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Abstract

In the domain of wireless digital communication, floating-point arithmetic is generally used to conduct performance
evaluation studies of algorithms. This is typically limited to theoretical performance evaluation in terms of
communication quality and error rates. For a practical implementation perspective, using fixed-point arithmetic
instead of floating-point reduces significantly implementation costs in terms of area occupation and energy
consumption. However, this implies a complex conversion process, particularly if the considered algorithm includes
complex arithmetic operations with high accuracy requirements and if the target system presents many configuration
parameters. In this context, the purpose of the paper is to present an efficient quantization and fixed-point
representation for turbo-detection and turbo-demapping. The impact of floating-to-fixed-point conversion is
illustrated upon the error-rate performance of the receiver for different system configurations. Only a slight
degradation in the error-rate performance of the receiver is observed when implementing the detector and demapper
modules which utilize the devised quantization and fixed-point arithmetic rather than floating-point arithmetic.
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1 Introduction
Low power consumption and reduced implementation
area are vital factors to fulfill the ever increasing require-
ments of embedded systems. In digital communica-
tion applications, the algorithms are typically specified
in floating-point arithmetic in order to evaluate the
application performance. However, hardware architec-
tures implementing these applications are designed using
fixed-point arithmetic to satisfy the tight constraints on
implementation area and power consumption related to
embedded systems. In fixed-point representation, mem-
ory and bus widths are smaller, leading to definitively
lower cost and power consumption. Moreover, floating-
point operators are more complex, having to deal with
the exponent and the mantissa, and hence, their area
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and latency are significantly greater than those of fixed-
point operators. In spite of that, fixed-point arithmetic
introduces an unalterable quantization error which mod-
ifies the application functionalities and degrades the
desired performance. Thus, the design flow requires a
floating-to-fixed-point conversion stage which optimizes
the implementation cost under execution time and accu-
racy constraints [1]. For digital communication applica-
tions, the most commonly used criterion for evaluating
the precision of fixed-point implementation is the error-
rate performance degradation. Hence, the accuracy con-
straint is linked to the specifications of the supported
communication standards.
On the other hand, due to the rapid evolution of related

standards, modern wireless digital communication sys-
tems are highly concerned about the flexibility feature.
Circuits and systems adopted in this application domain
must consider not only performance and implementa-
tion constraints, but also the requirement of flexibility. In
this context, flexible application-specific hardware archi-
tectures implementing the functionalities of digital base-
band components of the receiver are under design scope.

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13639-017-0081-y&domain=pdf
http://orcid.org/0000-0003-3827-7534
mailto: mostafa.rizk@liu.edu.lb
http://creativecommons.org/licenses/by/4.0/


Rizk et al. EURASIP Journal on Embedded Systems  (2017) 2017:33 Page 2 of 18

Application-specific processors constitute a key trend in
implementing definite blocks of wireless system since they
provide a good solution in designing flexible architec-
tures that can fulfill nowadays requirements in terms of
low error-rate performance and high throughput and sat-
isfy the tight constraints on implementation area and
power consumption.
Recent emergent wireless communication standards,

such as LTE/LTE-A for mobile phones, 802.11 (WiFi) and
802.16 (WiMAX) for wireless local and wide area net-
works, and DVB for digital video broadcasting, support
various modes and configurations related to channel cod-
ing type, modulation type and mapping style, and antenna
dimension for multiple-input multiple-output (MIMO)
transmission techniques. On the other hand, iterative
concept is also utilized at the receiver side to alleviate
the destructive effects of the channel. Iterative process-
ing concept (so-called turbo processing) was proposed
firstly in the channel decoding [2] to achieve error-rate
performance close to the theoretical limits.
The extension of turbo principle to the demapping and

inter-symbol interference (ISI) equalization blocks gives
rise to turbo-demapping [3] and turbo-equalization [4]
concepts. These concepts are achieved when the extrinsic
information at the output of the turbo decoder is fed back
as a priori soft information to the input of the demapper
and equalizer.
In previous work, presented in [5], flexible application-

specific processor dedicated for turbo-demapping has
been proposed. The demapper implements the Max-Log-
MAP algorithm. It supports iterative demodulation and
its flexibility is not restricted to certain types of mod-
ulation and/or mapping styles. Similarly, another flexi-
ble application-specific processor dedicated for minimum
mean-squared error (MMSE) linear equalizer has been
proposed in [6]. Its flexibility is extracted from the follow-
ing requirements: (1) the capability to support different
MIMO schemes reaching to 4× 4 antenna dimension, (2)
the ability to maintain efficient use of hardware resources
for different time diversity channel types (fast fading,
quasi-static, and block fading) and (3) the possibility to
execute in an iterative or non-iterative modes. In fact, the
techniques which were found to be effective in combating
ISI are often extended to the context of MIMO detec-
tion [7, 8]. Therefore, the designed MMSE equalizer in [6]
is used for iterative MIMO detection. In the remainder
of this paper, iterative MIMO detection based on MMSE
linear equalization is referred to as turbo-equalization.
In the designed architectures for Max-Log-MAP

demapping [5] and MMSE equalization [6], fixed-point
arithmetic has been adopted. In addition, the input
data, the output data, and the intermediate computa-
tional values have been quantized according to defined
precisions. Due to truncation and rounding processes,

quantization errors occur. These errors propagate through
the computational steps of the algorithms, and they are
exacerbated in iterative schemes leading to a divergence
at the output. In order to maintain the numerical sta-
bility of the algorithms and to ensure that quantization
errors induce only small errors in the final result, a careful
numerical study has been conducted. An accurate quan-
tization and fixed-point representation of all parameters
and computational values involved in both algorithms
have been determined.
Despite quantization approach and its corresponding

evaluation are considered mandatory tasks in the design
flow and can take much time and effort, their presen-
tation are rarely published in the literature. Only few
number of works have illustrated the used quantization
and fixed-point representation. In [9] and [10], the imple-
mentation of a low-complexity turbo-equalizer has been
presented targeting a 16-b fixed-point DSP device with
two’s-complement arithmetic. The authors have focused
on BPSK signal set and only presented its correspond-
ing simulation results. In addition, the quantization of
input and output values of the main modules constitut-
ing the equalizer has been given. The precise quantization
of intermediate computation result values have not been
shown. Moreover, the authors has focused on exploiting
a given word length without illustrating the fixed-point
representation. In [11], a fixed-point representation of
MMSE-based turbo equalizer with soft cancelation (SC)
has been presented. The authors have targeted specific
constellation scheme (QPSK) and presented the perfor-
mance comparison between a non-quantized system and
quantized system for different system configuration. In
[12], the previous work has been extended to 16-QAM
constellation scheme. With the help of extrinsic informa-
tion transfer (EXIT) charts, the authors have determined
the sufficient number of fractional bits.
On the other side, in [13], a quantization study of log-

likelihood ratios (LLR) in bit-interleaved coded modula-
tion (BICM) systems has been provided. The performance
of LLR quantization (1, 2, and 3 b) for MIMO-BICM
systems has been investigated for BPSK and 16-QAM
constellation schemes. In [14], the quantization and fixed-
point representation of few parameters of SISO demapper
algorithm have been presented without showing their
effect on the demapper performance. In [15], the authors
proposed an architecture that supports only 16-QAM
modulation scheme. The quantization of input and output
has been only provided without mentioning the fixed-
point representation.
The purpose of this paper is to present the efficient

data quantization and fixed-point representation that are
devised for the architectures of MMSE turbo-equalizer
[6] and Max-Log-Map turbo-demapper [5]. Moreover,
their influence on the receiver error-rate performance is
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evaluated for multitude configurations. In this regard, the
contribution of this paper can be considered as an impor-
tant reference. The rest of the paper is organized as fol-
lows. The system model is presented in the next section.
Sections 3 and 4 describe, respectively, the adopted algo-
rithms for turbo-equalization and turbo-demapping, dis-
cuss the required operations to implement the algorithms,
present the required fixed-point arithmetic and data
quantization, and finally show their influence on error-
rate performance. At last, Section 5 concludes the paper.

2 Systemmodel
The digital wireless communication system is basically
composed of three blocks: transmitter, wireless chan-
nel, and receiver. The structures of the transmitter and
receiver blocks rely on the specifications of the applied
wireless communication standard. In general, data pro-
cessing before the transmission of source data bits into
the wireless channel includes adding redundant informa-
tion to the original data, and/or rearranging data stream,
and/or adding diversity of data. At the receiver side, the
input information is distorted by fading and other destruc-
tive channel effects. The constituent components of the
receiver process the received corrupted data to retrieve
the original source data by exploiting the added redun-
dancy and/or diversity. Modern wireless communication
systems adopt MIMO technology, which uses multiple
antennas at both transmitter and receiver sides of the
wireless system, to meet the requirement of high data rate,
reliability, and bandwidth efficiency. Iterative concept is
also utilized at the receiver side to alleviate the destructive
effects of the channel. Passing soft information between
different components in the receiver through both for-
ward and feedback paths has shown a prominent improve-
ment of the output over the iterations leading to error-rate
performance close to theoretical limits. MIMO technol-
ogy and iterative processing have been incorporated in
manymodernwireless communication systems. The over-
all system model considered in this work is presented in
Fig. 1. In the following subsections, the consideredmodels
of transmitter, channel, and receiver are briefly explained.

2.1 Transmitter scheme
The transmitter chain is established by concatenating
different components to provide immunity to channel
effects. Initially, the source bits s, so-called systematic bits,
are encoded by a turbo encoder, which concatenates in
parallel two eight-state double binary circular recursive
systematic convolutional (CRSC) encoders [16, 17]. The
output codeword c, that is made up of the source data and
parities, is then punctured to reach a desired coding rate
Rc. Bit interleaved coded modulation (BICM) [18, 19] is
used to disperse the obtained coded binary data sequence
to assure that no single coded symbol is fully destroyed

while passing through a fading channel. Punctured and
interleaved bit stream v is passed to the mapper. Each
m-bit combination is mapped to channel symbol x accord-
ing to the chosen constellation (BPSK till 256-QAM)
formed of 2m symbols. After mapping, the symbols x are
transmitted using either single antenna or MIMO tech-
niques. Signal space diversity (SSD) technique [20] can be
applied against the fading events in case of single-input-
single-output transmission, whereas in case of MIMO
transmission, spatial multiplexing (SM) is adopted to
improve the transmission rate [21].

2.2 Channel
The considered channel has a flat Rayleigh fading nature
with additive white Gaussian noise (AWGN). The chan-
nel flat in frequency is a realistic model for several ter-
restrial mobile radio channels [22], and most works in
MIMO literature assume this channel model [23, 24]. For
a single-antenna transmission system, the received dis-
crete time baseband complex signal yk can be expressed as
follows [25]:

yk = hkxk + wk (1)

where xk is the complex signal transmitted at time k, hk
is a Rayleigh distributed fading coefficient, and wk is a
complex additive white Gaussian noise.
For MIMO systems with Nt transmit antennas and Nr

receive antennas, the relation between channel, trans-
mitted symbols and received symbols is given by the
expression below:

y = Hx + w (2)

where
y =[ y1, . . . , yNr ]T ∈ C

Nr×1

x =[ x1, . . . , xNt ]T ∈ C
Nt×1

w =[ω1, . . . ,ωnR ]T ∈ C
nR×1

H =
⎡
⎢⎣

h11 · · · h1Nt
...

. . .
...

hNr1 · · · hNrNt

⎤
⎥⎦

where y and x represent, respectively, the received and
transmitted symbol vectors, w represents the AWGN
vector, H is the channel matrix whose element hij repre-
sents the fading coefficient that characterizes the relation
between the ith receive antenna and jth transmit antenna.
On the other hand, the channel can be further categorized
on the basis of time selectivity conditions. The time selec-
tivity characteristic of a channel defines the variation of
the channel with respect to time. It is related to the mobil-
ity of the transmitter, receiver, or the obstacles between
the two depending on the nature of fading. This selectiv-
ity characterizes 3 types of channels: (1) fast fading, (2)
quasi-static, and (3) block fading.
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Fig. 1 System model block diagram

2.3 Receiver scheme
At the receiver side, the objective is to remove the chan-
nel effects to retrieve the original source data by exploiting
the redundancy and diversity added to source information
before transmitting data through the channel. Figure 1
shows the structure of the considered iterative receiver. It
is characterized by the existence, in addition to forward
paths, of feedback paths through which constituent blocks
can send the information to previous blocks iteratively. On
every new iteration, each block generates soft informa-
tion depending on channel information and on received
a priori soft information generated by other blocks in the
previous iteration. The blocks constituting such receiver
are referred to as soft-input soft-output (SISO) processing
blocks. In case of MIMO, the symbol vector y is received
at the input of the MIMO equalizer, whereas in case of
single antenna transmission, y symbol is received directly
at the input of the demapper. For cases where SSD is
used at the transmitter side, an additional latency simi-
lar to the one applied in the transmitter is required at the
receiver in order to match in-phase (I) and quadrature (Q)
components of received symbols.
Benefiting from a priori information from the feedback

path, the MMSE equalizer provides the estimated sym-
bol vector x̃ and the corresponding equivalent bias vector
(fading coefficient) to the demapper. The SISO demap-
per produces the probabilities ṽ on transmit sequence
in the form of log likelihood ratio (LLR), which con-
struct after deinterleaving and depuncturing the input
c̃ to the decoder. The turbo decoder uses the Bahl-
Cock-Jelinek-Raviv (BCJR) [26] decoding algorithm with

Max-log-MAP approximation [27] and outputs the a pos-
teriori information both on systematic and parity bits.
This information is punctured and interleaved and
then fed back to both SISO demapper and soft map-
per. The latter provides a priori information to the
equalizer as decoded symbol vector x̂. This iterative
process is stopped if a maximum number of itera-
tions is reached. Then, the turbo decoder outputs the
decoded bits.

3 MMSE linear equalizer
Turbo-equalization concept was first introduced in [4] to
mitigate the detrimental effects of ISI for digital trans-
mission protected by convolution codes. In the emerging
wireless standards where MIMO techniques have been
inducted, co-channel interference occurs at the receiver
side. Co-channel interference is a cause of signal dis-
tortion when multiple signals are transmitted on the
same frequency slots concurrently [7]. The concept of
turbo-equalization can be used to cancel iteratively this
interference caused by MIMO. One of the best-known
low-complexity approaches to achieve equalization in
iterative MIMO systems is referred to as MMSE lin-
ear equalization (LE) [28, 29]. This approach is able to
significantly lower the computational complexity com-
pared to optimal maximum-likelihood (ML) algorithm.
The use of MMSE in iterative scheme reduces the
performance loss leading to error-rate results close to
ML. At least, 3-dB gain can be obtained for bit error
rate (BER) performance, compared to a non-iterative
MMSE [28, 30].
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3.1 Algorithmic overview
The inputs to the MMSE equalizer are the received sym-
bol vector y of size Nr , channel matrix H of size Nr × Nt ,
and the variance of the AWGN vector σ 2

w. Using this
information, the equalizer generates the estimated sym-
bol vector x̃. The equalizer considers that a symbol of the
vector x is distorted by theNt−1 other symbols of the vec-
tor and by the noise channel and it tries to combat both.
Equation (2) can be written in the following form:

y = hj.xj +
∑
i�=j

hi.xi + w (3)

where j ∈ {0,Nt − 1}, hi, hj are the ith and jth columns of
Hmatrix and w is the AWGN noise vector of sizeNr . One
of the low-complexity techniques to achieve the equaliza-
tion function is the use of filter-based symbol equalization
[29]. An estimation of the symbol xj can be carried out
through a linear filter which minimizes the mean square
error (MSE) between the transmitted symbol xj and the
output of the equalizer x̃j. Using the Wiener filter aHj =
λj.PH

j , the estimation of x is given by [28]:

x̃j = λj.PH
j

(
y − Hx̂ + hjx̂j

)
(4)

where j ∈ {0,Nt − 1}, x̂j is the jth element of vector x̂, hj
is the jth column of H matrix, and (.)H is the Hermitian
operator. Pj and λj are defined as follows:

Pj = E−1hj (5)

where

E = (
σ 2
x − σ 2

x̂
)
H.HH + σ 2

w.I (6)

and σ 2
x , σ 2

x̂ , and σ 2
w are variances of transmitted symbols,

decoded symbols, and noise, respectively. I is the identity
matrix of size Nr × Nr .

λj = σ 2
x

1 + σ 2
x̂ βj

(7)

where

βj = PH
j hj (8)

Equation (4) can be written as:

x̃j = λj.PH
j (y − Hx̂) + gix̂i (9)

where

gj = λj.βj (10)

During the first iteration of turbo-equalization process, no
a priori information is presented (x̂ is a null vector and
σ 2
x̂ = 0) and the symbols are equiprobable. The estimated

symbol becomes as following:

x̃j = λj.PH
j y (11)

where

λj = σ 2
x (12)

and

Pj = E−1hj = (
σ 2
xH.HH + σ 2

w.I
)−1 hj (13)

From the second iteration, the a priori information,
which is provided by channel decoder about transmit-
ted symbols, improves gradually over the iterations and
approaches to asymptotic performance. Asymptotic per-
formance is achieved when the a priori data is perfect, i.e.,
becomes equal to the transmitted data (x̂j = xj).

3.2 MMSE algorithm towards implementation
The above-listed expressions exhibit three main computa-
tions steps:

1. Detection vector computation referred by P in (5)
2. Equalization coefficients computation referred by β ,

λ, and g in (8), (7), and (10)
3. Estimated symbols computation referred by x̃ (9)

A closer look at the expressions required in MMSE algo-
rithm ((4) to (10)) reveals the serial nature of the implied
elementary computations. Firstly, one need to compute
serially the detection vector (P) and the equalization coef-
ficients (β , λ, and g) due to their related dependency,
and then symbols are estimated using these coefficients.
Furthermore, the expressions performed to fulfill the
equalization tasks of computing the detection vector and
coefficients and estimating symbols have similar arith-
metic operations. But since the computed coefficients are
involved in symbol estimation process, the two tasks are
executed at different times.
Furthermore, at each iteration, new value of decoded

symbols variance σ 2
x̂ (6) is delivered to the equalizer

imposing the re-computation of β , λ, g, and P for all chan-
nel selectivity types. In fact, these values also depend on
the channel matrix H (6), which entries change accord-
ing to the time selectivity of the channel. Hence, the time
diversity of the channel decides how frequent the compu-
tations of detection vector and equalization coefficients
are required. These computations are recomputed repeat-
edly for each received vector in case of fast fading channel,
once for a set of received vectors for which channel matrix
is considered as constant in case of block fading channels
and once for all received vectors of the frame in case of
quasi-static channel. Thus, the channel type (fast fading,
quasi-static, or block fading) specifies the computation
overhead per iteration. To ensure efficiency and flexibility
related to time selectivity of the channel, hardware opera-
tors are shared among all required computations in order
to take into account the required treatment of data flow
for each channel type.
Another flexibility requirement is related to antenna

dimension. To cope with diverse configurations which are
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imposed by the emerging communication standards, dif-
ferentMIMO schemes are supported. In order tomaintain
efficiency and to meet the requested flexibility require-
ment, the hardware implementation considers the lowest
complex configuration (2 × 2) and applies a hardware
resource sharing technique to support the other high-
order configurations. To manage variable size complex
matrix operations that are involved in the MMSE equal-
ization algorithm, complex matrix operations are decom-
posed into basic real arithmetic operations. The required
operations to perform coefficient computations and sym-
bol estimation can be categorized into complex number
operations and complex matrix operations.
Complex number addition, subtraction, and nega-

tion are performed using real operators as shown in
Fig. 2. Complex number multiplication is reformulated to
reduce the number of required multiplication operations.
Figure 3 shows the real operators used in complex number
multiplication operation.
Complex matrix operations involved in MMSE such

as matrix addition, subtraction, conjugation, and multi-
plication are broken down into basic complex number
operations. The Hermitian of a complex matrix can be
viewed as matrix conjugation followed by a transposition
(swapping columns for rows in the matrix). As an exam-
ple of complex matrix operations decomposition, Fig. 4
shows the required operators to perform 2 × 2 complex
matrix multiplication operation. In the figure, each com-
plex multiplier and each complex adder integrates the real
operators presented in Figs. 3 and 2a respectively.
For matrix inversion, the analytical method is used for

2 × 2 matrix inversion which is given by:

[
a b
c d

]−1
= 1

ad − bc

[
d −b
−c a

]
(14)

In case of 4×4 matrix, the matrix is first divided into four
sub-matrices and then inverted in a block-wise manner by
using the following formula:

[
A B
C D

]−1
=

[
W X
Y Z

]
(15)

where

W = A−1 + A−1B
(
D − CA−1B

)−1 CA−1

X = −A−1B
(
D − CA−1B

)−1

Y = − (
D − CA−1B

)−1 CA−1

Z = (
D − CA−1B

)−1

(16)

and A, B, C, D,W, X, Y, and Z are 2 × 2 matrices. In case
of 3×3matrix, the matrix can be extended firstly to a 4×4
matrix and then inverted by applying the same formula
derived above for 4 × 4 matrix inversion. The extending
is done by copying all three rows of 3 × 3 matrix into first
three rows of 4 × 4 matrix and then putting zeros in all
elements of fourth row and fourth column except in their
intersection where one should be placed. The final result
lies in the first three elements of first three rows and first
three columns.
Based on the positive-definite property of the

matrix resulting from the multiplication of the MIMO
channel matrix H by its Hermitian HH , βj val-
ues and the matrices determinants (�E), (�A), and
(�D−CA−1B) are proved to be positive real numbers.
Hence, there is no need to implement the compu-
tationally demanding complex number inversion
operations required in the computations of determi-
nants and λj values (7). Real inversion operations can be
applied instead.

Fig. 2 Operators used in a complex number addition, b complex number subtraction, and c complex number negation
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Fig. 3 Operators used in complex number multiplication

Inversion process is preferably replaced by look-up table
(LUT). LUT is appraised as an efficient implementa-
tion of inversion process by using memory instead of
large numbers of logical elements. Both resource utiliza-
tion and propagation delay are reduced at the cost of
accuracy. The utilized LUT should contain all possible
inverse values. The value x intended to be inverted is used
directly as the LUT index (address) to retrieve the inverse
value 1

x .

3.3 Quantization and fixed-point arithmetic
The aim of quantization and fixed-point arithmetic is to
minimize the implementation cost. However, a minimum
computational accuracy must be guaranteed to maintain
the application performance. A careful numerical study
has been conducted to determine the accurate quanti-
zation and fixed-point representation of all parameters
and computational values involved in the algorithm. The
implementation cost is minimized as long as the equalizer
performance is fulfilled.
A fixed-point data is made up of integer part and frac-

tional part. The number of bits required for integer part
is defined from the dynamic range of the data in order to

avoid the occurrence of an overflow [31]. The re-usability
and sharing of resources implies that the allocated reg-
isters and operators deal with multiple computational
values which have different dynamic ranges and variable
precisions. So, the bit-width for all components have
to be fixed and their precisions vary according to the
data requirements by choosing different bits for integer
and fractional parts. Long numerical simulations have
been conducted for different configurations to find the
required data width and accurate precisions for fixed-
point representation of all parameters involved in MMSE
LE algorithm. Utilizing 16-b two’s complement represen-
tation with different bits for integer and fractional part
in different computation steps shows low performance
degradation. Using fixed-point representation demands
establishing a virtual decimal point placed in between two
bit locations for a given length of data. Figure 5 and Table 1
illustrate the devised quantization and fixed-point rep-
resentation of different parameters for MMSE algorithm
and matrix inversion.
For different modulation types, the quantization val-

ues are shown in Table 1 in signed two’s complement
representation using the notation Q[ I] .[ F] where [ I]
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Fig. 4 Operators used in 2 × 2 complex matrix multiplication

and [ F] designate the number of bits for integer part
and fractional part, respectively. In all algorithmic steps,
fixed-point arithmetic is used. First of all, input data
that is presented in less than 16-b is extended to 16-b
by adding zeros in the added lower bits. Secondly,
for all addition/subtraction operations, the operands
(addends/subtrahend and minuend) should have the
same precision. In case of overflow/underflow, the
total/difference is directly set to the most positive/most
negative value. Finally, after each multiplication, the
double-precision product is converted to 16-b by elimi-
nating the m least significant bits (LSB) and 16 − m most
significant bits (MSB) wherem = Fa + Fb − Fc and Fa, Fb,
and Fc represent the number of fractional part of the mul-
tiplicand, multiplier, and product, respectively. Figure 6
illustrates an example for the adopted technique to quan-
tize the product value. The multiplicand and multiplies
are represented inQ[ 10] .[ 6] andQ[ 5] .[ 11] , respectively,
whereas, the product is represented in Q[ 6] .[ 10]. In fact,
the multiplication of these two 16-b values results in

32-b product value that can be represented inQ[ 15] .[ 17].
From the expression above, we have m = 7, and thus
to accommodate the product in the target quantization
representation (Q[ 6] .[ 10]), the 7 LSB are truncated as
well as the 9 MSB.
An overflow/underflow is detected if the multiplicand

and multiplier have same/opposite signs, and the product
is greater/smaller than the most positive/most negative
value. In such case, the product is fixed to the most
positive/most negative value. Last of all, the inversion
operation of real numbers is achieved by the assist of a sin-
gle 1

xLUT instead of undergoing expensive computations.
The LUT contains 16-b positive values. At each index,
the stored value represents the quantized inverse of the
index value.

3.4 Performance evaluation
One of the most critical parts of the quantization pro-
cess is the evaluation of the degradation of the application
performance. A software model of the MMSE equalizer



Rizk et al. EURASIP Journal on Embedded Systems  (2017) 2017:33 Page 9 of 18

Fig. 5 Parameter quantization for MMSE algorithm and matrix inversion

has been developed to examine the impact of the devised
quantization and the adopted fixed-point arithmetic on
the error-rate performance. The model with quantization
and fixed-point specifications is simulated for different
system configurations, and the corresponding error-
rate performance is measured. Figure 7 presents the
obtained frame error-rate (FER) performance for 4 × 4
MIMO SM with QPSK, 16-QAM, and 64-QAM. In
addition, the obtained FER results are compared to cor-
responding FER of a reference floating-point model. The

analysis of the results has shown a performance loss
below 0.2 dB for 64-QAM and below 0.1 dB for 16-
QAM and QPSK at FER = 10−3. Note that the FER
values are recorded for 100 erroneous frames for each
Eb
N0

value.

4 Max-Log-MAP demapper
Iterative demapping was proposed firstly in [3] based on
bit interleaved coded modulation (BICM) with additional
soft feedback from the SISO convolutional decoder to the
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Table 1 Quantization parameters related to Fig. 5 in signed two’s
complement representation

Index
Quantization

Index
Quantization

64-QAM 16-QAM QPSK 64-QAM 16-QAM QPSK

i1 Q 4.8 Q 4.8 Q 4.8 i13 Q 8.8 Q 7.9 Q 3.13

i2 Q 5.7 Q 5.7 Q 5.7 i14 Q 8.8 Q 9.7 Q 6.10

i3 Q 6.6 Q 6.6 Q 6.6 i15 Q 8.8 Q 8.8 Q 8.8

i4 Q 2.8 Q 2.8 Q 2.8 i16 Q 2.14 Q 2.14 Q 2.14

i5 Q 3.7 Q 3.7 Q 2.8 i17 Q 1.15 Q 1.15 Q 1.15

i6 Q 4.12 Q 4.12 Q 4.12 i18 Q 2.14 Q 2.14 Q 1.15

i7 Q 6.10 Q 6.10 Q 6.10 i19 Q 4.12 Q 4.12 Q 3.13

i8 Q 5.11 Q 5.11 Q 5.11 i20 Q 4.6 Q 4.6 Q 4.6

i9 Q 6.10 Q 6.10 Q 6.10 i21 Q 1.9 Q 1.9 Q 1.9

i10 Q 2.14 Q 2.14 Q 2.14 i22 Q 4.12 Q 3.13 Q 2.14

i11 Q 3.13 Q 3.13 Q 2.14 i23 Q 4.12 Q 3.13 Q 2.14

i12 Q 6.10 Q 3.13 Q 1.15 i24 Q 4.12 Q 2.14 Q 1.15

constellation demapper. For a system with convolutional
code, BICM and 8-PSKmodulation, 1 and 1.5-dB gains for
BER performance were reported for Rayleigh flat fading
channels and channels with AWGN, respectively. In [32],
the impact of different mapping styles on the perfor-
mance of BICM with iterative demapping for Rayleigh
fading channels have been investigated. Iterative demap-
ping has provided significant coding gains for several
mapping schemes of QAM constellations. In [33], only a
small gain of 0.1 dB was observed when the convolutional
code was replaced by a turbo code. This result makes iter-
ative demapping with turbo-like coding solutions unsat-
isfactory even though the added complexity is relatively
small. On the other hand, SSD technique was intro-
duced in [20] to improve the performance gains. An
improvement exceeding 0.8-dB gain is observed at BER
lower than 10−7 at the price of a relatively small added

Fig. 6 Example for quantization of product value

a

b

c

Fig. 7 a–c Floating-point vs. fixed-point FER performance comparison
of turbo-equalization for 4× 4 MIMO, 1536 source bits, double binary
turbo encoder, 12 code rate, and fast fading Rayleigh channel
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complexity without sacrificing the iterative process con-
vergence. In [34], the use of iterative demapping shows
performance improvement of 1.2 dB at BER of 10−6 for
QAM BICM scheme with LDPC channel decoder over
flat fading Rayleigh channel with 15% of erasures. The
symbol-by-symbol maximum a posteriori (MAP) algo-
rithm is the optimal algorithm for obtaining the outputs
of the demapper. The MAP algorithm is likely to be
considered of high complexity for hardware implemen-
tation in a real system basically because of the numeri-
cal representation of probabilities, non-linear functions,
and mixed multiplications and additions of these val-
ues [27]. To avoid the number of complicated opera-
tions, certain simplifications are applied. Implementing
the MAP algorithm in its logarithmic domain instead of
probabilistic form reduces the computational complex-
ity. Operating in logarithmic domain eliminates expo-
nential operations and transforms multiplication/division
operations into addition/subtraction operations. Max-
Log-MAP demapping algorithm is a suboptimal direct
transformation of the MAP algorithm into logarith-
mic domain; hence, values and operations are easier
to handle.

4.1 Algorithmic overview
Depending on the transmitter configuration and prop-
agation conditions, the input from the wireless chan-
nel can be either directly delivered to the demapper or
passed through a channel equalizer as shown in Fig. 1.
To reduce the computational complexity, the demapper
works in logarithmic domain and produces probabilities
ṽ on received sequence in the form LLRs, where v rep-
resents the binary mapping of the transmitted sequence.
The demapper computes the LLRs using the following
expression [35]:

L(ṽit) = ln

⎡
⎢⎢⎢⎢⎣

∑
x∈X i

1

(
e−

1
2σ2

|yt−ρt .x|2 .
∏m−1

l=0
l �=i

P
(
v̂lt

))

∑
x∈X i

0

(
e−

1
2σ2

|yt−ρt .x|2 .
∏m−1

l=0
l �=i

P
(
v̂lt

))

⎤
⎥⎥⎥⎥⎦

(17)

where m is the number of bits per symbol, i =
0, 1, . . . ,m − 1, L

(
ṽit

)
is the LLR of ith bit of trans-

mitted symbol at time t, X i
0 and X i

1 are the sym-
bol sets of constellation for which symbols have their
ith bit equals b ∈ {0, 1}, ρt is the channel fading
coefficient and σ 2 is the AWGN variance, and P

(
v̂lt

)

is the probability of lth bit of symbol x computed
through a priori information. To reduce the complex-
ity, max-log approximation [27] is applied by using the
following formulas:

ln
a
b

= ln(a) − ln(b) (18)

ln
(
eδ1+...+eδn

)
≈ max

i∈{1,...,n}δi (19)

max(a) − max(b) = min(−b) − min(−a) (20)
The expression in (17) becomes:

L
(
ṽit

) ≈ min
x∈X i

0

(D − Api) − min
x∈X i

1

(D − Api) (21)

where

D =
∣∣∣yIt − ρI

t .xI
∣∣∣2 +

∣∣∣yQt − ρ
Q
t .xQ

∣∣∣2

2σ 2 (22)

and

Api =
m−1∑
l=0

l �=i and vl=1

L
(
v̂lt

)
(23)

where vl is the lth bit of each received modulated symbol.
In the case of non-iterative demodulation, no a priori

information is provided to the demapper. The expression
of LLRs in (21) becomes:

L
(
ṽit

) ≈ min
x∈X i

0

(D) − min
x∈X i

1

(D) (24)

Moreover, for Gray mapped constellations, I and Q com-
ponents are independent from each other; hence, the
Euclidean distance is calculated in one dimension. In case
wherem is even, further simplification can be applied. The
expression in (24) can be transformed in this case into the
following expressions [36]:

L
(
ṽit

) ≈ min
x∈X (I)i0

(
DI) − min

x∈X (I)i1

(
DI) for i = 0, 1, ..,

m
2

− 1

(25)

and

L
(
ṽit

) ≈ min
x∈X (Q)

j
0

(DQ) − min
x∈X (Q)

j
1

(DQ) for j = m
2
, ..,m − 1

(26)

where

DI =
∣∣∣yIt − ρI

t .xI
∣∣∣2

2σ 2 ,DQ =
∣∣∣yQt − ρ

Q
t .xQ

∣∣∣2

2σ 2

and X (I)ib and X (Q)
j
b are the constellation point sets on

I-axis and Q-axis with ith and jth bits of symbol x that
have a value equals to b. Applying this simplification,
2

m
2 one-dimensional Euclidean distances are computed

instead of 2m two-dimensional Euclidean distances for
each LLR.
In case of passing the received symbols through SISO

equalizer (Fig. 1), symbol y in expressions (21), (24),
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(25), and (26) is replaced with x̃ (4). Also, the fad-
ing factor ρ and variance σ 2 in the up-mentioned
expressions are replaced with g (10) and g(1 − g)σ 2

x ,
respectively [29].

4.2 Max-Log-Map demapping algorithm towards
implementation

The simplified expression in (21) exhibits four main com-
putation steps:

1. Euclidean distance computation to find D
2. A priori LLRs summation to calculate Api
3. Minimum operations referred by themin functions.
4. Subtraction operation of minimum values to

determine L
(
ṽit

)
values

To determine output LLRs related to each received symbol
y, computations of Euclidean distances and a priori LLR
summation are repeated consecutively for all symbols of
target constellation. Performing concurrently, these com-
putations enhances the demapper execution performance.
In a constellation with m bits per modulated symbol,
2m Euclidean distances, and 2m a priori LLR summation
operations are needed. Their corresponding 2m resultant
differences are fed to m minimum finder operations to
determine the minimum values relative to each bit.m sub-
tractors are needed to determine the final LLR values.
Thus, the complexity of the demapper implementation
varies significantly with respect tom.
Recent emergent standards specify different mapping

types starting from BPSK till 256-QAM as shown in
Table 2. To meet with different standards specifications,
the demapper supports the implementation of all required
computations for variable modulation orders where m
can range from 1 to 8. In general, the allocated hardware
resources are not shared among different computational

Table 2 Supported modulation schemes in different standards

Standard BPSK QPSK 8-PSK 16APSK 32APSK 16-QAM 64-QAM 256-QAM

IEEE-802.16 � � �
IEEE-802.11 � � � �
LTE � � �
LTE-
Advanced

� � �

DVB-RCS �
DVB-RCS2 � � � �
DVB-SH � � �
DVB-S �
DVB-S2 � � � �
DVB-T � � �
DVB-T2 � � � �

tasks (computing of Euclidean distance, a priori LLR
summation, finding the minimum values, and subtrac-
tion operations to determine the final LLR values) to
achieve the best execution performance. Furthermore,
for operations depending on constellation size, sufficient
resources are instantiated to suit the highest-order tar-
get constellation (256-QAM). A simple way to cope with
modulation order variety is to store the constellation
information (xI , xQ, and the binary mapping μ) in LUT,
which contents are rewritten when system configura-
tion changes. The size of the LUT, so-called Constella-
tion LUT, varies according to the modulation order and
mapping style. In fact, the depth of Constellation LUT
equals the number of constellation points involved in
determining the LLRs associated to one input symbol,
whereas the width is constant and it is determined by
the total number of bits representing the constellation
information. Figure 8 shows the structure and organi-
zation of Constellation LUT for 16-QAM modulation
scheme. The LUT in Fig. 8b contains the needed infor-
mation of 16-QAM constellation presented in Fig. 8a
when Gray mapping simplifications of expressions (25)
and (26) are applied. The LUT in Fig. 8c represents
the constellation information required when using the
general Max-Log-MAP demapping algorithm expressed
in (21).
Furthermore, while exploring expressions (21), (25),

and (26), one can notice that they share common arith-
metic operations in computation of one-dimensional
or two-dimensional Euclidean distances. In fact, com-
puting of one two-dimensional distance is equivalent
to compute two separate one-dimensional distances.
Hence, same hardware resources can be used for differ-
ent mapping styles. Figure 9 shows the operators used
in Euclidean distance computation while targeting the
highest parallelism. A separate operator is allocated for
each required operation and the inversion operation is
achieved using 1

2xLUT instead of undergoing expensive
ncomputations.
Moreover, supporting iterative demapping requires the

implementation of operators that perform a priori LLR
summation. To accommodate all target constellations,
hardware implementation is set to meet with the require-
ments of highest-order target constellation (256-QAM).
Figure 10a shows the operators used in the summa-
tion of a priori LLRs in case of 256-QAM modulation
scheme, whereas Fig. 10b shows the eight subtraction
operators used to realize Di values expressed in the fol-
lowing equation:

Di = D − Api (27)

where Di represents the subtraction of summation of
a priori LLRs corresponding to bit vi from the com-
puted Euclidean distance. In case of lower-order mod-
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ca

b

Fig. 8 Constellation LUT for 16-QAMmodulation scheme. a 16-QAM constellation. b LUT contents for Gray mapped simplification. c LUT contents
with no simplifications

Fig. 9 Operators used in Euclidean distance computation
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a b

Fig. 10 Operators used in a a priori LLR summation and b Di realization in case of 256-QAMmodulation scheme

ulation schemes, the usage rate of hardware resources
involved in a priori LLR summation decreases. For exam-
ple, in case of 16-QAM modulation scheme only half
of the hardware resources related to this operation will
be activated.
Similarly to a priori LLR summation, the requirements

of 256-QAM modulation scheme is adopted to imple-
ment hardware resources capable to perform minimum
operations referred by the min functions and the sub-
traction operation of minimum values to determine L

(
ṽit

)
values expressed in (21). Sharing resources for different

minimum operations leads to decreased throughput
especially for high-order modulation schemes. Figure 11
presents the Minimum Finder operational unit for one
LLR corresponding to bit vi. Updating the minimum value
depends on the value of vi and the sign S of the resultant
value of subtracting available minimum value from new
Di. The sign S represents the most significant bit (MSB)
value of the difference.

S = MSB
(
Di − min

xt∈X i
0or1

(Di)

)
(28)
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a b

Fig. 11 aMinimum Finder operational unit and b subtractor used in subtraction operation of minimum pair

In addition, the figure shows the subtractor operator
required to perform the subtraction operation of mini-
mum pairs corresponding to symbol sets X i

0 and X i
1.

4.3 Quantization and fixed-point arithmetic
As for the equalizer module, all computational val-
ues are quantized according to defined precisions.
Detailed analysis and long numerical simulations have
been conducted for different configurations to find
the required data width and accurate precisions for
fixed-point representation of all parameters involved in
Max-Log-MAP demapping algorithm. As discussed in
previous subsection, the demapper implementation does
not adopt sharing of hardware resources among dif-
ferent computational operation types. Hardware com-
ponents are considered to deal with the same type
of data. Hence, quantized computational parameters
may have different data widths. Accordingly, bit-widths
of each computational parameter is carefully selected
to ensure least performance degradation. A trade-off
between performance and implementation costs has
been conducted.
On the other hand, fixed-point representation is used

by placing virtual decimal point in between two bit loca-
tions to separate the number of bits representing integer
and fractional parts. The square operation in calculating
the Euclidean distance (22) implies the definite positivity
of resultant parameters. This criterion is exploited to clas-
sify computational parameters into signed and unsigned
numbers. Two’s complement representation is used to
represent signed values, whereas unsigned numbers are
represented in binary representation which is considered
simpler and does not impose extra bits. Figure 12 rep-
resents the devised quantization of different parameters

used in all computational operations of the Max-Log-
MAP demapping algorithm. Table 3 shows the values of
parameter quantization in fixed-point representation. The
notation Q[ I] .[ F] is used where [ I] and [ F] designate
the number of bits for integer and fractional parts,
respectively. The prefixes “US” and “S” indicate whether
the parameter is considered unsigned binary number or
signed binary number represented in two’s complement
representation.
Furthermore, the operands of addition and subtraction

operations are prior adjusted to the same fixed-point rep-
resentation. Sign extending or zero padding (adding zeros
to lower or upper bits) techniques are applied based on
the quantization characteristics of parameters prior and
post the adjustment. Before performing addition or sub-
traction operations, the operands are 1-b sign-extended
to avoid underflow or overflow occurrence. The inver-
sion operation of variance σ 2 is achieved using a LUT
instead of undergoing expensive computations. The LUT
contains 8-b positive values which are required to repre-
sent the inverse values

(
1

2σ 2

)
. At each index, the stored

value represents the quantized 1
2x value of the index

value x.

4.4 Performance evaluation
In order to evaluate the efficiency of the quantization
parameters, the application performance is verified. Also,
the computation accuracy due to adopted fixed-point
arithmetic is evaluated. To measure the impact of quan-
tization errors on the demapper performance, a method-
ology based on bit-true simulation of the fixed-point
application has been utilized. For various system con-
figurations, a software model implementing the devised
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Fig. 12 Parameter quantization for Max-Log-MAP demapping algorithm

quantization and fixed-point specifications is used to sim-
ulate the demapper functionality. Accordingly, the cor-
responding frame error-rate (FER) performances of the
receiver are recorded. Figure 13 presents the obtained
FER curves compared to the reference floating-point

Table 3 Quantization parameters related to Fig. 12 in fixed-point
representation

Index Quantization Index Quantization

i1 S-Q 2.6 i9 US-Q 17.8

i2 S-Q 4.6 i10 S-Q 11.0

i3 S-Q 4.12 i11 S-Q 12.0

i4 S-Q 5.12 i12 S-Q 13.0

i5 US-Q 8.8 i13 S-Q 14.0

i6 US-Q 9.8 i14 S-Q 14.8

i7 US-Q 0.8 i15 S-Q 19.8

i8 US-Q 8.0 i16 S-Q 20.8

curves. The analysis of the results has shown a perfor-
mance loss below 0.05 dB for QPSK and 16-QAM at
FER = 10−2. Note that the FER values are recorded
for 100 erroneous frames for each Eb

N0
value. The

obtained results shows a slight degradation in error-rate
performance of the receiver. Thus, the effect of the
quantization errors on the generated output LLR values
is insignificant.

5 Conclusions
Fixed-point arithmetic and data quantization affect the
performance of algorithmic implementation. In this
paper, related issues to the fixed-point arithmetic of
MMSE MIMO linear turbo-equalization and Max-Log-
Map demapping are discussed for all algorithmic param-
eters and steps. An efficient quantization and fixed-point
representation have been presented. Their impact is illus-
trated upon the FER performance for different system
configurations. Only a slight degradation in the FER
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a

c

b

d

Fig. 13 Floating-point vs. fixed-point FER performance comparison turbo demodulation of 1536 source bits, 12 code rate, and fast fading Rayleigh
channel. a 2 × 2 MIMO SM, QPSK. b 4 × 4 MIMO SM, QPSK. c 2 × 2 MIMO SM, 16-QAM. d 4 × 4 MIMO SM, 16-QAM

performance of the receiver is observed when implement-
ing the equalizer and demapper modules which utilize the
devised quantization and fixed-point arithmetic rather
than floating-point arithmetic.
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