC was designed on a field-
programmable gate array (FPGA) to produce integer-like
simplicity. The existing research works on embedded
systems designs for MPC algorithm focused on FPGAs
[8, 11, 12, 17, 22, 23], system-on-chip [9, 16],
programmable logic controllers (PLC) [24], and embedded
microprocessors [25]. Although there were interesting
MPC algorithms/designs among the existing research
works, none of the aforementioned existing works were
suitable for monitoring and controlling individual cells of
the battery pack. For instance, the above existing MPC al-
gorithms/designs did not consist of the feed-through term
required by the battery cell model introduced with
fast-charge MPC algorithm in [3]. The impact of the
feed-through term is discussed in detail in Section 2.

In this research work, our main objective is to create
unique, novel, and efficient embedded hardware and
software architectures for the fast-charge MPC algo-
rithm (with an input feed-through term) to monitor and
control individual battery cells, considering the con-
straints associated with the embedded devices. For the
embedded software architectures, it is essential to inves-
tigate and create lean code that would fit into an em-
bedded microprocessor. Apart from the embedded
software architectures, we decide to create novel cus-
tomized hardware architectures for the fast-charge MPC
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algorithm (with an input feed-through term) on an em-
bedded platform. Typically, customized hardware is opti-
mized for a specific application and avoids the high
execution overhead of fetching and decoding instruc-
tions as in microprocessor-based designs, thus providing
higher speed performance, lower power consumption,
and area efficiency, than equivalent software running on
general-purpose microprocessors. In this paper, we make
the following contributions:

e We introduce unique, novel, and efficient
embedded architectures (both hardware and
software) for the fast-charge MPC algorithm. Our
architectures are generic, parameterized, and scal-
able; hence, without changing the internal archi-
tectures, our designs can be used for any control
systems applications that employ similar MPC algo-
rithms with varying parameters and can be executed in
different platforms.

e Our proposed architectures can also be utilized to
control the charging of multiple battery cells
individually, in a time-multiplexed fashion, thus
significantly reducing the hardware resources
required for BMS.

e We propose two different hardware versions
(HW_v1 and HW_v2). With register-based HW_v1,
a customized and parallel processing architecture is
introduced to perform the matrix computations in
parallel by mostly utilizing registers to store the
data/results. With Block Random Access Memory
(BRAM)-based HW_v2, an optimized architecture is
introduced to address certain issues that have arisen
with HW_v1, by employing BRAMs to store the
data/results. These two hardware versions can be
used in different scenarios, depending on the
requirements of the application.

e With both hardware versions, we introduce novel
and unique sub-modules, including multiply-and-
accumulate (MAC) modules that are capable of
processing matrices of varying sizes, and distinguish-
ing and handling the sparse versus dense matrices, to
reduce the execution time. These sub-modules further
enhance the speedup and area-efficiency of the overall
fast-charge MPC algorithm.

e Considering the existing works on embedded
designs for MPC, our architectures are the only
designs (in the published literature) that support a
non-zero feed-through term for instantaneous
feedback. We perform experiments to evaluate the
feasibility and efficiency of our embedded designs
and to analyze the trade-offs associated including
the speed versus space. Experimental results are
obtained in real time while the designs are actually
running on the FPGA.
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This paper is organized as follows: In Section 2, we
discuss and present the background of MPC, includ-
ing the main stages of the fast-charge MPC algorithm.
Our design approach and development platform are
presented in Section 3. In Section 4, we detail the in-
ternal architectures of our proposed embedded soft-
ware design and our proposed register-based and
memory-based embedded hardware designs. Our ex-
perimental results and analysis are reported in Section
5. In Section 6, we summarize our work and discuss
future directions.

2 Background: model predictive controller

The model predictive controller (MPC) utilizes a
model of a system (under control) to predict the sys-
tem’s response to a control signal. Using the predicted
response, the control signals are attuned until the tar-
get response is achieved, and then, the control signals
are applied. For instance, in autonomous vehicles, this
model can be used to predict the path of the vehicle.
If the predicted path does not match the reference or
target path, adjustments are made to the control sig-
nals, until the two paths are within an acceptable
range.

Our investigation on the existing MPC algorithms
revealed that the MPC design in [3] provides a sim-
ple, robust, and efficient algorithm for the fast char-
ging of lithium-ion battery cells. Hence, this MPC
algorithm [3] could potentially be suitable for creating
embedded hardware and software designs. The simpli-
city of this algorithm is based on two major design
decisions that reduce the computational complexity of
the algorithm, ie., to use the dual-mode MPC tech-
nique and Hildreth’s quadratic programming tech-
nique [26].

The dual-mode MPC technique addresses the com-
putational issue of the infinite prediction horizons.
This technique divides the problem space into the
near-future and the far-future solution segments. This
enables the prediction horizons and control horizons
to be decreased significantly, while maintaining the
performance on par with the infinite prediction hori-
zons [26]. The application of this technique to the
fast charge of batteries with a feed-through term is
detailed in [26]. As discussed in [26], reducing the
prediction horizon dramatically reduces the size of
the matrices utilized in MPC, which in turn reduces
the computation complexity. Trimboli’s group, in
[3, 26], evaluated various control horizons and predic-
tion horizons for the optimal performance using the
near-future and the far-future approach and deter-
mined that the optimal control and prediction hori-
zons to be 1 and 10, respectively.
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Hildreth’s quadratic programming (HQP) technique
is an iterative process that is deemed suitable for the
embedded systems designs [27]. This technique is
part of the active set dual-primal quadratic program-
ming (QP) solution, which consists of two main fea-
tures that are beneficial for embedded designs: (1) no
matrix inversion is required, hence managing poorly
conditioned matrices and (2) the computations are
run on scalars instead of matrices, thus reducing the
computation complexity [27]. With the HQP, the
intention of the MPC is to bring the battery cell to a
fully charged position with the least amount of time.
In order to reduce the computational effort [3], the
pseudo min-time problem is implemented to achieve
the same results as the explicit optimal min-time so-
lution. As a result, the HQP technique is deemed ap-
propriate, although it might produce a sub-optimal
solution, in case, if the solution fails to converge in
the allotted iterations [24]. A recent study [24] re-
vealed that the HQP technique performed faster than
the commercial solvers, and it required lean code.
However, the main drawback is that it tends to provide
the sub-optimal solution more often and is also dependent
on selecting the optimal number of iterations. In this
study [24], the clock speed per iteration of the HQP tech-
nique was approximately 15 times faster than the most ro-
bust state-of-the-art active set solver (qpOASES).

The MPC algorithms can be customized to a spe-
cific application or a specific task, based on the
requirements of a given application/task. The custom-
ized MPC typically reduces the execution overhead
required for certain decision-making logic that would
otherwise be essential for the generalized MPC.
Furthermore, embedded architectures are usually
designed for a specific application or a specific com-
putation. The above facts demonstrate that the cus-
tomized MPC algorithms specific to a given model
and given constraints are appropriate for embedded
hardware/software architectures.

2.1 Dynamic model

With the MPC algorithm, selecting a suitable model
is imperative, since the prediction performance de-
pends on how well the dynamics of the system are
represented by the model [28]. For the fast charge of
Li-ion batteries in [3], the authors employed an
equivalent circuit model (ECM) instead of a
physics-based model. The latter models are typically
more computationally complex compared to the
former models [3]. The sheer simplicity of the ECM
leads to a dynamic model that provides a suitable
MPC performance for many applications. The ECM
model is shown in Fig. 1, and the design and devel-
opment of the model is detailed in [4, 26].
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As illustrated in Fig. 1, the series resistor R, is the
instantaneous response ohmic resistance, when a load
is connected to the circuit. In the ECM model, the R,
represents the feed-through term in the MPC general
state-space Eq. (3) [3, 4, 26]; the R;C; ladder models
the diffusion process; the state of charge (SOC)
dependent voltage source, i.e., OCV,,), represents the
open circuit voltage (OCV). In this case, the relation-
ship between SOC and OCV is non-linear; thus, it
can be implemented as a look-up-table (LUT).

The ECM model has a single control input (i.e., the
current) and two measured (or computed) outputs
(i.e., the terminal voltage v(t) and the SOC z(t)). The
main goal is to bring the battery cell to full SOC with
the least amount of time. As a result, the z(%) be-
comes the output to be controlled, which makes this
MPC a single-input single-output (SISO) system. The
current i(¢), which is the control input signal, is rep-
resented in the state-space equations as u(k). By
employing the MPC algorithm, our intention is to
find the best control input, i(¢), in order to produce
the fastest charge, while considering the physical con-
straints of the cell. Typically, the parameters or the
elements of the ECM model are temperature
dependent.

The creation of our unique and efficient embedded
architectures for the MPC algorithm is inspired by
and based on the MPC algorithms presented in [3, 4,
26-28], with many modifications to cater to the em-
bedded platforms. The feed-through term and
dual-mode adjustments are inspired by and based on
the ones in [3, 4, 26].

The state-space equations for the ECM model are
designed and developed based on Fig. 1. The physical
parameters of the model are Qgpargey Ro, R; and
7=R,C;. In this case, the unaugmented state variables
are considered as the z(¢), which is the state of charge
(SOC) of the open circuit voltage (OCV) and the
vcs(t), which is the voltage across the capacitor. The
terminal voltage v(¢) is the output, and the current

i(t) is the input control signal. The discretized
R;
A R
OCV(z(0) —/\V\\-o

v(®
G

O

Fig. 1 Equivalent circuit model (ECM) for battery cell charging [3]
.
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state-space variables are Z;, vcyx Vi, and uy. The gen-
eral state-space Eq. (1) is presented below:

KXmk+1 = Amxm,k + Bmuk (1)

Considering Fig. 1, where At is the sampling time
and # is the cell efficiency, the model without aug-
mentation [4] is written with the following Eq. (2):

e

Zk :| Q
+ At Ui
[VCL]( R (1—3 /R1C1>

(2)

The general formula for the measured outputs is pre-
sented in Eq. (3):

Zi41 — 1 Af;)
Ve k+1 0 e /RiC

Yk = ConXmi + Dptig (3)

where D,, is the feed-through term, which is a necessary
term for the ECM model of this battery.

Next, the output Eq. (4) for the terminal voltage is
written as:

Vi = Cm,vxm,k + Dm,vuk + OCV(Z/()

e =[0 -1] {Vik k] + [~RoJux + OCV (z) (4)

The general equations for the output to be controlled
are presented with the Egs. (5a) and (5b):

(52)

In this case, SOC is selected as the output to be con-
trolled and is presented as Eq. (5b):

Zk = Cm,zxm,k + Dm,zuk

=1 o][ “k }Ho]uk (5b)

Ve k

In this case, the sampling time (Af) and the cell
efficiency (y) are considered as 1 s and 0.997, re-
spectively. These values are determined from [3, 4]
based on a Li-ion battery manufactured by the LG
Chem Ltd. [4]. Next, the model is augmented to in-
corporate integral action and the feed-through term.
The integral action is incorporated by determining
the difference between the state signals (Ax,, ;) and
the control signals (Au;). The final augmented
state-space Egs. (6), (7), (8), and (9) are presented
below, based on the design in [3]:

Xinn = Axy + BAug (6)
Vg = CV)(,(’ + OCV (%) (7)
Zk = éz}(k, (8)

where the y; is defined as follows with Eq. (9):
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)ik{ﬂ’z{/lom ﬂj:m’ (9)

my

and also x; = [A’;—;”k] from adding the integral action.

2.2 Prediction of state and output variables

Trimboli’s group [4, 26] incorporated a feed-through
term in the modified MPC algorithm, which was built
upon and extended from the work done in [29]. A de-
tailed description of the extended work can be found in
[4, 26], and the synopsis of this approach can be found
in [3]. For illustration purposes, the summary of this ap-
proach is presented below.

After completing the augmented model (from Section
2.1), the gain matrices are computed. To achieve this,
the state Eq. (1), as demonstrated below, is propagated
to obtain the future states.

Xer1 = AXy + Blugei
Xiao = A)(Hl + BAuy iy = A(A)(k + BAui1) + BAugyo
= Az)(k + ABAU/(+1 + BAL{/(+2

-3 Sa . .
Xiis = A Xx + A BAugyy + ABAugy s + Bugys

~N, ~Np-1=~ ~N,-2 ~
Xi+N, =A"+A " BAugyy + A" BAugyo + -
+ANP_N£EL{](+NC

(10)

Next, the output Eq. (3) is propagated and substituted
with the elements of Eq. (4), in order to obtain the pre-
dicted output as Eq. (11).

Y1 = éXk,+1 = CAy, + CBAuex
Y2 = CXk,H = é;lz)(k + C’ABAukH + CBAuk+2
Yips = CXk,+3 = CAS)(k + C’AZBAukH + CABAMk+2
+CBAug 5
Yeen, = Kean, = CAYy + CA™ BAu
+CAN BAwy o + -+ CAV N BAwg

(11)

Rewriting Eq. (11) in matrix form produces the follow-
ing Egs. (12) and (13):
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Y = cA’ AXk (12)

ca" B

Ay
Avtpeyr
Aujei3

Aujein,

Yy = ®Ay, + GAU, (13)

In order to use the far-future control technique, the G
matrix and AUy matrix are partitioned into the
near-future (nf) and the far-future (ff) elements, where
G,ris a Np x N¢ matrix and Ggis a Np x Np — N matrix
as below:

AU
AUy = { knf

m] s and G = [an’Gﬁ‘] .

(14)

As discussed in [4], expressing AUyg in terms of
AUy ¢ results in Eq. (15):
AUy gr = — (VAU ng + 1k (15)
where vi,y, =1 1 1 - 1]
Furthermore, substituting Eq. (13) with the elements
of the Egs. (14) and (15) results in Eq. (16):
Y = (Dzzl)(k + Gup AUy r ~Gpv AUy~ Gyrug (16)
The aforementioned steps are required to process and
complete the MPC algorithm. For our embedded archi-
tectures, the above equations (from (10) to (16)) remain
the same, since the temperature is considered as a con-
stant. There are four temperature-dependent variables,
Q, Ry, R;, and r, utilized in the augmented model. These
variables are detailed in Section 4.2.1.

2.3 Optimization

With the embedded systems design, our objective is to
create a control signal that brings both the output signal
Y, and the reference or set-point signal R, closer to-
gether as much as possible. In this case, it is assumed
that R; remains constant inside our prediction window.
The cost function that reflects our optimization goal is
written in a matrix form as below:
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Ji = (YiRo) " (Yi—Ry) + P1AUJ AU . (17)

In the above Eq. (17), R, is a vector of set-point infor-
mation, and P; is a penalty factor based on the given
constants rw and Ap. Substituting Eq. (17) with the ele-
ments of Eq. (16), utilizing properties of the symmetric
matrices, and grouping the terms, results in the follow-
ing cost function:

Jic= AUL, (Gl Gy + PrI-Gly Gyv—" Gf Gy + v GF.Gyv) AUy
~28UL, (GlRs + v/ G R-Gly @Ay, v G Ay, -Gl Grue—v' G G )
) o
+(PAY,-Re-Gux)” (DAY —Re-Ggu).
(18)

Next, Hildreth’s quadratic programming (HQP) tech-
nique is used to minimize the above cost function pre-
sented in Eq. (18). The input function for the HQP
(where x represents the control variable) is written as
below:

1
]:ExTEerxTF (19)
The equality constraint is as follows:
Mx<y (20)

The original function in Eq. (19) is augmented with
the equality constraint (presented in Eq. (2) and multi-
plied by the Lagrange multiplier (\)):

1
J= 5xTExJracTFJr/lT(z\/Ix—y) (21)

In this case, E and F can be inferred from Eq. (18) to

produce the following Eqgs. (22) and (23):

E=2(GlGy + Pr-GlGyv—v GG,y + v G Gyv)
(22)

F=-2 (GWTIRS + vTG}RS—G,{j@AXk—vTG}®AXk-G,{fGﬂuk—vTG}Gﬂuk)
F=-2((65 + V76 )Re-(Gly +v7 Gf ) @Ay, (Gl Gy + v GF Gy e )
(23)

A weight vector (m) can be added to further enhance
the performance of the MPC algorithm. The m vector is
a 1 x Np - N¢ vector that is typically computed offline in
Matlab and stored either in registers or in BRAMs. In
this case, P, is an extra penalty factor added to improve
the performance. Since Nc=1 is utilized, v vector be-
comes a scalar 1, thus becoming trivial. Considering that
the SOC is the output to be controlled and the gain
matrices used G, and @, then E and F become:
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E=2(Gl.Gus + P1-Gly.Gpm-m" Gf.Gy. + m" Gf, Gz + m"mP, )

(24)

., (Gl + m'GlL )Ry~ (G, + m"Gf, ) .4y,
- (foZGﬁrzm + mTG}ZGﬁrzm + mePQ) Ui
(25)

Next, the constraints for Eq. (20) are developed, which
constrain the control input, the terminal voltage, and
the maximum SOC. The developments of M and y are
detailed in [4]; the final Eq. (26) is presented below.

1
1

(Gup + Gpm)

(G + Gm)

(G + Ggzm)

M= and,

Umax—Uk
—Umin + Uk
Vimax— (CDVA)( + Gpmuyy + OCV)
~Vmin + (P,AY + Gmuy + OCV)
zmax—CDZA)(—Gﬁzmuk

}/:

(26)

For the primal-dual approach, the partial derivatives of
Eq. (21) are taken, with respect to x and A as in [4]. In
this case, setting the partial derivatives equal to zero and
solving the equation for x and X result in Eq. (27):

A= —(ME"M")™ (y + ME™'F) (27)

x=-E'(M"A+F) (28)

Substituting Eq. (26) with the elements of Eq. (25) re-
sults in Eq. (29):

x=-E'F-E'M") (29)

Since Au is the control variable, Eq. (29) becomes Eq.
(30):

Au = Au’~E'M*)A (30)

In this case, the Au’=—E 'F is the unconstrained opti-
mal solution to the control signal, and ~E'M™) is the
correction factor based on the constraints computed by
the HQP in case if Au® fails to meet the required con-
straints. To determine whether the optimal solution Au°
is sufficient, it is substituted in Eq. (20), to obtain Eq.
(31):

MAu’ <y (31)

If the above equation fails for any element of the con-
straint vectors, then the correction factor is computed
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using the HQP. The HQP technique is a numerical ap-
proach for solving the primal-dual problem. The
primal-dual problem is equivalent to the following Eq.
(32):

1
max min [ExTEx +xTF+ )LT(Mx—y)} (32)

A=0 x

Substituting Eq. (21) with the elements of Eq. (29) re-
sults in Eq. (33):

max (— %ATPA—ATK— % FTE™ F) (33)
where,

P=ME'MT (34)

K =y +ME'F = y-MAu’ (35)

2.4 Hildreth’s quadratic programming technique

As discussed earlier, the )\ is a vector of Lagrange multi-
pliers. In Hildreth’s quadratic programming (HQP), the
A is varied one element at a time. With a starting vector
(A"™), a single element (1}") of the vector is modified, util-
izing P and K to minimize the cost function (presented
in Eq. (21)), which creates /1?”1. In this case, if the modi-
fication requires A/ < 0, then set "' =0, rendering
the constraint to be inactive. Then, the next element
()LZVTII) of the vector is considered, and this process con-
tinues until all the elements of the entire A" vector are
modified. This modification is computed using Eq. (36):

AP = max(0, w;) (36)
where,
1 i-1 n
wi= oo kit D p T+ D P (37)
Pii =1 j=it1

In this case, k; and p;; are the scalar ith and jjth ele-
ments of K and B respectively. This is an iterative
process, which continues either until the A converges (so
that A *1~1"™) or until a maximum number of itera-
tions is reached. This process concludes with a 1" of ei-
ther 0 or positive values. The positive values are the
active constraints in the system at the time. The next
step is to utilize 1” in Eq. (3), to obtain our final control
input as illustrated in Eq. (38):

Aty = Auf~E7'MTL* (38)

2.5 Applying control signal
The control signal and the state signal are computed
and updated using Eq. (6) (in Section 2.1). The first
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element of AUy is used to update the control signal as
shown in Eq. (39).

U1 = U + Attgen (39)

Next, the new control signal is used to determine the
states for the next iteration, as presented in Eq. (40):
Xik+1 = Apxi + Bmuk+1 (40)
In this case, the state of charge (SOC) (i.e., ¢, 1, [0] =
Zr+ 1) is compared to reference values to determine if
the Li-ion battery is fully charged. If the SOC is less than
the reference values (z; . ; < reference), then the MPC al-
gorithm is repeated to compute the next control signal.

3 Design approach and development platform

In this research work, we introduce our unique, novel,
and efficient embedded architectures (two hardware ver-
sions and one software version) for the fast-charge
model predictive controller (MPC). Our proposed em-
bedded architectures for the fast-charge MPC algorithm
are inspired by and based on the modified MPC algo-
rithm for the lithium-ion battery cell-level MPC mod-
eled by Trimboli’s group [3, 4, 26]. We obtained the
source codes written in Matlab for the existing
fast-charge MPC algorithm from Trimboli’s research
group [4]. We use this validated Matlab model as the
baseline for the performance and functionality compari-
son presented in Section 5.

For all our experiments, both software and hardware
versions of various computations are implemented using
a hierarchical platform-based design approach to facili-
tate component reuse at different levels of abstraction.
Our designs consist of different abstraction levels, where
higher-level functions utilize lower-level sub-functions
and operators. The fundamental operators such as add,
subtract, multiply, divide, compare, and square root are
at the lowest level; the vector and matrix operations in-
cluding matrix multiplication/addition/subtraction are at
the next level; the four stages of the MPC, ie., model
generation, optimal solution, Hildreth’s QP process, and
state and plant generation, are at the third level of the
design hierarchy; and the MPC is at the highest level.

All our hardware and software experiments are carried
out on the ML605 FPGA development board [30], which
utilizes a Xilinx Virtex 6 XC6VLX240T-FF1156 device.
The development platform includes large on-chip logic
resources (37,680 slices), MicroBlaze soft processors,
and 2 MB on-chip BRAM (Block Random Access Mem-
ory) to store data/results.

All the hardware modules are designed in mixed
VHDL and Verilog. They are executed on the FPGA
(running at 100 MHz) to verify their correctness and
performance. Xilinx ISE 14.7 and XPS 14.7 are used for
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the hardware designs. ModelSim SE and Xilinx ISim
14.7 are used to verify the results and functionalities of
the designs. Software modules are written in C and exe-
cuted on the 32-bit RISC MicroBlaze soft processor
(running at 100 MHz) on the same FPGA. The soft pro-
cessor is built using the FPGA general-purpose logic.
Unlike the hard processors such as the PowerPC, the
soft processor must be synthesized and fit into the avail-
able gate arrays. Xilinx XPS 14.7 and SDK 14.7 are used
to design and verify the software modules. The hardware
modules for the fundamental operators are designed
using single-precision floating-point units [31] from the
Xilinx IP core library. The MicroBlaze is also configured
to use single-precision floating-point units for the soft-
ware modules. Conversely, the baseline Matlab model
was designed using double-precision floating-point oper-
ators. This has caused some minor discrepancies in cer-
tain functionalities of the fast-charge MPC algorithm.
These discrepancies are detailed in Section 5.

The speedup resulting from the use of hardware over
software is computed using the following formula:

BaselineExecutionTime(Software)

Speedup =
peecip ImprovedExecutionTime(Hardware)

(41)

3.1 System-level design

We introduce system-level architectures for our em-
bedded hardware versions as well as our embedded
software version. For some of the designs, we inte-
grate on-chip BRAMs to store the input data needed
to process the MPC algorithm and to store the final
and intermediate results from the MPC algorithm. As
shown in Fig. 2, the AXI (Advanced Extensible Inter-
face) interconnect acts as the glue logic for the
system.

We also incorporate MicroBlaze soft processor in
both the hardware versions. For the embedded hard-
ware, MicroBlaze is configured to have 128 KB of
local on-chip memory. As illustrated in Fig. 2, our
user-designed hardware module communicates with
the MicroBlaze processor and with the other periph-
erals via AXI bus [32], through the AXI Intellectual
Property Interface (IPIF) module, using a set of ports
called the Intellectual Property Interconnect (IPIC).
For the hardware designs, MicroBlaze processor is
only employed to initiate the control cycle, to apply
the control signals to the plant, and to determine the
plant output signal. Conversely, the user-designed
hardware module performs the whole fast-charge
MPC algorithm. The execution times for the hard-
ware as well as the software on MicroBlaze are
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128KB Block .
RAM (BRAM) AXI Timer
AXI4LITE Interconnect
LMB BRAM . .
L« n] MicroBlaze LN  User Designed
Interface Processor AXTIPIF R~ Hardware Module
Controller

Fig. 2 System-level architecture for fast-charge MPC

obtained using the AXI Timer [33]
100 MHz.

running at

4 Embedded hardware and software architectures
for MPC

In this section, we introduce unique, novel, and effi-
cient embedded architectures (both hardware and
software) for the fast-charge model predictive control-
ler (MPC) algorithm. Apart from our main objective,
one of our design goals is to create these embedded
architectures to monitor and control not only one
battery cell but also multiple battery cells individually,
in a time-multiplexed fashion, in order to reduce the
hardware resources required for BMS.

Initially, we investigate and analyze the functional
flow of the MPC algorithm in [4], and then, we de-
compose the algorithm into four high-level stages (as
shown in Fig. 3) to simplify the design process. The
operations of the four consecutive stages are as
follows:

e Stage 1—Compute the augmented model and gain
(or data) matrices.

o Stage 2—Check the plant state (i.e., whether the
charging is completed or not); compute the global
optimal solution that is not subjected to constraints;
determine whether the constraints are violated or
not.

T
Model | Gain N | 2 |
Parameters " e~ .G I_: E > P
Fsub
I
v
OoCVv >
Y
No N Meets
S0C % K constraints
> Fo » MAu® No
Au
Yes
y
Yes Hll((zi;eth e
y y
Fully \ Outputs <
( Charged /~ (u, v, 2)

Fig. 3 Four high-level stages of fast-charge MPC algorithm
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e Stage 3—Compute the new or adjusted solution using
HQP procedure, if and only if, constraints are violated.

e Stage 4—Compute the new plant states and plant
outputs. It should be noted that for experimental
purposes, the plant output is computed in stage 4;
however, in a real-world scenario, the plant output
would be a measured value.

In order to enhance the performance and area efficiency
of both our embedded hardware and software designs, all
the time-invariant computations are relocated to stage 1
from other stages of the MPC algorithm. In this case, stage
1 is considered as the initial phase, which is performed only
once at the beginning of the Control Prediction Cycle,
whereas, subsequent stages (stages 2, 3, and 4) are per-
formed in every sampling interval in an iterative fashion.
Relocating the time-variant computations to stage 1 dra-
matically reduces the time taken to perform the subsequent
stages and enhances the overall speedup of the MPC algo-
rithm. For an example, consider the P parameter typically
associated with stage 3. This P is created by multiplying a
32-word vector by a 32-word vector to create a 32 x 32
matrix, which comprises 1024 multiplications. This compu-
tation would usually take 1032 clock cycles per iteration, if
we employ a FPU multiplier, which produces a multiplica-
tion result every clock cycle, after an initial latency of 8
clock cycles. With the original fast-charge MPC algorithm
[3], the P parameter is computed every time, when the stage
3 is executed. By moving the P parameter computation to
stage 1, we save 1032 clock cycles per iteration. These exe-
cution times and speedups are detailed in Section 5.

There are two major advantages of using the modified
fast-charge MPC algorithm for the embedded systems de-
signs over other MPC algorithms in the existing literature:

e The fast-charge MPC algorithm contains only one
matrix inversion, which is time-invariant, thus need-
ing to be computed only once, provided that the
temperature remains constant.

e The dual-mode approach allows for a short predic-
tion horizon (Np = 10) and a short control horizon
(N¢ = 1), which reduces the size of the matrices
while maintaining the required stability. It also
reduces the single matrix inversion to a scalar
inversion, thus eliminating matrix inversion.

Our proposed embedded architectures for the fast-charge
MPC are detailed in the following sub-sections.

4.1 Embedded software architecture

Initially, we design and develop the software for the
fast-charge MPC algorithm in C using the XCode inte-
grated development environment. This software design
is executed on a desktop computer with dual core i7
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processor. Then, the results are compared and verified
with the baseline results from the Matlab code. Both the
C and Matlab results are also used to verify our results
from the embedded software and hardware designs.

Due to the limited resources of the embedded devices, it
is imperative to reduce the code size of the embedded
software design. Hence, we dramatically modify the above
software design (executed on desktop computer) to fit into
the embedded microprocessor, i.e., MicroBlaze. In this
case, we make the code leaner and simpler, in such a way
that it fits into the program memory available with the
embedded microprocessor, without affecting the basic
structure and the functionalities of the algorithm. Many
design decisions for hardware optimizations are also
employed to optimize the embedded software design
whenever possible, including reordering certain operations
to reduce the redundancy (e.g., computing P parameter in
stage 1). We also incorporate techniques to reduce the use
of for loops appropriately and perform loop unrolling
when the speed is important. Furthermore, we identify
parts of the program, where offline computations can be
done without exceeding the memory requirements.

The embedded software is designed to mimic the
hardware. Apart from the usual computation modules,
embedded software design consists of two sub-modules.
One sub-module computes the temperature-dependent
model parameters of resistances R, and R;, time con-
stant 7, and Q(arge)» Whereas the other sub-module
computes the open circuit voltage (OCV) from the state
of charge (SOC). The required parameters for the soft-
ware design are computed from the measured data using
a cubic spline technique. Since the empirical data are
unlikely to change, the cubic spline data are computed
offline with Matlab codes. The software flow for the
fast-charge MPC is presented in Table 1.

Table 1 Software algorithm for fast-charge MPC

Stage  MPC software algorithm

1. 1.1. Get temperature
1.2. Call parameter function
1.3. Calculate ® and G matrices
14. Create G,r and Gg (nf = near future and ff = far future) dual
mode data)
1.5. Calculate E
1.6. Calculate P (matrix for Hildreth QP)
1.7. Build M (constraints vector)
1.8. Start loop — compare x,[0] (SOC) to reference to see if fully
charged. If not fully charged, continue, else exit

2. 2.1. Calculate £
2.2. Solve -FE (optimal unconstrained Au from J)
2.3. Build y (constraints vector)
24. Compare: MAu <y

3. 3.1. False — call Hildreth QP, develop new Au that meets
constraints
3.2. True Goto Stage 4 (4.1)

4. 4.1. Calculate the next control signal, next states, and outputs
4.2. Goto Start Loop (1.8)
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4.2 Embedded hardware designs

In this research work, we design and develop two hard-
ware versions: the register-based hardware version 1
(HW_v1) and the on-chip BRAM-based hardware ver-
sion 2 (HW_v2). With HW_v1, a customized and paral-
lel processing architecture is introduced to perform the
matrix computations in parallel by mostly utilizing regis-
ters to store the data/results. By employing a parallel
processing architecture, we anticipate an enhancement
of the speedup of the overall MPC algorithm. With
HW_v2, an optimized architecture is introduced to ad-
dress certain issues that have arisen with HW_vl. By
employing on-chip BRAMs to store the data/results, we
expect a reduction in overall area, since the registers and
the associated interconnects (in HW_v1) typically oc-
cupy large space on chip. Conversely, the existing
on-chip BRAMs are dual-port; hence, these could poten-
tially hinder parallel processing of computations.

The register-based HW_v1 is designed in such a
way to follow the software functional flow of the
MPC algorithm presented in Table 1, thus having
similar characteristics as the embedded software de-
sign. In this case, the registers are used to hold the
matrices, which is analogous to the indexing of the
matrices in C programming. It should be noted that
initially, we introduce HW_vl, almost as a
proof-of-concept work; next, we introduce HW_v2 to
address certain issues that have arisen with HW_v1.

Xilinx offers two types of floating-point IP cores:
AXI-based and non-AXI-based. For the register-based
HW_v1, we use the standard AXI-based IP cores for the
fundamental operators. These IP cores provide standard-
ized communications and buffering capabilities and oc-
cupy less area on chip, at the expense of higher latency.
For the BRAM-based HW v2, we utilize the
non-AXI-based IP cores for the fundamental operators.
These IP cores allow the lowest latency adder (5-cycle la-
tency) and multiplier (1-cycle latency) units to support
100 MHz system clock, at the expense of occupying more
area on chip. The non-AXI-based cores have less stringent
control and communication protocols; thus, proper timing
of signals is required to obtain accurate results. With
HW_v2, we manage to use lower latency but more
resource-intensive IP cores, since it consists of fewer mul-
tipliers and adders, whereas with HW_v1, we have to use
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higher latency but less resource-intensive IP cores, since it
comprises large number of multipliers and adders, due to
the parallel processing nature of the design.

Initially, we design and develop the embedded hard-
ware architectures for each stage as separate modules,
analogous to our hierarchical platform-based design
approach. The hardware designs for each stage consist
of a data path and a control path. The control path
manages the control signals of the data path as well
as the BRAMs/registers. Next, we design a top-level
module to integrate the four stages of the MPC algo-
rithm and to provide necessary communication/con-
trol among the stages. Among various control/
communication signals, the top-level module ensures
that the plant outputs, the state values, and the input
control signals are routed to the correct stages at
proper times. The control path of the top-level mod-
ule consists of several finite-state machines (FSMs)
and multiplexers to control the timing, routing, and
internal architectures of the designs. The internal
hardware architectures of the four stages of the MPC
algorithm are detailed in the following sub-sections.

4.2.1 Stage 1: augmented model and gain matrices
Stage 1, the initial phase of the MPC algorithm, is per-
formed only once at the beginning of the Control Predic-
tion Cycle. All the time-invariant computations, which are
deemed independent of yx and u; are relocated and per-
formed in stage 1, to ease the burden of the
compute-intensive iterative portions of the MPC algorithm.
The general functional and data flow of stage 1 (for both
HW_vl and HW_v2) is depicted in Fig. 4. As illustrated,
the relocated computations include E, M, B, and the
sub-matrices for F. Stage 1 also consists of the augmented
model and gain matrices for both the hardware versions
and a parameter module only for HW_v2. Initially, aug-
mented model (in Fig. 4) is created from Egs. (6), (7), and
(8) depending on the temperature-dependent parameters,
initial states x; = [0, 0.5], and initial control input u; = 0.

4.2.1.1 Computing parameters Since varying tempera-
tures are inevitable in the real-world scenario, for
HW_v2, we integrate an additional parameter module
to compute the four temperature-dependent variables
Q, Ry, R;, and r, utilized in the augmented model.

Model
(Augmented)

Parameters

Gains
D, G

=
¥ P

Fig. 4 Functional/data flow for stage 1

sub
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These variables are computed using a cubic spline
interpolation of empirical data provided for Li-ion
batteries. We use four cubic spline equations to com-
pute the four variables. The general formula for a
cubic spline interpolation is: y= AsxS + axx® + aix + do,
where x = T-ref; in this case, T is the temperature and
ref is (min) from Table 2. As presented in Table 2,
cubic spline approach uses six temperature regions.
For HW_v2, initially, the coefficients (ie., a3, a, aj,
and a,) of the equations for all four variables are pro-
duced by Matlab codes and stored in a BRAM config-
ured as a ROM. If the temperature varies, the base
address of the temperature region in use (ref) is
passed to the parameter module and the correspond-
ing variables (parameters) are computed.

For HW_v1, in stage 1, the parameter module is excluded
due to the resource constraints on chip. In this case, for
HW_v1, the temperature-dependent parameters are consid-
ered as constants and stored in the registers, on the premise
that the temperature will remain constant [4]. In this paper,
for the experimental results and analysis (in Section 5), we
consider the temperature to be constant for both hardware
versions. With the current experimental setup, the add-
itional parameter module does not impact the precision or
the performance of the proposed embedded designs.

The internal architecture of the parameter module
(from Fig. 4) for HW_v2 is depicted in Fig. 5. This mod-
ule executes a cubic equation for each of the
temperature-dependent variables. The regions contain
different coefficients based on empirical data. As illus-
trated in Fig. 5, these coefficients are stored in ROM,
and the region defines the memory location of the coef-
ficients and the reference values. To execute the cubic
equation, the parameter module uses an 8-cycle multi-
plier, 12-cycle adder, and multiplexers. There are four
cubic equations, one for each parameter. This module
initially computes the x term for all four equations and
then adds the constants. Next, the x° term is calculated
and multiplied by the four corresponding coefficients,
and the resulting value is added to the previous terms.
This is repeated for the x° term. This multiply-add ap-
proach is timed in such a way to eliminate the need for
extra registers to hold the values. Once the add

Table 2 Temperature regions for cubic spline

Region Range Reference (°C)
1 —-15°C<T<-5°C -15

2 -5°C=sT<5°C -5

3 5°C<T<15°C 5

4 15°C<T<25°C 15

5 25°C<T<35°C 25

6 35°C<T 35
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completes, the next multiply is ready to be added to the
total.

4.2.1.2 Creating augmented model After computing
the parameters, we design and develop the matrices of
the augmented model. The elements of the modified
fast-charge MPC state-space equations (i.e., Eqgs. (1)—(8)
[4]) are presented below in (42).

0
A, = -At ,
0 e /RiCy
I nAt
Q
B, = —At/ and
R (1—e Rlcl)

Zk
Xmk =
Vcl,k

The augmented state-space equation matrices are given
in Eq. (9) (in Section 2.1), where, At is the sampling time
(considered as 1 s) and 7 is the cell efficiency (considered

(42)

as 0.997). Also, the e_At/ T term is currently stored as a
constant and an input for both the hardware versions. For
both HW_v1 and HW_v2, the augmented model computes
all the elements in Eq. (42) and then stores the values in
the correct order of the matrices, in registers (for HW_v1)
and in BRAMs (for HW_v2). In addition, the augmented
model for HW_v2 computes P; and P, in Eq. (24).

The internal architecture of the augmented model for
HW _v1 is shown in Fig. 6. In order to compute the values
in Eq. (42) for the augmented model, a subtraction FPU,
multiplication FPU, a division FPU, and three multiplexers
are required. The results are stored in registers to be for-
warded directly to the subsequent modules.

4.2.1.3 Computing gain matrices Next, we perform the
gain matrix computations including the ®, G,; and G
Each gain matrix has identical computations, which are in-
dependent of each other. In our design, the ® and G matri-
ces are developed for both the terminal voltage v, and SOC
Zj separately, resulting in @,, @, ,G,, and G,. The gain
matrices are derived from Eq. (12), where @, and O, are:

~ V~ ~CZ~
C,A CA
o,=| ¢A | add,=| ca’ (43)
c,AN! cA"

It should be noted that in our design, from Eq. (9),
the B is considered as [0 0 1]”; thus, each column
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Fig. 5 Internal architecture of parameter module for HW_v2

of G is derived from the third column of ®. This
only requires arranging the elements of the G matrix
in registers or BRAMs, instead of re-computing these
elements. In this case, G, is a Np x Nc matrix and Gy
is a Npx Np—- N matrix. As in Eq. (44), for N =1,
G, is the first column of G, from Eq. (12), and Gg
comprises the rest of the columns. Utilizing C, and
C., which incorporated the feed-through term from
Eq. (44), we create G,n, Ggy Gup and Gg.

CB 0 0 0
CAB CB 0 0
G=| cA’B CAB CB 0
ca'g), | €AV’ ca" e . caVp
of Gﬁ’
(44)

The internal architecture for computing the @ matrix
(for both HW_v1 and HW_v2) is shown in Fig. 7. The
size of @ is determined by the prediction horizon (N,),
the number of states, (N;), and the number of inputs,
(Ny,), and is an Nx (N; + Nj;,) matrix. As illustrated, the
@ includes three multiply-and-accumulate units to com-
pute three elements of each row in parallel. Instead of
adding a zero (0) to the first term, as in a typical
multiply-and-accumulate unit, in this case, the first term

is placed in a register until the second term is ready for
the add operation. After the addition of the first two
terms, the rest of the terms are subjected to
multiply-and-accumulate operation. As shown in Fig. 7,
the internal architecture also comprises a feedback-loop
unit, which determines the appropriate values to be
loaded in each iteration. In this case, each subsequent
row of @ is the previous row multiplied by A. Our de-
sign comprises three multiply-and-accumulate (MAC)
units that compute each column of A (as shown in Fig. 8)
in parallel.

As demonstrated in Fig. 7, both hardware versions
have the same internal architecture for computing the @
matrix. In this case, HW_v1 waits until @ matrix com-
putation is completed and then loads G,rand Gz Also,
HW_v1 employs two gain matrix modules to compute
[CDV, G, Gﬁ,] and [CDZ, Gufz, Gﬁrz] matrices in
parallel.

Conversely, HW_v2 computes each row of the ©
matrix and then saves the row term in an appropriate
memory location, in order to subsequently build @, G,
and Gy utilizing an addressing algorithm. Furthermore,
HW_v2 computes and saves the ®,A and ®,A matrices.

As illustrated in Fig. 9, the calculation of ® and ®A only
differs by one row. Hence, by merely computing one

Fig. 6 Augmented model for HW_v1
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Fig. 7 Internal architecture for © for HW_v1 and HW_v2

additional row, ®A can be built in the same fashion and
at the same time as @, G,; and Gy using one extra
iteration.

Unlike HW vl, HW v2 computes the
[®,, Gy, Gp, ®A]and [D,, G, Gp, OA]
sequentially. The functional architecture of the gain matrices
for HW_v2 is depicted in Fig. 10. In this case, the hardware
module for computing the @ matrix (from Fig. 7) is reused
in this module.

HW_vl computes ®A in a separate module (as in
Fig. 11), after completing the @ matrix computation. In
this case, we employ 10 MAC units to compute all the
elements in each column of ®A
illustrated in Fig.

in parallel. As
11, the columns are computed

sequentially. Also, HW_v1 employs two ®A modules to
compute CDVA and CDZA in parallel.

4.2.1.4 Time-invariant computations for HW_vl As
mentioned in Section 4.2.1, all the time-invariant
computations (E, M, B, and sub-matrices of F), which
are deemed independent of x, or u; (from stages 2
and 3), are relocated to stage 1, thus significantly re-
ducing the computation burden in other stages. For
HW_vl and HW_v2, these computations are designed
using different techniques. For register-based HW_vl1,
we employ parallel processing architecture, whereas
BRAM-based HW_v2 is executed in pipeline fashion.

E module for HW v1

First, we present the architecture for HW_v1, since
it intuitively follows the order of operations. Consid-
ering Eq. (24) from Section 2.3, there are no y or Au
terms, unless the temperature varies. As a result, E
remains constant and can be performed in stage 1.
We decompose this E computation into several

[ @ ]| 4

row

Fig. 8 Organization of OA
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= o

row next]




Madsen and Perera EURASIP Journal on Embedded Systems (2018) 2018:2

~

C . CA

~m / o
CA — L ~>CA*?
o o

52@4////////
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sub-functions, in such a way that each sub-function
comprises only one matrix computation. Then, for
HW _vl, we design separate sub-modules to perform dif-
ferent matrix computations such as a vector-scalar multi-
plication (VS), a vector-vector multiplication (VV), a
vector-matrix multiplication (VM), and a vector-matrix
transpose multiplication (V' MY). The decomposed com-
putations are presented in Egs. (45)—(53):
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highest latency, by computing the E™ in stage 1, the sub-
sequent stages mostly comprise multiplication operations
with much lower latency (1 to 8 cycles based on the FPU).
For HW _v1, the final internal architecture for E module is
derived from Eq. (25) from Section 2.3. From Eq. (25), it is
observed that the last term is in fact (E, + E4 + E5)uy. In
this case, integrating Eq. (54) to the E module reduces the
number of outputs Fj3,, ie., from three 32-bit values to a
single 32-bit value.
Fsy =Ey +Ey +Es (54)
As illustrated in Fig. 12a, the E module for HW_v1 com-
putes the Egs. (45)-(54). As shown, the E module for
HW_v1 comprises several sub-modules to compute vari-
ous vector and matrix operations. These sub-modules
utilize MAC units (Fig. 12c) to perform the necessary vec-
tor/matrix operations. Our MAC unit is designed in such
a way to reduce each final MAC result by 12 clock cycles.
In our designs, the vector-vector multiplication (VV) is
identical to vector squared (V?) except the former accepts
two separate vectors, whereas the latter accepts only one;

E, = GZsznfz (45)  vector-matrix multiplication (VM) and vector-matrix
. transpose multiplication (V'MT) are also identical, except
Ey = Eyam, Eyy = GGy (46)  the former uses the number of columns of the matrix to
T determine the number of processing elements (PEs),
E3 = E3,Gyp, E3zp =m Gﬁfz (47)  whereas the latter uses the number of rows of the matrix
to determine the number of PEs. Furthermore, as depicted
Ea = Baam, Eaa = EsaGpe (48) Fig. 12b, we design a separate sub-module to compute
Es = Es,Py, Es, = m™m (49) the tuning parameters P; and P,, which is executed in par-
allel with the E module. This significantly reduces the con-
Py =rmw(l-yp) (50) trol logic required for the E module.
P — 51 F_sub module for HW v1
2=TWYp (51) We design the F_sub module to compute the
E=FE +P, +Ey+Es+Ey+Es (52) sub-matrices for F. This module computes all the F
terms, presented in Egs. (55)—(58), which are derived
Einv = E! (53)  from Eq. (25).
In this case, the control horizon is N, = 1, and E and the Fi,= GZfz + Es, (55)
inverse of E are scalars, which significantly reduces the
complexity of the MPC algorithm. Since division and in-
version floating-point operations typically incur the Fi = Fi4Rs (56)
U] Write last row for

Get4

< Write first row of @,
— Get C G 4G
wp ANA Gy

(Figure 7) o4

Write row of @, G,
Gy and D4

Last row of ®4

Fig. 10 Internal architecture for gain matrices and OA for HW_v2
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Fig. 11 Internal architecture for ®A module for HW_v1
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Fyy = F1,0,

F2c:F2aA

(57)

(58)

The internal architecture of the F _sub module is
depicted in Fig. 13, which consists of a vector-addition
module (V +V), a vector-accumulation module (VAcc),
two VM modules, and a FPU multiplier. In this case, the
former two sub-modules (V +V and VAcc) utilize FPU
adders to perform the required operations.

M module for HW v1

We also design the M module to compute M
constraints. The M and y are presented in Eq. (26).

Mposv, = Ggm

Mposz, = Ggm

Mposv = (G,,ﬁ, + Mposva)

Mnegv = —Mposv

Mposz = (G, + Mposz,)

DAV = ©,A

DAz = DA

(62)
(63)
(64)

(65)

HW_v1 employs separate modules to perform Gym and

All the elements of M and some elements of y can ®A. The internal architecture for ®A is demonstrated in
be computed with Egs. (59)—(65) as follows: Fig. 11, and the architecture of Gym computation is
- . i e I R — .
bom bove | |k s E
00 i Ty I L’E"a-(ic-l--:—'
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Fig. 12 Internal architecture for £ module for HW_v1. a £ module, b P; and P,, ¢ V V multiply-accumulate
J




Madsen and Perera EURASIP Journal on Embedded Systems (2018) 2018:2

Page 17 of 36

V+V

VM

Fig. 13 Internal architecture for F_sub module for HW_v1

similar to the VM sub-module. With the M module, the
negation operations (in Egs. (61) and (63)) are performed
by reversing the most significant bit (MSB) of the 32-bit
floating-point values, thus reducing the logic utilized for
these operations.

P module for HW v1

Next, we design the P module for HW_v1, which is
derived from Eq. (34), P = ME "M". As discussed in Sec-
tion 2.4, Hildreth’s quadratic programming (HQP) uti-
lizes this equation to compute A vector. We decompose
this equation to Egs. (66) and (67) as follows:

MconEinv = ME_I (66)

where, Eq. (67) vector-scalar

multiplication.

performs a

pP= MconEL’m/MT (67)

In this case, P is a square symmetric matrix; hence,
the number of columns and rows are equal to the length
of M (in our case 32). To compute this matrix, we use
an efficient computation assignment algorithm devel-
oped by our group [34]. Utilizing this algorithm, ele-
ments of P matrix are executed in parallel using several
parallel PEs. In this case, n number of PEs process n
number of elements (of the matrix) at a time and com-
putes the whole P matrix with no idle time.

Due to the size of the P matrix (32 x 32), registers are
not suitable to store the matrix on chip. Our attempt to
store the matrix using registers caused our initial design
to exceed the chip resources by 25%. Therefore, we inte-
grate BRAM to the P module to store the P matrix in

HW _v1. In this case, we use only two PEs to compute
elements of the P matrix, due to the port limitations of
the BRAMs. The PEs consist of a multiplier and logic el-
ements to ensure that the inputs to the multiplier are
ready every clock cycle to reduce the latency. The results
of P matrix computation are reused in stage 3.

In summary, HW_v1 is designed with separate mod-
ules, including GFFm, @A, E, F_sub, M, and P, to exe-
cute various computations in stage 1. In this case, two
GFFm modules compute Egs. (59) and (60) in parallel,
and two ®A modules compute Egs. (64) and (65) in par-
allel. The F_sub module computes Egs. (55)—(58), the M
module computes Egs. (61)—(63), and finally P module
computes Egs. (66) and (67).

4.2.1.5 Time-invariant computations for HW_v2 For
the internal architecture for HW_v2, we use a novel and
unique approach to perform the E, F, M, and P compu-
tations. In this case, we design a unique pipelined
multiply-and-accumulator (MACx) module to perform
various vector and matrix multiplication operations in
sequence. The MACx has a wrapper, which handles
reading/writing from/to the BRAMs during the vector/
matrix operations.

For HW_v2, the matrix addition and the scalar opera-
tions are typically performed in the E, M, and P mod-
ules. In this case, the E module organizes the scalar
addition, multiplication, and division necessary to gener-
ate E-*. The M module performs the scalar addition and
multiplication to generate M (for Egs. (61)—(63)) and F,,
(for Eq. (55)), when using BRAMs to store the vectors.
The Egs. (61) and (55) would generate the same values.
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Fig. 14 £, F, M, and P modules for HW_v2

Figure 14 shows the top-level architecture for HW_v2
for the time-invariant computations E, F, M, and P. As
illustrated, the multiplier, adder, and divider FPUs are
shared among the E, M, and P modules, and multi-
plexers are utilized to control the routing and internal
architecture of these modules. The outputs of these
FPUs are forwarded to the E, M, and P modules, and
the final results are stored in the BRAMs.

The internal architecture of the pipelined MACx mod-
ule is depicted in Fig. 15. The MACx is primarily de-
signed to perform vector multiplications. The input
module of the MACx decomposes the matrix computa-
tions into vector operations. The pipelined MACx (for
HW_v2) executes the vector operations (for three or
more vectors) faster than its parallel HW_v1 counter-
part. In this case, we carefully configure the FPUs to
have the lowest latency without compromising the high-
est system-clock frequency (100 MHz). For HW_v2, the
FPUs for the multiplier and the adder have 1-cycle and
5-cycle latencies, respectively, whereas for HW_v1, the
FPUs for the multiplier and the adder have 8-cycle and
12-cycle latencies, respectively. However, there is a
trade-off; low-latency IP cores occupy more area on
chip. This might not be an issue for the BRAM-based
HW_v2, since the overall design occupies less area on
chip compared to the register-based HW_v1. This is not
only because HW_v2 employs BRAMs instead of regis-
ters to store the data/results, but also it utilizes far less
IP cores than HW v1.

Furthermore, in HW_v1, computations such as Gym
are not available for subsequent operations until the
whole computation has been completed (i.e., all the ele-
ments are computed). Conversely, in HW_v2, after one
element is computed in one operation, that element can
be used in subsequent operations. For instance, for
HW_v2, when MACx completes the first vector compu-
tation (i.e., Gg rowo * m), the resulting element and the
first element of G, in Eq. (63) is utilized by the M
module to generate the first element of Mposz. This dra-
matically reduces the time required to execute stage 1,
as detailed in Section 5.

With the pipelined MACX, the input wrapper controls
the order of the operations (i.e., execution order). Since
the computations are performed sequentially, the “exe-
cution order” is determined carefully, to minimize the
wait or stall time for dependent operations and to
optimize the utilization of the limited memory ports.
The two performance bottlenecks of stage 1 (for
HW_v2) are the limited memory ports and the IP core
latency. The design uses three types of BRAM memory:
a dual port ROM that stores constants, a single-port
RAM-low, and a dual-port RAM-high. The input wrap-
per has access to a single read port in each of the mem-
ories. The ports are reserved only when the vectors are
being fetched from the memory and freed once the data
are loaded into the MACx input buffers. The execution
order using the pipelined MACx for HW_v2 is as
follows:

Multiply Add 1 Add2 Add3 Add 4
E Vector 1 VectorA_| Vector A | Vector A | l 54
g Vector 2 * Vector B I + Vector B I Vector B I + + 5

Fig. 15 Pipelined MACx module for HW_v2
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. Es,=m’m, Eq. (49). In this case, a single ROM
port is utilized to preload the m vector into both
input buffers of the MACx. This occurs in parallel
with the © and the gain matrix calculations. After
the multiply and add operations of the MACx are
completed, the output MACx module sends a signal
to the E module, indicating that this value is ready.
The E module accesses the value from the MACx
output register and multiplies this value with P, to
create Es The MACx output register is also the
input register used to store the data in RAM-high.
This value is stored in the memory while the E
module accesses the value to send it to an adder.

. E3, = mTG}Z = Gpm = Mposz,, Eq. (47). From
step 1, the m vector is already loaded into one input
buffer of the MACx, and single RAM-low port is
required to load a row of G into the other input
buffer of MACx. The multiplier sends a signal to
the input module to preload the next row of Gg,
into the MACx input register. The m vector re-
mains in the input buffer until cleared or overwrit-
ten. This step continues until all the rows of Gg,
have been entered. Once the required vector is
available, the output MACx module sends a signal
to the M and input modules and then loads the
vector into RAM-high. The M module uses this
vector (Ez,) to create F,,. Es, is also used in step 5
to create E3. Next, steps 3 and 4 are selected to be
executed, since inputs to these steps are already
available. Furthermore, these two steps can be exe-
cuted in the pipeline with no stall states.

. E1 = GZfZanz, Eq. (45). Since G, is a vector, a
single RAM port is required to load G, into both
MACx input buffers. After completing this
computation, the output MACx module sends a
signal to the £ module, indicating that this value is
ready. The E module adds this value (E;) to Es and
stores it in a temporary register.

. Ey = GZfZGﬁrZ, Eq. (46). From step 3, G, is already
loaded into the MACx input buffer and a single
RAM port is used to pre-fetch the columns of Gg.
Once the multiplier indicates that it starts execut-
ing, the input module preloads the next column of
Gy into the input buffer to compute the next term
of E,,. This step continues for all the columns of
Gg. Es, is used in step 6 to create E,. As a result,
E,, is stored in RAM-low, and a signal is forwarded
to the input module once it is completed.

. E3=E4, = E3,Gg, Eq. (48). The time it takes to load
steps 3 and 4 ensures that the operation started in
step 2 (E3,) is completed. The input module ensures
that this value is ready by checking the complete
signal. One port from each RAM is used to preload
E3,, while a column of G is loaded into the MACx

10.
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input buffers. This step continues until all the
columns of Gg, have been loaded. Upon completion
of the MACx operations, the output module sends
a signal to the E module indicating that the value
(Es) is available. The E module accesses the MACx
output register to add this value to Es + E;.

E, = E;,m, Eq. (46). The m vector is loaded into one
MACx input buffer using a ROM port.
Simultaneously, E,, is completed, and step 5 is being
executed. Then, E,, is loaded into the other
input buffer using a RAM-low port. Once the
MACx operation is completed, the output mod-
ule sends a signal to the E module and the E
module accesses the MACx output register to
add this value to Es + E; + E3.

Mposv, = Ggm, Eq. (59). As mentioned before, the
m vector is already present in the input buffer of
the MACx. Hence, a RAM port is required to load
the rows of Gg;, into the other MACx input buffer.
This step continues until all the rows of Gg, have
been operated on. Once the MACx operations are
completed, the output module sends a signal to the
M module. The M module uses this value to build
the M constraint vector.

E,=E,,m = E3m, Eq. (48). For step 8, the m vector
is still present in the input buffer, and Ej is
completed, while step 7 is being executed. A single
RAM-low port is required to load the Ej into the
MACx input buffer. Upon completion of the MACx
operations, the output module sends a signal to the
E module indicating that E, is completed. The E
module accesses the RAM input data register to
add E4 to Es + E; + E3 + E5 + P; to create the final

E value.

Fy, = F1,9, Eq. (57). F,, is calculated in the M
module using the output from step 7 and loaded
into a FIFO buffer to eliminate any memory access
for step 9. Fy, is loaded into the input buffer from
the FIFO. Simultaneously, the first column from ©
is loaded into the other input buffer from RAM.
This step continues until all three columns of ®
have been loaded into the MACx. Once the MACx
computations for F,, are completed, the MACx
output module sends a signal to the MACx input
module, to initiate the execution of step 10.

Fy. = Fy,A, Eq. (58). Once the input module
receives a signal that step 9 is completed, the F,,
vector is loaded into one input buffer and the first
column of A is loaded into the other input buffer of
MACXx. This step continues until the three columns
of A have been loaded into the MACx. Once the
computations for F,, are completed, this value is
stored in the memory and a Done signal is set to
indicate the completion of this step.
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4.2.2 Stage 2: unconstrained solution

In stage 2, we compute the unconstrained optimal solu-
tion. Next, we determine whether the unconstrained so-
lution meets the constraints or violates the constraints.
If the constraints are violated, we invoke stage 3 and
perform HQP algorithm to compute a suitable solution.
If the constraints are met, we then bypass stage 3 and
execute stage 4 to compute the control moves. It is ne-
cessary to perform the following steps in stage 2. These
steps are also illustrated in Fig. 16.

1. Determine whether the battery has reached a full
charge, i.e., x,,0 > 0.9, which indicates that the state
of charge (SOC) is greater than or equal to 90% full.
This limit is x,,,9 > 0.9 designed to prevent
overcharging of the battery [3].

2. Compute the current open circuit voltage (OCV)
value based on the input SOC or x,,,,

3. Compute the unconstrained general optimal

solution for the control input, Au’ = — E"'F, from

Eq. (30).

Compute the y constraint vector from Eq. (31).

Compute MAu’ from Eq. (31).

Compute K from Eq. (35).

Compute an element by element comparison,

MAu° <y, from Eq. (31).

N ook

From the above steps, vector K is computed in stage 2,
although it is utilized in stage 3, since K needs to be
computed only once per time sample. The time sample
for controlling the charging of a battery is 1 s. For in-
stance, the control signal is updated every second for
charging or discharging a battery cell. In this case, steps
2 and 3 are performed in parallel; next, steps 4 and 5 are
performed in parallel; and finally, steps 6 and 7 are per-
formed in sequence.

4.2.2.1 Computing OCV for HW_vl and HW_v2 In
step 2, OCV is computed based on the current SOC
(%,,0) value, using a linear interpolation between two
data points from the two tables discussed below. The in-
ternal architectures to compute the OCV are quite simi-
lar for both hardware versions; except for HW_v2, the
required tables and values are stored in the BRAM,
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whereas for HW_v1, these values are stored in registers.
In this case, the linear interpolation uses two tables
(OCV, and OCV,,) of empirical data, which depend on
the operation of the Li-ion battery. For both HW_v1 and
HW_v2, the algorithm for computing OCV using SOC
is presented in Table 3.

4.2.2.2 Computing unconstrained general optimal so-
lution for HW_v1 In step 3, we compute the uncon-
strained general optimal solution for the control input.
In this case, we complete the remaining computations
for F that are not computed with the F_sub module in
stage 1, which include the final multiplications by yz and
ur, as well as the final summation terms of Eq. (25).
These computations are illustrated in Eq. (68) and are
derived from Egs. (56), (58), and (54).

F = -2(F1~(Fac)x;—(F3a)uk) (68)

For HW_vl, as demonstrated in Fig. 17, the final F
module consists of a VV module to compute (Fy.) iz, an
adder to sum the terms, a multiplier to compute (F3,)uy,
- 2(sum), and Au".

Computing y constraint vector for HW_v1

Next, we compute the y constraint vector. For HW _v1,
the internal architecture for y module is depicted in
Fig. 18. As illustrated, the y module computes the G,
vectors and @Ay vectors in parallel, by employing two VS
modules and two MV modules, respectively. Then, two V
+V modules are employed to compute the intermediate
terms CDVAX + Gpmuy and CDZA)( + Ggmuy in parallel.
An adder is utilized to compute the scalar addition. Next,
three V+S modules are employed to compute the final
terms in y constraint vector in parallel, in order to gener-
ate Eq. (26) from Section 2.3.

Computing MAu’ for HW_v1

For HW_v1, the MAw’ is designed in such a way to be
performed in parallel with y. As shown in Fig. 19a, the
MAw module is a dedicated VS module, which consists
of a single multiplier and a feedback-loop logic to multi-
ply each element of the vector by the scalar.

Computing K vector for HW_v1

In HW_v1, the K vector is computed before the final
step 7 (in stage 2), which is to perform the comparison

oCcv v
SOC > 90%
F o
Yes Au® MAu

Charged

Fig. 16 Overview of stage 2

K Stage 3

Stage 4




Madsen and Perera EURASIP Journal on Embedded Systems (2018) 2018:2

Table 3 OCV computation from SOC

Open circuit voltage from state of charge algorithm

. Determine the boundary conditions:

if (Xno < 0) use the minimum pre-calculated OCV.
else if (X > 1) use the maximum pre-calculated OCV
else if (0 < xpmo < 1) compute OCV using steps 3 to 5.
Find the Index —

Index = int(200%X,,0)

N

3. Find the difference (D) and offset (S)
D=1 - 200%0
S=1-D

4. Compute the OCV using temperature (T)
OCV=(OCVolN % S+ OCVll + 11 % D) + T 5 (OCV,lf] % S + OCV,gll + 11 % D)

operation. The K vector is one of the first operands of
stage 3. The K vector computation requires a minimum
of 32 subtractions. In this case, in order to ensure that K
is ready for stage 3, K vector is computed before per-
forming the comparison as presented in Eq. (31),
MAu’® < y. As illustrated in Fig. 19b, K module is a sim-
ple V-V module, which consists of a subtractor to sub-
tract each element of the input vectors.

Computing comparison for HW_v1

In the final step in stage 2, for HW_v1, the two vectors
MAw’ and y were compared element by element using a
FPU comparator. The internal architecture of the com-
parison module is illustrated in Fig. 19c. In this case, if
the constraints are not violated, the comparison module
performs all 32 compare operations and then goes to
stage 4. However, if the constraints are violated, the
comparison module triggers stage 3 and relinquishes the
execution of the remaining compare operations.

4.2.2.3 Computing unconstrained solutions for
HW _v2 In stage 2, similar to stage 1, for the internal
architecture for HW_v2, we use the pipelined MACx
module for the matrix and vector multiplication opera-
tions. The utilization of the MACx module (for HW_v2)
drastically reduces the occupied area on chip for stage 2
compared to that of HW_v1. For instance, for the OCV
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module, HW _v1 uses 20 dedicated IP cores, whereas
HW _v2 uses only 8 dedicated IP cores. The space analysis
is detailed in Section 5.

As depicted in Fig. 20, the internal architecture for
HW _v2 consists of the OCV module, a MACx mod-
ule, AU (arithmetic unit) module for arithmetic oper-
ations, and a module to perform additional memory
operations not managed by the MACx. In order to
minimize the memory access bottleneck due to the
limited number of memory ports, as well as to reduce
the complexity of the memory controller, we incorp-
orate a FIFO buffer to preload the necessary vectors
for the MACx and for the input AU modules, in cer-
tain scenarios, where memory ports are not available.
In this case, MACx module and OCV module are ex-
ecuted in parallel. The MACx module performs the
following computations in sequence:

L. Foy for Fin Eq. (68)
2. @ Ay for y in Eq. (26)
3. ©,Ay for yin Eq. (26)

Since the maximum length of the individual vectors is 3,
the 5-stage pipelined MACx module uses only the first
three pipeline stages, reducing the overall execution time.

The input AU module sends the necessary operands to
the AU module, which performs the remaining operations
(not performed by MACx) in stage 2. The output AU
module forwards the results to be stored in the BRAM.
With the AU module, multiplication results are generated
every clock cycle after an initial latency of 1 clock cycle,
and addition/subtraction results are also generated in
every clock cycle after an initial latency of 5 clock cycles.

Handshaking protocol is used to communicate be-
tween the input AU and output AU modules. After com-
pleting any intermediate computations, the output AU
module sends a signal to the input AU module, indicat-
ing that the intermediate data (results from previous

Fig. 17 Internal architecture for F and Au® module for HW_v1
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Fig. 18 Internal architecture for y module for HW_v1
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arithmetic operations) are ready for subsequent arith-
metic operations. Utilizing two modules (i.e., input AU
and output AU) to read from the memory and write to
the memory separately, significantly reduces the com-
plexity of the control path for both modules. This also
minimizes the setup and hold time violations, thus im-
proving the overall efficiency of stage 2.

In HW_v2 design, the comparison (final step 7) is per-
formed while computing K, instead of using a separate
comparator module as in HW_v1. Considering Eq. (35), K
=y - MAu’, and the comparison Eq. (31), MAu® <y, if K >
0, then the comparison is true. Hence, by comparing the
MSB of K, we can determine whether the constraints are
met or not. If all the elements meet the constraints, then
the optimal solution is selected and stage 4 is executed
by-passing stage 3. In HW_v2, if one or more elements vio-
late the constraints, then we start executing stage 3 imme-
diately, after performing the K computation in stage 2. This

significantly reduces the time taken to perform the com-
pare operations (as in HW_v1) utilizing a separate module.
As illustrated in Fig. 20, HW_v2 has an integrated solution
for stage 2, whereas HW_vl has a modular solution
(depicted in Figs. 17, 18, and 19).

4.2.3 Stage 3: Hildreth’s quadratic programming
In stage 3, we compute the constrained optimal control
input using Hildreth’s quadratic programming (HQP)
approach. With this approach, the Au®, which is known
as the global optimal solution, is adjusted by AME™" (as
in Eq. (38)), where ) is a vector of Lagrange multipliers.
Initially, for stage 3, we use the primal-dual method
for active set approach, which reduces the total con-
straints down to active constraints (i.e., non-zero \ ele-
ments), thus reducing the computation complexity (3 or
less computations versus 32 computations). Apart from
reducing the computation complexity of stage 3, this

! vector — .
T * — vector !
' oscalar —— | T

a
P MAw — |
[ I FPU v
PO compare — True/False
Loy T T T

Fig. 19 VS, V-V, and comparison of constraints modules for HW_v1. a VS for MAu®, b V-V for K, ¢ Comparison of constraints
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Fig. 20 Functional architecture for stage 2 for HW_v2
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approach also reduces the computation complexity of
stage 4, since the stage 4 design needs to compute only
1 to 3 active elements of the lambda (\) vector versus
computing all 32 elements.

Next, we use the HQP technique, which further sim-
plifies the above computations by finding the vector of
Lagrange multipliers (M), for the HQP solution one elem-
ent at a time. This HQP technique eliminates the need
for matrix inversion in optimization. In this case, the A
vector has either positive non-zero values for active con-
straints or zero values for inactive constraints.

Typically, not all the constraints are active at the same
time, making A a sparse vector. Since only the active con-
straints need to be considered, both hardware versions are
designed in such a way to execute the sparse vector to re-
duce the total computations involved for the operation.

It should be noted that the HQP technique does not al-
ways converge. Therefore, a suitable iteration length
(number of iterations) is selected, in order to provide the
greatest possibility for convergence, as well as to provide a
reasonable solution in case if there is no convergence.

The HQP is an iterative process. This is typically imple-
mented as two nested loops. The inner loop computes the
individual elements of the A\ vector, in which the number
of iterations depends on the length of A. The outer loop
determines whether the A vector converges. The outer
loop executes until the X vector converges or until the
maximum number of iterations (in our case, 40 iterations)
are reached. The functional flow of stage 3 is as follows.

1. Compute individual elements of A vector from Egs.
(36) and (37).

2. Determine whether the A vector meets the
convergence criteria.

3. If it does, compute the new Ay using the updated A
vector, else go to step 1.

For both hardware versions (HW_v1 and HW_v2), we
decompose stage 3 into the above three main modules,
illustrated in steps 1 to 3. Firstly, the A\ module (Wp3)
computes the first X vector. Secondly, the convergence
module (Converge_v1) determines whether the current
\ vector converges or not; simultaneously, the A module
computes the next A\ vector. If the current A vector con-
verges, then the X module stops the execution of the
next A\ vector. In this case, the A module performs the
computations of Egs. (36) and (37) (from Section 2) on
each element.

The HQP technique, which includes these two equa-
tions (for both HW_v1 and HW_v2), is illustrated in the
algorithm (in Table 4). Since ME™ is computed in stage 1,
it is reused in stage 3, instead of re-computing in each it-
eration. The elements of the X vector are calculated using
the P matrix from stage 1 and K vector from stage 2.

4.2.3.1 For HW_vl HW vl consists of three main
modules, including Wp3, Converge_vl, and New_-
Au_vl, and a sub-module (SVM_v1) for sparse vector
multiplication.

From our experimental results (presented in Section
5), it is observed that any \ vectors typically have a max-
imum number of three non-zero elements. Hence, our
hardware is designed to operate only on the non-zero el-
ements of A and P. In order to generate all the elements
of the A\ vector, the computations 2.a to 2.f (as in Table 4)
must be repeated 32 times. By focusing only on the
non-zero elements, our hardware design dramatically re-
duces the time taken to generate the required \ ele-
ments, since certain steps are by-passed in Table 4.

The functional flow of the sparse vector multiplica-
tion module (SVM_v1) is illustrated in Fig. 2la. As
demonstrated, SVM_v1l module checks each element
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Table 4 HQP algorithm

Hildreth's quadratic programming technique (HQP algorithm)

For iterations 1 to 40
1. Save A(urrent _’Aprevwous
2. Start outer loop to build A, i = 0 to # elements in M or M
a.w=0;
b. start inner loop to build A, j starts at 0
i w = w + PlIIAG)
ii. GOTO start inner loop If j<Mqize,
¢ w=w + K[iJ-Pll[i-AL]
d. Aest = -w/P[l[i]
e. if hest < 0 then Ali] = 0, else Ali] = Aest
f. GOTO start outer loop if i<Mge
3. Check convergence
a. calculate the Euclidean length of previous A
b. calculate the Euclidean length of current A
c. Compare ratio to reference value
d. if converged, exit iteration, GOTO calculate new Au
4. Else execute next iteration, GOTO 1.
5. Calculate new Au
a. Start loop, j = 0 t0 j=Mye
i. Auc = Auc +Nj] METT]])
b. GOTO start loop if j<Mgize
C. Auy,; = Aut-Duc

6. End

of the input vectors and only forwards the non-zero
elements to the MAC unit. As depicted in Fig. 21b,
Wp3 module (A module) employs SVM_v1l to com-
pute sub-step 2.b of the HQP algorithm (in Table 4).
The Wp3 module also consists of other modules in-
cluding a multiplier and adder, to compute the
remaining sub-steps, ie., 2.c to 2.f of the HQP
algorithm.
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In this case, the A vector is updated, after 32 itera-
tions. Then, the updated A vector is forwarded to the
convergence module (Converge_vl). Next, the Con-
verge_vl module computes step 3 of the HQP algo-
rithm (in Table 4); simultaneously, the New_Au_vl
module computes step 5 of the HQP algorithm (to
generate Auy, ;) in anticipation of a convergence. At
the same time, the A module (Wp3) starts computing
the next A\ vector, in the event the current A does not
converge. If the convergence fails, the Auy, ; value is
discarded. If the convergence succeeds, a signal is
sent to Wp3 module to terminate the next A\ vector
computation, and then, the subsequent stage (stage 4)
is started with input Auy, ;.

As shown in Fig. 22a, the Converge_vl module con-
sists of the SVM_vl module, an adder, a multiplier, a
square root, and an inverse square root. It also consists
of a comparator to compare the ratio value to a refer-
ence value to determine the convergence. The internal
architecture for the New_Au_vl module is depicted in
Fig. 22b. As depicted, the New_Au_vl computes the
Auy , ; value (from steps 5.a to 5.c of HQP algorithm)
and consists of a SVM_v1l module and a subtractor. In
this case, the New_Au_v1 module is executed in parallel
with the Converge_v1 module.

4.2.3.2 For HW_v2 The high-level architecture for
HW _v2 for stage 3 is illustrated in Fig. 23. Apart from
the fundamental operators, this consists of five custom
modules.

b

Fig. 21 Internal architecture for SYM_v1 and Wp3 for modules for HW_v1. a Sparse vector multiplication module (SVM v1). b Wp3
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Fig. 22 Stage 3 Converge_v1 and New_Au_v1 modules for HW_v1. a Converge_v1, b New_Au_v1

For HW_v2, Win module computes Egs. (36) and (37)
(i.e., computes sub-steps 2.a to 2.f of the HQP algorithm
(in Table 4)). Also, Win module acts as an interface/con-
trol module, and interfaces with the memory and drives
the inputs for other modules. The functional/data flow
of the Win module is shown in Fig. 24. In this case, the
FPU multiplier, adder, and subtractor are external to the
Win module as illustrated in Fig. 23.

For HW _v2, similar to HW _v1, we introduce another
sparse vector multiplication (SVM_v2) module, in order
to utilize only the active set (or non-zero values of the A
vector), thus enhancing the efficiency of the design. This
is because the pipelined MACx is not efficient for
single-vector multiplication operations. In Win module,
addressing logic is incorporated to track the non-zero el-
ements of the A vector. These non-zero \ elements and
the corresponding indexes are stored as vectors in the
BRAMs. The indexes are used to find the corresponding
P and ME! values, thus reducing the number of opera-
tions without compromising the accuracy of these
values. In this case, the number of operations are re-
duced from 32 to 3 or less.

¥
SVM | | New
v2 Au
é § - + * +
m

l l

A-norm [—* SQRT ]" Converge

Fig. 23 Top-level architecture for stage 3 for HW_v2

The internal architecture of the SVM_v2 module is
demonstrated in Fig. 25a. Although the multiplier is ex-
ternal to this module, it is included in dotted lines (in
Fig. 25a) to facilitate our discussion below. As illustrated,
our SVM_v2 module utilizes a counter to determine the
number of accumulation loops, instead of using the
length of the vector. The SVM_v2 module employs an
adder, a FIFO buffer, and a multiplier (external) to per-
form the necessary operations. This module can execute
a vector of any length, in this case, up to the maximum
number of counts, depending on the size of the counter.

First, the Win module sends the vector elements to
the multiplier, and signals the SVM_v2 module that the
sparse vector operation is initiated. Next, if the results
are valid, then the valid signal is asserted to start incre-
menting the counter, and to start loading the results to
the FIFO bulffer. In this case, the counter is incremented
if the multiplier valid signal is asserted (high), the coun-
ter is decremented if the adder valid signal is asserted;
and the counter is on hold if both the valid signals are
asserted or de-asserted (low) simultaneously. The FIFO
buffer is used to bridge the latency between the multi-
plier and the adder. If the count is 1, the SVM_v2 mod-
ule forwards the multiplication results to the output,
by-passing the adder.

The internal architecture of the convergence module
(Converge_v2 module) is shown in Fig. 25b. To deter-
mine the convergence of the A vector, the Euclidean dis-
tance is computed. In HW_v2, the Euclidean distance is
measured as each element of the A is computed, one
element at a time. Conversely, in HW_v1, this distance
is measured after all 32 elements are computed. In this
case, the A-norm module (in Fig. 25b) takes the scalar A;
as inputs, squares the A;, and then adds the squared
value to the previous element. After computing the final
A\ element, which is A3;, the output of A-norm is then
forwarded to a square root module. The result from the
square root module is the Euclidean distance. This result
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Fig. 24 Internal architecture for Win module for HW_v2

is the Euclidean distance used as the current value of the
current A (sub-step 3.b of the HQP algorithm in Table 4)
in the current iteration; this result is stored and used as
the previous value of previous A (sub-step 3.a of the
HQP algorithm) in the next iteration.

In this case, the Win module sends \; to the multi-
plier and signals the A-norm module that the re-
quired data is ready. Next, the A-norm module waits
until the multiplier valid signal is asserted, then accu-
mulates the outputs using an adder. After Win mod-
ule informs that the iterations for A are completed,
the final accumulator result of the A-norm module is
sent to the FPU square root module to initiate the
execution of the Converge_v2 module. The Conver-
ge_v2 module typically waits for the square root valid
signal to be asserted. During this time, the Conver-
ge_v2 module inverts the previous A length value
using a divider.

The entire process is repeated up to 40 times. The sys-
tem either converges, or after the 40th iteration is con-
sidered to be converged. Next, we start executing the
New_Au_v2 module. In this case, the Win module loads
the X and the ME™! values into the multiplier for the
SVM_v2 module to process and sends a signal to the
New_Au_v2 module to initiate the execution. Depend-
ing on the length of the active set (non-zero elements)
in the A\ vector, the New_Au_v2 module selects either
the output of the multiplier or the output of SVM_v2 to
be the input to its subtractor. The result of the subtrac-
tion is Auy . ; value, which is forwarded to stage 4 for
processing.

Finally, in stage 3, a clear operation is performed to
clear the FIFO, which occurs at the end of vector multi-
plication by SVM_v2 module. This ensures that invalid
data is not incorporated in any computations. The clear
operation takes 4 clock cycles and asserts a ready signal
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: counter

i | a

i I T T s—

s 5 'r—._vm.tl - converge

A-norm —*| SQRT —> o _}‘_‘c_u_r[c_n_t___: —L

: 1 *

s R T — [

; P N

! i L--%“P[*’.V_‘QLLS.-J

b

Fig. 25 Internal architecture for SYM_v2 and Converge_v2 modules for HW_v2. a SVYM_v2. b Converge_v2
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to indicate that the result of the SVM_v2 module is
ready to be used and also the SVM_v2 module is ready
for the next computation.

4.2.4 Stage 4: state and plant

In stage 4, we compute and update the plant state and
the plant outputs, using the new Au (computed in stages
2 or 3) and also utilizing y, which contains the current
states and the current control signal #. In a real-world
scenario, the plant outputs are measured and the control
signals are sent to the plant input or actuators.

The updated plant states and the input control signals
are forwarded to stage 2 for the next iteration. Prior to
starting the next iteration, the top-level module (in Sec-
tion 4.2) determines whether the plant state value (x,,0)
is fully charged or whether we have reached the max-
imum number of iterations.

During stage 4, we compute the plant output, which is
to determine the current terminal voltage (v;) and then
the state of charge (z;) from Eqgs. (7) and (8), respect-
ively. Then, the control signal and the state signals are
updated. In this case, the first element of the AUy is
used to update the control signal from Eq. (39) and the
new control signal is used to determine the states for the
next iteration from Eq. (40) (in Section 2.5).

4.2.4.1 For HW_v1 The overview of stage 4 for HW_v1
is depicted in Fig. 26. As illustrated, in HW_v1, the plant
outputs and next states are computed in parallel, since
these computations are independent of each other. Con-
versely, in HW_v2, these computations are performed in
sequence but in highly efficient fashion to reduce the
performance bottleneck.

In this case, as shown in Fig. 26, for HW_v1, the volt-
age vx and the state of charge z; are computed in the
plant module, and the control signal u; ., ; and the states
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Xy, ; are computed in the state module. The plant and
state modules are executed in parallel.

As demonstrated in Fig. 27a, for HW_v1, the plant
module consists of a customized module to perform
the two C,\fk computations in sequence to save occu-
pied area on chip. Since these computations are per-
formed on small vectors, the execution overhead due
to sequential operations is negligible. In this case,
first, the CV)(,( is performed; second, the szk is per-
formed, simultaneously adding OCV to C,,)(k. As illus-
trated in Fig. 27b, for HW_vl, the state module
reuses the MV, VS, and V +V modules from previous
stages to perform various vector/matrix operations. It
also consists of an adder module to compute the con-
trol signal uy, ;.

4.2.4.2 For HW_v2 The internal architecture of stage
4 for HW_v2 is depicted in Fig. 28. As illustrated,
HW_v2 consists of four major modules: an Input
module, SVM_v2 module, SVM_store module, and
an Output module. In this case, the Output module
computes and updates the plant state, the plant out-
puts, and the control signals.

For HW_v2, Egs. (3) and (4) (from Section 2.1) are
utilized to determine the terminal voltage and the
SOC, whereas for HW_v1, Egs. (6) and (7) (from Sec-
tion 2) are utilized with the same outcome. As illus-
trated in Fig. 28, the Input module determines the
computations and provides the necessary data and
control signals to the multiplier and the adder to per-
form the computations. The Input module sends data
ready signals to the SVM_v2 module and to the Out-
put module. Handshaking protocol is used to
communicate/control among the modules. The
SVM_store module and the Output module are

o1 |
:t-----'f----e Plant | . ,
L OCV — v
L

A, —— A '
?"-1;"": State " X
i Aug,, —

Fig. 26 Top-level architecture for stage 4 for HW_v1
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Fig. 27 Internal architecture for plant and state modules for HW_v1. a Plant, b State

executed in parallel, and the intermediate/final results
are stored in the two BRAMs. In stage 4, for HW_v2,
we carefully arrange the computations in the follow-
ing sequence (from step 1 to step 14), in order to ob-
tain the results with the least amount of time.

Cxx — by SVM_v2 module 8

Cxx + Dyu— by adder
9 X+ Dug— by adder

)

) Du— by multiplier
) ) BmoUk+1— by multiplier
)

(
(
Cxx — by SVM_v2 module (
(
(

D,ux— by multiplier BryUy + 17— by multiplier

) CXk + Dyug + OCV(z)— by
adder

10

11
5) Am_rowOXk_) by SVM_v2 12
module

6) Am_romiXk— by SVM_v2

module

Ug+ Auy , 1— by adder

Am_row k + BmOuk+ 1 by
adder

Am_rom Xk + BimUk 11— by

adder

With the above arrangement, we manage to overlap
the SVM_v2 module computations with the multiplier/
adder computations, thus reducing the overall execution
time for stage 4. In this case, the multiplier and adder
modules produce results every clock cycle, and these
results are forwarded to the Output module to be stored
in a BRAM. Conversely, the time taken for the SVM_v2
module to produce results varies and often depends on
the length of the input vectors, and these results are
forwarded to the SVM_store module to be stored in a
BRAM. Hence, the final result of step 2 is available (in
BRAM) before the final result of step 1 is available (in
BRAM). This concurrent execution of operations
significantly reduces the performance bottleneck in stage
4. For HW_v2 in stage 4, we reuse the SVM_v2 module

from stage 3. The adder and multiplier IP cores are also
reused in other stages to reduce the overall space
occupied on chip.

After stage 4 computations are completed, we start
computing stage 2. In stage 2, the updated state of
charge (SOC) value is compared with the reference
value to determine whether the battery is fully charged.
The MPC algorithm iterates through stages 2, 3, and 4,
until the battery reaches its fully charged condition.

5 Experimental results and analysis

We perform experiments to evaluate the feasibility and
efficiency of our proposed embedded hardware and
software architectures for the fast-charge model predict-
ive controller (MPC). We also compare our proposed
embedded architectures with the baseline model of the
fast-charge MPC written in Matlab [4], in order to
evaluate and validate the correctness and functionalities
of our designs. The evaluation setup for our embedded
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Fig. 28 Internal architecture for stage 4 for HW_v2
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designs is based on real implementations, whereas the
evaluation setup for the baseline Matlab model is
based on simulation. Our embedded hardware and
software results are obtained in real time, while these
designs are actually running on the Virtex-6 chip.
Conversely, the baseline Matlab results are obtained
through the simulation on a desktop computer. Apart
from embedded designs, our software design written
in C is also executed on a desktop computer, and the
corresponding results are compared with the baseline
Matlab results. All our experiments are performed
with a sample time of 1 s, temperature at 25 °C, and
iterations of 3600.

5.1 Functional verification—comparison with baseline
model

It is imperative to ensure that our embedded hardware
and software architectures operate correctly; hence, we
compare our proposed embedded architectures with the
baseline model written in Matlab [4].

As stated in [4], it is necessary to determine the
applied current profile that drives the state of charge
(SOC) to the desired reference value, while ensuring
that the terminal voltage does not exceed its
operational constraints. The convention used for the
current for the batteries is negative if charging
current, and positive if discharging current. Since this
is a fast-charge model, the values of the current are
all negative. Figure 29 illustrates the desired charging
profile for the fast-charge MPC implementation in
[4]. In this case, the battery cell is considered to be
completely empty. The charging profile is the stand-
ard constant current (CC) and the constant voltage
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(CV). The current is constant until the voltage
reaches its maximum and then the voltage is con-
stant. As in Fig. 29, initially, the current starts out at
its maximum value and stays or is held constant until
the terminal voltage reaches its allowed maximum.
Once the terminal voltage reaches its maximum value,
the voltage is held constant while the current starts
to decay towards zero. The current continues to
decay until the SOC reaches its full charge (in our
case, this is at least 90% of capacity). Once the bat-
tery reaches its full charge, the current goes to zero
and the terminal voltage returns to its No Load state.
The intention of the experiments (in this sub-section)
is to ensure that the charging profiles for the embed-
ded hardware and software architectures are identical
to that of the baseline Matlab implementation in [4].

As discussed earlier, the MPC algorithm consists of
three main elements, i.e., state of charge (SOC), terminal
voltage, and battery cell current (I.). We perform
experiments to verify and evaluate the functionalities of
these three main elements for our embedded
architectures. The results are obtained and presented
with Figs. 30a, 31a, and 32a respectively. As illustrated
in these three figures, the charging profiles of our
embedded hardware and software architectures are
almost identical to that of the baseline Matlab in [4],
since the graphs are overlapping. There are some slight
discrepancies, which are negligible.

Figures 30a, and b depict the SOC of the battery as a
percentage. As illustrated in these graphs, our embedded
hardware architectures (HW_v1 and HW_v2) and our
embedded software architecture show similar behavior
as that of the baseline Matlab for the SOC.

CC-CV charging profile - MATLAB
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Fig. 29 CC-CV charging profiles for baseline Matlab model
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Fig. 30 State of charge comparison: embedded hardware and software designs versus baseline Matlab model. a Overview. b Difference at bend

Although at a glance the SOC graphs (Fig. 30a)
seem identical for all four designs, at a closer look,
there are some discrepancies. As illustrated in
Fig. 30b, the SOC increases sharply with the
embedded systems designs, whereas SOC increases
gradually with the baseline Matlab design. In this
case, both designs reach full charge before the
expected time of 1216 s, which is determined from
the baseline experiments.

Figures 31a, b depict the terminal voltage of the
battery. As illustrated in these graphs, our embedded
hardware architectures (HW_v1l and HW_v2) and our
embedded software architecture show similar behavior
as that of the baseline Matlab design for the terminal
voltage. As demonstrated in Fig. 31b, the output

voltage does not exceed 4.2 V; this illustrates that the
system’s behavior respects the constraints in order to
extend the useful life of the battery.

Similar to SOC graphs, at a glance, the terminal
voltage graphs (Fig. 31a) seem identical for all four
designs; at a closer look (Fig. 31b), there are some
discrepancies. For instance, at time ¢ =0 s, the initial cell
terminal voltage value for the embedded systems designs
is 3.92 V, whereas that for the baseline Matlab design is
4.11 V. Further experiments and analysis confirm that
this discrepancy does not affect the overall
functionalities of the system or the final outcome of the
MPC algorithm.

As illustrated in Fig. 31b, the Cell Terminal voltage
increases gradually and smoothly with the baseline Matlab
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Fig. 31 Terminal voltage comparison: embedded hardware and software designs versus baseline Matlab model. a Overview. b Greatest difference
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design, whereas the Cell Terminal voltage increases sharply
in the beginning and then decreases gradually with the
embedded systems designs. In this case, the difference in
value between the above two is merely 1.2 mV.

Figures 32a, b depict the control signal, ie., the
current, generated by the designs that drive the terminal
voltage and the SOC responses. As illustrated in these
graphs, our embedded hardware architectures (HW_v1
and HW_v2) and our embedded software architecture
show similar behavior as that of the baseline Matlab
design for the control signal (I.;). In this case, a
negative value for the current means that the current is
flowing into and charging the battery, rather than
flowing out of the battery and being used in the system.

The current starts out at a constant, with a maximum
allowed value of (- 15 A). The negative value indicates
that current is charging the battery instead of powering
the system. The current starts to gradually decay to zero
once the terminal voltage reaches its maximum voltage
and then the current is held constant. The current
shows a steep decay at around 1200 s, which is when the
SCO is 90% and the battery is considered fully charged.

Similar to terminal voltage graphs, at a glance, the
control signal graphs (Fig. 32a) seem identical for all
four designs; at a closer look (Fig. 32b), there are
some discrepancies. As illustrated in Fig. 32b, the
discrepancies are prominent between the timeline
1090 and 1120 s. However, these discrepancies do not
affect the overall functionality and the final results of
the designs, thus negligible.

5.1.1 Summary
From these results and analysis, we can conclude that
our embedded designs show similar behaviors and

functionalities as that of the baseline Matlab model, thus
confirming the correctness and functionality of our
designs. There are some slight discrepancies in the order
of millivolts for the voltage and milliamps for the
current. These slight discrepancies are mainly because
we use single-precision floating-point units for our em-
bedded hardware and software architectures, whereas
baseline Matlab model was created using double-
precision floating-point units. In addition, we use diffe-
rent techniques to solve the linear algebra equations,
instead of the existing techniques used in the baseline
model, which might further contribute to these discre-
pancies. Further experiments and analysis reveal that
these discrepancies are too small to have an impact on
the overall functionalities and the performance of the
fast-charge MPC, thus negligible.

5.2 Performance metrics—execution time and resource
utilization

We perform experiments to evaluate the feasibility and
efficiency of our embedded hardware and software
architectures in terms of speed performance and
resource utilization on chip.

5.2.1 Execution times and speedup: embedded hardware
versus software on MicroBlaze and Intel i7

The total time taken to execute the fast-charge MPC
algorithm for the two embedded hardware designs
and the embedded software design is presented in
Table 5. The execution time for each design is mea-
sured 10 times, and the average is presented. In this
case, embedded hardware architectures are executed
on the Virtex-6 FPGA running at 100 MHz, whereas
embedded software architecture is executed on the
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Table 5 Execution times: embedded hardware and software design and baseline Matlab model

Configuration Execution time/ms

Speedup over embedded Sw Speedup over baseline Matlab

Embedded Sw on MicroBlaze (at 100 MHz) 3958.04 - 021

Baseline Matlab on i7 processor (at 3.1 GHz) 848.331 467 -

HW_v1 (at 100 MHz) 468.557 845 1.81

HW_v2 (at 100 MHz) 39.774 99.51 2133

MicroBlaze processor running at 100 MHz on the monitor and control multiple battery cells
same FPGA for fair comparison purposes. The total individually.

time is considered as the time taken to execute the
fast-charge MPC algorithm for a specific number of
iterations, in our case, 3600 iterations, for all three
embedded systems designs in Table 5.

The total time taken to execute the baseline Matlab
design is also presented in Table 5. The execution time
for the Matlab model is also measured 10 times, and the
average is presented. The baseline design is executed on
Intel i7 processor running at 3.1 GHz on a desktop
computer.

From Table 5, considering the total execution time,
our embedded hardware version 2 (HW_v2) is almost
100 times faster, and our embedded hardware version 1
(HW_v1) is almost 9 times faster than the equivalent
software (Sw) running on the embedded MicroBlaze
processor. Furthermore, our HW_v2 is 21 times faster,
and our HW_vl is almost 2 times faster than the
baseline Matlab model running on Intel i7 processor. It
should be noted that all our embedded systems designs
are running at 100 MHz, whereas the Matlab model is
running at 3.1 GHz.

Unlike the embedded hardware and software
designs, the Matlab model is designed in such a way,
so that it terminates the execution of stages 2 and 3,
once the system meets the threshold for the fully
charged. Next, the Matlab model only executes stage
4 for the remainder of the MPC computation. Hence,
the total time obtained for Matlab model (presented
in Table 5) is not the time taken to execute the
fast-charge MPC for 3600 iterations but much less
than that. As a result, it is difficult to make a direct
execution time comparison between the baseline
Matlab model and the embedded systems designs.
However, as illustrated in Table 5, our embedded
hardware designs still achieve better speedup com-
pared to the Matlab model running on a
high-performance processor. With these speedups,
our proposed hardware designs should be able to

From the above results and analysis, it is observed that
our register-based HW_v1 is much slower than the
BRAM-based HW_v2. Typically, the register-based de-
signs should provide better computing power compared
to the memory-based designs, since there is an execu-
tion overhead associated with reading/writing from/to
the on-chip memory in the latter. In this case, the read
operation and the write operation from/to on-chip
memory take 1 clock cycle each. However, our
memory-based HW_v2 design achieves higher speed
performance. This is mainly because our initial experi-
ence gained throughout the design and development of
HW _v1 enables us to enhance the efficiency of HW_v2.
Furthermore, the speed performance is also impacted by
the compact nature and area efficiency of the
memory-based design, as discussed in the following
sub-section.

5.2.2 Resource utilization: register-based HW_v1 versus
BRAM-based HW _v2

The cost analysis on space is carried out on our two
embedded hardware versions to examine the area
efficiency of our hardware designs. The resource
utilization for register-based HW_vl and BRAM-based
HW_v2 is presented in Table 6. As illustrated, the total
number of occupied slices, the total number of BRAMs,
and the total number of DSP slices required for HW_v1
are 34,193, 62, and 688, respectively. Conversely, the total
number of occupied slices, the total number of BRAMs,
and the total number of DSP slices required for HW_v2
are 10,277, 35, and 73, respectively.

As observed from Table 6, with the BRAM-based
HW _v2, we achieve 70% of space saving in terms of total
number of occupied slices and 89% space saving in terms
of total number of DSP slices, compared to the
register-based HW_v1. Furthermore, we also achieve 44%
space saving in terms of total number of BRAMs, with
HW_v2 compared to HW_v1, which is unexpected, since it

Table 6 Resource utilization: embedded HW_v2 versus embedded HW_v1

Configuration Number of occupied slices

Number of BRAMs (36E1) Number of DSP48E1

HW v1
HW_v2

34315
10,277

62 688
35 73
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is assumed that the BRAM-based designs naturally would
utilize more BRAMs than the register-based designs.

From the above results and analyses, it is evident that
the BRAM-based HW_v2 is significantly more area effi-
cient than the register-based HW_v1; hence, the former
is more suitable for embedded devices due the stringent
area constraints of these devices.

5.2.3 Analysis of iteration time per cycle for BRAM-based
HW_v2

We analyze the per iteration time only for our
BRAM-based HW _v2, since this hardware version is
more superior than the HW_v1, embedded software de-
sign, and also the baseline Matlab model, in terms of
speed and area.
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It should be noted that each of the embedded
systems designs performs well within the required 1-s
sampling time (or interval) required for the
fast-charge MPC algorithm. For instance, based on
our experimental results, for HW_v2, the iteration
time per cycle varies from 5.2 to 450 ps (4.5x10"* s)
as shown in Fig. 33a. The maximum iteration time
per cycle, which is 450 ps, is illustrated in Fig. 33b.
This maximum iteration time incurs when Hildreth’s
quadratic programming (HQP) technique fails to con-
verge within 40 iterations, leading to sub-optimal re-
sults being employed. This still leaves a significant
margin of 0.9995 s in the 1-s sampling cycle.

In this case, the execution overhead of the augmented
model in stage 1 is approximately 24 ps and considered
to be minimal. This execution overhead is the time
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difference between the first iteration (which includes the
processing time through stages 1 to 4 during an
iteration, as illustrated in Fig. 33b) and the second
iteration (which includes the processing time through
stages 2 to 4 during an iteration, as illustrated in
Fig. 33c). For both the first and the second iterations,
stage 3 (for HQP) converges in two loops, which takes
approximately 20.5 us. Hence, we logically make an
assumption that the difference in execution time
between the iteration 1 and 2 is the time taken for stage
1 to complete. In this case, stages 2 and 4 require
518 us to process (as in Fig. 33d), thus leaving the
remainder of the time for stage 3. The time to process
stage 3 depends on two factors: the number of non-zero
A\ elements and the number of iterations required for
convergence. For our proposed embedded HW_v2 for
the fast-charge MPC algorithm, the processing time for
stage 3 typically varies from 15.3 to 444.5 ps. The mini-
mum time (15.3 ps) is associated with 1\ element and 2
iterations, and the maximum time (444.5 ps) is associ-
ated with 2\ elements and 40 iterations. In the
worst-case scenario, by assuming that the first iteration
does not converge, the worst-case iteration time is
474 ps (ie., adding 24 to 450 ps). In this case, the
fast-charge MPC algorithm could execute more than
2100 times, in 1-s sample time, thus allowing our em-
bedded architecture to control multiple battery cells
individually.

5.2.4 Analysis of existing works on embedded designs for
MPC

In Section 1, we discussed and analyzed the existing
research work on embedded architectures for MPC
algorithm. From this investigation, it was evident that
similar work does not exist, specifically for the
fast-charge MPC algorithm. Therefore, it was difficult to
make a fair comparison between the algorithms. How-
ever, we extended our investigation and selected few
existing works that had slightly closer traits to our pro-
posed embedded designs. These designs are discussed
and analyzed as follows: A closely related work was pre-
sented in [35], which proposed a hardware-software
co-design design for MPC. This design comprised a
microprocessor and a matrix co-processor. The design
utilized a logarithmic number system (LNS) instead of a
floating point, and a Newton’s algorithm instead of a
HQP, as in our design. Unlike our design, in [35], the
model parameters were pre-calculated offline and stored
in the microprocessor. In [8], an MPC-dedicated proces-
sor was proposed, which utilized a mix of fixed-point
and floating-point numbers. Similar to our design, this
design also utilized the HQP technique but with
Laguerre functions. The processor was designed using
Matlab and evaluated using Simulink; however, no actual
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hardware architecture was implemented. In [16],
fixed-point MPC solution was proposed with two separ-
ate QP solvers as user-designed modules: primal-dual
interior-point QP for sparse matrices, and fast-gradient
QP for dense matrices. Unlike our design, this design
utilized the MicroBlaze processor to handle all commu-
nication and control of the two user-designed modules.
Furthermore, most of the existing designs had different
control horizons and prediction horizons, which signifi-
cantly impacts the total execution time of the MPC algo-
rithm. Also, all the above designs were implemented on
different platforms, affecting the resource utilization.
The above facts made it difficult to perform a direct
comparison between the algorithms in terms of speed
and space. In addition, it is evident that our architec-
tures are the only embedded designs in the published lit-
erature that support a non-zero feed-through term for
instantaneous feedback.

6 Conclusions

In this paper, we introduced unique, novel, and efficient
embedded hardware and software architectures for the
fast-charge model predictive control (MPC) for battery
cell management in electric vehicles. Our embedded
hardware and software architectures are generic and pa-
rameterized. Hence, without changing the internal archi-
tectures, our embedded designs can be utilized for many
other control systems applications that employ similar
fast-charge MPC algorithms.

Our BRAM-based HW_v2 achieved superior speedup
(100 times faster than its software counterpart), and our
register-based HW_v1 also achieved substantial speedup
(9 times faster than the equivalent software). Further-
more, our BRAM-based HW_v2 achieved significant
space saving compared to our register-based HW_v1, in
this case, 70% of space saving in terms of total number
of occupied slices. Thus, it is important to consider the
speed-space trade-offs, especially in embedded devices
due to their limited hardware footprints. These two
unique embedded hardware versions can be used in dif-
ferent scenarios, depending on the requirements of the
applications and the available resources of the embedded
platforms.

Our novel and unique embedded software architecture
is also created to be lean, compact, and simple; thus, it
fits into the available program memory (in this case
128 Kb) with the embedded processor, without affecting
the basic structure and the functionalities of the
algorithm. We could potentially reduce the program
memory usage significantly by constraining the flexibility
of the embedded software design. This would allow the
embedded processor to incorporate other functionalities
and algorithms, if necessary.
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Due to the superior speedup, our embedded hardware
architecture, as a single processing unit, could
potentially monitor and control multiple battery cells,
while treating each battery cell individually. Considering
a typical battery pack made up of 84 cells, our single
embedded hardware processing unit could easily execute
the fast-charge MPC algorithm for all the 84 cells with
the required 1-s sample time, since the worst-case iter-
ation time per cycle is a mere 474 ps. As future work,
we are planning to investigate how to interface with all
or some of the battery cells in a pack at a time, how to
share the bus in such a way to avoid the contention is-
sues, and so on. We are also exploring sophisticated
power analysis tools, such as Synopsys Power Compiler,
to measure the power consumption of our proposed em-
bedded designs, since power consumption is another
major issue in embedded devices.

Our proposed embedded architectures (both hardware
and software) for the fast-charge MPC can be utilized as
a smart sensor at the battery cell level, locally. Monitor-
ing and controlling certain important parameters of the
battery cells at the lowest level will indeed ease the com-
putational burden at the system level. This will also re-
duce the communication overhead between the battery
cells and the global control system and will provide
more autonomous control to the battery cells. Also as
future work, we will be investigating the feasibility and
efficiency of utilizing our embedded architectures for the
fast-charge MPC for other control systems applications
such as unmanned aerial vehicles (UAVs) and autono-
mous vehicles [36].
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