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Abstract

In this paper, a novel resource allocation approach dedicated to hard real-time systems with distinctive operational
modes is proposed. The aim of this approach is to reduce the energy dissipation of the computing cores by either
powering them off or switching them into energy-saving states while still guaranteeing to meet all timing constraints.
The approach is illustrated with two industrial applications, an engine control management and an engine control
unit. Moreover, the amount of data to be migrated during the mode change is minimised. Since the number of
processing cores and their energy dissipation are often negatively correlated with the amount of data to be migrated
during the mode change, there is some trade-off between these values, which is also analysed in this paper.
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1 Introduction
Electronic control units (ECUs) have become key com-
ponents of contemporary cars and compose powertrain,
safety and comfort subsystems. The responsibility of these
ECUs concerns all the subsystems. As usually each func-
tionality is implemented in a separate ECU, their number
in a car sometimes reaches even 100 [1]. This approach
is not scalable, hence more effort has been put recently
in the development of bus-based multi-core ECUs [2]
or even ECUs whose multiple cores are connected with
on-chip networks [3], capable of realising a number of
ever more sophisticated functionalities in one chip. These
functionalities are implemented in a form of so-called
runnables which are atomic software components.
According to the AUTOSAR (automotive open sys-

tem architecture) standard [4], runnables are mapped to
processing cores in a staticmanner, i.e. in awayutterly deter-
mined during the design-time. This approach is more pre-
dictable than dynamic (i.e. run-time) resource allocation
but usually leads to underutilised resources as the under-
lying chips have to guarantee timing execution even for
the worst-case scenario, as the runnables in automotive
systems are usually bounded by hard real-time constraints
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[5]. Typically, worst-case execution time (WCET) of a
runnable is much higher than the average execution time
[6]. Hence, some techniques decreasing the gap between
WCET and the average execution time are desired. In this
paper, we exploit the modal nature of automotive applica-
tions, i.e. the fact that runnables’ execution time distribu-
tions vary depending on the overall system states, referred
to asmodes. Then the resource application process may be
performed for each mode (almost) independently, provid-
ing different (lower) WCETs for runnables in the majority
of modes in comparison with their counterparts when the
modal nature is not considered.
To illustrate the concept of modes in an ECU, some

characteristics of a gasoline engine control unit named
DemoCar is presented in Fig. 1 (the idea of this picture
is based on [7]). They are measured from inserting a key
into ignition until reaching its full power. Five consecutive
modes have been presented together with the correspond-
ing throttle, revolutions per minute (RPM) and accelera-
tion pedal positions. PowerUp is the starting mode which
is present just after the key being inserted into the igni-
tion. Then, the Stalledmode follows, in which the throttle
is still not open. The engine starts in the Cranking mode,
hence the number of RPM increases reaching the idle
RPM level. Then the mode is switched to Idle, which
remains until the driver pushes the accelerator pedal.
This switches the current mode into Drive, in which the
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Fig. 1Modes in DemoCar

throttle is wide open and the number of RPM is larger than
the idle RPM level.
It has been stressed in [7] that execution times of partic-

ular runnables may differ significantly for various modes
of an ECU and thus applying different mappings for each
operating mode may be beneficial. This way a lower
number of cores could be needed than that of the corre-
sponding system not considering operating modes. This
observation is true also for DemoCar. We can illustrate
it with two runnables: CylNumObserver and Instructions-
Deviation, whose numbers of instructions to be executed
during one runnables’ occurrence in the best- and worst-
case scenarios are given in Table 1 (although this table
is a small subset of both states and runnables, for the
sake of this example, we assume that there are no more
states or runnables). From this table, it follows that the
largest number of operations to be executed during a sin-
gle occurrence (and hence the longest execution time) of
runnable CylNumObserver is 543, and of InstructionsDe-
viation − 5921. Thus to guarantee the schedulability of
these runnables in the worst-case scenario, these extreme
values have to be assumed, totalling 6464 operations.
However, these two extreme numbers of operations can-
not occur simultaneously, as the engine is either in mode
PowerDown or PowerUp. In the former, the maximum
number of operations during one runnable execution
totals 1464, whereas in the latter it is 6266. So we can
assume that even in the worst-case scenario the number
of operations to be executed does not exceed 6266. The
difference between the operation numbers in these modes
suggests that less resources may be needed in PowerDown
than in PowerUp, which arises the opportunity for some
energy savings. This effect is even more visible when all
runnables and modes are considered, which is shown later
in this paper.
As stated above, there is a tempting possibility of per-

forming resource allocation and schedulability analysis
for each mode independently. Such allocation will be
feasible as long as the system remains in a particular

mode and presumably would require less resources and
dissipate less energy. However, during mode change, the
contexts of runnables that are executed on different cores
in two subsequent modes need to be migrated from one
core to another and the time of this migration shall be
bounded, as hard real-time systems are considered in this
paper. Therefore, the worst case switching time has to be
assumed to provide the timing guarantees [8]. To migrate
all involved runnables’ contexts during a required interval,
some additional requirements for the available commu-
nication bandwidth can be imposed. Thus the process
of mode switching (e.g. from PowerUp to Drive) usually
incurs overhead both in execution time and dissipated
energy, if an allocation needs to be changed. This over-
head needs to be taken into account during schedulability
analysis to decide whether an altered resource allocation
for a particular mode is beneficial for the whole system
or not.
In the example above, it has been demonstrated that

the difference in the number of operations to be exe-
cuted in various modes may be significant (in this par-
ticular case it has been more than 76%). It means that
in some particular modes less computational resources
are required to execute all runnables before their dead-
lines. These extra computational cores can be either
switched off, or transferred into a more energy saving
state if they support dynamic voltage and frequency scal-
ing (DVFS) technique. DVFS is universally popular in
CMOS circuits [9], in particular following the Advanced

Table 1 Numbers of operations for two runnables in two states
in the best-case and worst-case scenarios

Mode

PowerDown PowerUp

Runnable Min. Op. Max. Op. Min. Op. Max. Op.

CylNumObserver 245 543 134 345

InstructionsDeviation 728 921 3728 5921
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Configuration and Power Interface (ACPI) open standard.
In this standard, several energy states, named P-states, are
introduced. In the highest P-state, P0, a processing core
works with the highest voltage and frequency level, but
offers the best performance. In P1 and other modes, the
core works slower, but dissipates less energy, as dynamic
(or switching) power P is proportional to the square of
core supply voltage V and its clock frequency f, P ∝
fV 2. Since any reduction of core voltage requires an ade-
quate decrease of the clock frequency, some trade-off
between energy savings and computation performance is
expected.
The DVFS technique seems to be particularly applica-

ble to hard real-time systems, as in these systems there
are usually no additional benefits from faster task execu-
tion as long as it is before the deadline. Therefore, slower
executions at lower voltage and frequency levels can be
performed in order to lower energy dissipation if all the
deadlines are satisfied.
Contribution: In this paper, we consider various modes

of automotive applications to be mapped into a NoC-
based multi-core system. We determine a quasi-optimal
allocation for each mode by employing a genetic algo-
rithm based approach. The genetic algorithm is a well-
known metaheuristic inspired by the process of natural
selection that belongs to the larger class of evolutionary
algorithms. It is commonly used to generate high-quality
solutions to optimization and search problems by rely-
ing on bio-inspired operators such as mutation, crossover
and selection [10]. Reference [10] details more about
genetic algorithms. This approach performs optimization
for energy dissipation and migration cost in terms of the
context length of the transferred runnables. To guarantee
that the mode switchingmigration finishes in the required
time, the traditional schedulability analysis is used to
determine the necessary network bandwidth. A trade-off
between the amount of transferred data during a mode
change and the energy dissipation in the following state is
investigated.
A preliminary version of this work has been published

in [11]. This paper extends the work in [11] by including
more detailed explanations and experimental results.
The proposed approach can be applied to any hard real-

time systems, where different operating modes can be
identified, and automotive systems in particular.
This paper is organised as follows. In the next section,

the state-of-the-art solutions are reviewed. Then, the
adopted application and platform models together with
the problem formulation are described. In the follow-
ing section, the steps of the proposed design flow
are presented. Then, they are experimentally evalu-
ated using two electronic control units from Robert
Bosch GmbH. The paper is finalised with concluding
remarks.

2 Related works
Exploiting the knowledge about distinguishable operating
modes in a system is tempting and thus modal systems
are an increasingly popular subject in research. Tradition-
ally, the research focused on single-processor systems [12]
or, more recently, homogeneous bus-based multi-cores
[13]. As the contemporary microcontrollers dedicated to
the automotive industry, such as Infineon TriCore, follow
these architecture principles, the schedulability analysis
presented in [14] may be directly applied to them when
modal applications are considered.
Recently, Network on Chip (NoC) has been proposed

as a base for integrated system architecture for auto-
motive electronic systems in [15]. The authors of that
paper argued that the proposed architecture provided the
required composability level and error containment to
integrate multiple functions on a single ECU. In [3], the
authors discussed the major benefits of using NoCs in
the automotive domain, such as complexity reduction,
reduction of resource requirements, increased depend-
ability, legacy reuse and economic benefits. In [16], it was
shown howNoCs can handle delay faults or process varia-
tions in automotive applications. The increased reliability
was demonstrated in a scenario when processing cores
become faulty one after another or in a case of a single
link or router fault. This result was achieved by apply-
ing a dependable routing algorithm and dependable task
execution. Additionally, the underlying processing cores
were efficiently used for load balancing. Considering all
these benefits, a NoC architecture may be expected to be
applied in the automotive industry in foreseeable future
and thus it has been also used in the solution proposed in
this paper.
Since the number of possible scenarios in NoC-based

multi-cores is typically prohibitively high [17], a number
of research activities aims at developing design-time (off-
line) heuristics to reduce the number of operating points
in the design space exploration (DSE) process [17]. The
DSE process can be carried out using classic heuristic
techniques for clustering modes so that their final num-
ber is manageable. Then, during run-time of that system,
a run-time manager (RTM) determines the current mode
out of an explicitly given set by observing some variables
of the model [7].
Two different mapping approaches are proposed in [18],

but they do not allow task migration, i.e. once a task is
assigned to a processing core, it remains there until its
computation is finished. In contrast, Benini et al. [19]
allowed tasks to migrate between processing cores when
the envisaged performance gain is higher than the pre-
computed migration cost.
The possible modes and transitions between them can

be shown in a formal way in order to analyse the worst
case switching time between two modes. An example
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formal way could be to use finite state machines (FSMs),
as proposed in [20]. An FSM is an abstract machine that
can be in exactly one of a finite number of states at any
given time. The FSM can change from one state to another
in response to some external inputs; the change from
one state to another is called a transition. An FSM is
defined by a list of its states, its initial state, and the condi-
tions for each transition. This facilitates to identify all the
allowed modes, represented as states in the FSM, and the
transitions between them and to check the cost of mode
switchings. In [21], for H.264 decoder, an average switch-
ing time overhead between twomodes has beenmeasured
to be equal to 0.2% of the total system time. This slight
value has been caused by a low number of the existing
modes, obtained due to the clustering, and thus relatively
rare switching. In [22], the authors suggest tomap asmany
tasks as possible to the same core in various modes to
avoid the data or code items to be moved between differ-
ent resources when switching between modes. However,
this condition does not take into consideration different
context sizes of the tasks. In the proposed approach, we
minimise the amount of data to be migrated instead.
To guarantee hard real-time constraints during task

migration, a methodology is proposed in [23]. How-
ever, a costly schedulability analysis is performed during
run-time. Further, experiments supporting their proposed
approach are not provided, but one may predict that the
overload of that dynamics could be considerable.
The approach closest to the approach described in this

paper is that of [7], where mode transition points in an
engine management system are identified and it is shown
that a load distribution by mode-dependent task alloca-
tion is better balanced in comparison with a static task
allocation. However, in contrast to our approach, the task
migration costs have not been considered.
In our prior work [24], an earlier version of the proposed

approach has been presented. In that version, DVFS has
not been exploited, thus only a single objective genetic
algorithm has been employed to find a quasi-optimum
mapping, whereas in this paper we use a two-objective
genetic algorithm and also encode core voltage/frequency
levels into individuals. The contribution of that paper has
focusedmainly on the issue of schedulability in eachmode
and also during mode changes, whereas in this paper we
present multiple solutions in a form of a Pareto frontier to
choose a solution representing a trade-off between migra-
tion time and the energy dissipated in the future mode.
Also, different modes in the DemoCar example have been
identified.
The close observation of literature survey indicates that

designing NoC-based real-time systems with distinguish-
able operating modes has been mainly limited to soft
timing constraints, whichmeans deadline violations could
occur. To the best of our knowledge, there has been

no proposal of any other method that jointly addresses
the problems of (i) guaranteeing no hard deadline viola-
tion duringmode switching, (ii) performing schedulability
analysis for NoC-based multi-core systems, (iii) finding
a trade-off between migration data amount and energy
dissipation.
A preliminary version of this work is published in [11],

which has been extended with more detailed explanations
and results.

3 Systemmodel
In this paper, we investigate ways to determine whether an
automotive modal application executing and communi-
cating over a specific network on chip canmeet all its hard
deadlines. Therefore, we need a system model that covers
the modal application as well as the NoC-based platform
and its configurations.

3.1 Application model
In this work we assume that the application model is con-
sistent with the AUTOSAR standard [4]. Each application
(or taskset) � includes a set of p tasks with hard real-
time constraints which can be represented with a vector
� = [ τ1, . . . , τp]. As this paper concerns the automotive
domain, these tasks are referred to as runnables. Themore
general term task will only be used in reference to other
application domains.
The taskset’s properties depend on the current mode μ

of the application. The runnables are periodic and each
occurrence of a runnable is named a job. The taskset is
known in advance, including the WCET of each runnable
in every mode μ, μ = {1, . . . ,m}, its period, priority and
its relative deadline equal to this period. Runnables are
atomic schedulable units communicating with each other
with so called labels, which are memory locations of a
particular length. The order of read and write operations
to labels denotes the runnable dependencies, as the write
operation to a particular label should be completed before
its reading. We assume that the labels are stored in the
same NoC nodes as the runnables that read these labels.
Consequently, if more than one runnable mapped to dif-
ferent cores read from the same label, its content is to be
replicated to all the NoC nodes with these cores and the
writer should update the label value at all these locations.
It means that the writer is aware of all its readers and
knows their locations in all the possible modes.
Similarly to [23], we split a runnable’s context into two

parts: (i) invariant, which is not modified at run-time and
(ii) dynamic, including all volatile memory locations. We
assume that an upper bound of the dynamic part size of
all runnables is known in advance.
All possible modes of the application together with the

allowed transitions between them are known. They may
be described using a finite state machine, similar to the
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one presented in Fig. 2, where seven modes and 16 pos-
sible transitions are shown. Deadlines for mode switching
time between each neighbouring pair of modes shall also
be provided.

3.2 Platformmodel
The hardware platform assumed in this paper is a mesh
network on chip (NoC). The rationale behind this choice
is due to its several benefits as presented in the Related
works section.
The considered NoCs are assumed to have x · y nodes

with cores, � = {π1,1, . . . ,πx,y} and local memories, and
the same number of routers � = {ψ1,1, . . . ,ψx,y}, as
shown in example in Fig. 3. Each link is modelled as a
single resource, so, for example, to transfer a portion of
data from π1,2 to appropriate sink π3,1, we need such link
resources allocated simultaneously: π1,2−ψ1,2,ψ1,2−ψ2,2,
ψ2,2 − ψ3,2, ψ3,2 − ψ3,1, ψ3,1 − π3,1.
In every mode, each runnable is mapped to one core and

a label is stored in the local memories of the cores request-
ing that label. The data between two nodes is transmitted
in packets. Each packet is comprised of a header, which
includes the necessary control fields such as the desti-
nation address, and a payload with an actual intended
data. Data transfer overhead is taken into consideration,
assuming constant time for transferring a single flit (Flow
control digIT, a piece of a network package whose length
usually equals the data width of a single link) between
two neighbouring cores if no contentions are present. If
a source and a target cores are not adjacent or if any
contention exists among the data transfers, the worst-
case transfer time is determined using the algebraic model
described in [25]. Timing constants for packet latencies
while traversing one router and one link are given and
denoted as dR and dL, respectively. The priority of data
transfer packets is assumed to be equal to the priority
of the runnable sending them. The processing cores can
operate under a given set of voltage and frequency levels,
but the links have no P-states.

Fig. 3 An example many-core system platform

3.3 Problem formulation
Given a platform and an application model with a defined
set of operating modes, the problem is to determine
schedulable mappings for each mode so that the amount
of data to be migrated during the allowed mode changes
and energy dissipated by the platform are minimised.
It might be possible that by increasing the amount of

data to be migrated during a given mode change, the total
energy consumptionmight beminimised because of a bet-
ter mapping in the following mode. Therefore, a trade-off
between these two objectives might exist and it should
be illustrated with a Pareto frontier of points representing
different energy consumption and amount of data to be
migrated.
During mode switching, the taskset should be still

schedulable despite the additional network traffic gen-
erated by the runnable migrations. The neighbouring
modes with similar runnables’ execution time can be clus-
tered. This way, the number of modes is lower as clusters
are used to group a set of modes into a single mode.
Such reduction in the number of the existing modes can
decrease the frequency of the runnable migrations, which
is explained later in this paper.

Fig. 2 FSM describing modes in DemoCar
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The deadlines for mode switching time between each
neighbouring pair of modes must not be violated.

4 Proposed approach
In this section, the steps of the proposed design flow are
described. Since it has been assumed that the tasksets
of the considered applications are known in advance, it
is possible to perform the majority of the required com-
putations statically. Consequently, the mapping problem
can be split into two stages: off-line (static) and on-line
(dynamic), as shown in Fig. 4. The computation time of the
off-line part is not crucial and thus heuristics with even
high complexity, such as genetic algorithms, may be used
for runnable and label mappings.
During the application run-time, detection of the cur-

rent mode is assumed to be done by observing a certain
variable. When a value of this variable is being changed,
the current runnable and label mapping might need to
be switched. The mappings have been identified at the
design-time while trying to minimise the amount of data
to be migrated during the static mapping for both initial
and non-initial modes. Schedulability analysis guarantees
that even the worst case switching time does not violate
the deadline required for mode changes. If such violation
is unavoidable, either the states should be clustered, or the
network bandwidth is to be increased.

Fig. 4 Steps of the proposed energy aware dynamic resource
allocation method benefiting from modal nature of applications

In the remaining part of this section, we firstly explain
the steps performed off-line, followed by the description
of the dynamic stage.

4.1 Mode detection/clustering
During analysis of a modal system it may happen that
runnables executed in neighbouringmodes (i.e. themodes
connected in the FSM) have similar WCETs and resource
utilisations. In such case, there is little benefit in determin-
ing two separate mappings for these modes and migrating
the runnables’ contexts during transitions between these
modes. It would be more reasonable to cluster these states
and treat them as a single mode in the further steps of the
proposed approach.
Similarly, some transitions between modes may have

to be done immediately, whereas others can be less time
tight. If runnable contexts’ migration has to be performed
quickly, for example between two consecutive runnable
occurrences (jobs), the bandwidth needed to transfer the
appropriate amount of data in that time may be unrea-
sonably wide. In such situation, clustering of these modes
shall also be considered.
The proposed approach is agnostic with respect to the

chosen clustering method. In our implementation, the
popular k-mean algorithm has been applied, whose idea
was given in [26] for the first time. The features used for
clustering are the WCETs (or the numbers of operations
to be executed in the worst-case scenario) of particu-
lar runnables. Each mode is represented as a point in a
p-dimensional vector space, referred later to as feature
space. In the k-mean algorithm, a number of clusters, k,
and m points in the p-dimensional feature space are pro-
vided as inputs. The number of clusters represents the
number of groups in which all the points in the feature
space need to be partitioned by employing a clustering
algorithm, for example, the k-mean clustering algorithm.
An appropriate value of k is often evident due to the
knowledge about the relations between m modes in the
considered application. If this knowledge is limited, one of
the numerous existing solutions can be used to determine
the right value of k, e.g. [27].
Initially, the k first points are treated as single-element

clusters, and the remaining m − k points are assigned
to the cluster with the nearest centroid based on the
Euclidean distance. Then, the centroid for each cluster
is recomputed. These two stages, i.e. assigning points to
the cluster with the nearest centroid and the centroid re-
computation are repeated until convergence. A set of k
clusters is returned as output. The modes grouped into
one cluster are merged into one mode in which WCET
for each runnable is equal to the maximal WCET for the
particular runnable in any mode grouped in this cluster.
This concept may be illustrated with the following sim-

ple example. Let us have an application with p = 2
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runnables � = [ τ1, τ2] in m = 5 distinctive modes. As
there are only two runnables, the m points in a feature
space have two dimensions, one corresponding to the
WCET for τ1 and the second one corresponding to the
WCET for τ2, and thus they can be shown on a plane.
These feature points are presented as five circles in Fig. 5,
where the OX and OY coordinates represent the WCETs
(in ms) for τ1 and τ2, respectively. The number of clusters
has been set to k = 3 and thus three centroids have been
found, shown in the figure with crosses. The lines in the
figure divide the plane into segments that are closer to a
certain centroid than to the remaining ones. The modes
described with the feature points belonging to the same
segment are merged into a single mode. For example, in
the uppermost segment two feature points can be found:
[ 1, 5] and [ 2, 6]. After merging the corresponding modes,
the WCET for the clustered mode equals max(1, 2) =
2ms for τ1 andmax(5, 6) = 6ms for τ2.

4.2 Spanning tree construction
In the proposed approach, the FSM describing the modes
is traversed starting from the initial mode and then the
runnable migration corresponding to each traversed tran-
sition is analysed. In this traversal, each mode should be
analysed exactly once as only one mapping is assigned to
one mode. If a particular mode can be reached from a
number of different modes, the most probable transition
shall be chosen. Hence the FSM describing mode changes
should include weights denoting state transition proba-
bilities. These probabilities can be given or determined
during a simulation of the modal system. Then, the FSM is
treated as a weighted directed connected graph G(V ,E),
where V is the set of vertices {v1, v2, . . .} and E denotes the
set of directed edges. We firstly convert this graph into its
undirected counterpart,G(V ,E′), where set E′ includes an
edge (vk , vl) if and only if (vk , vl) ∈ E ∨ (vl, vk) ∈ E. The

Fig. 5 Example of five modes grouped into three clusters

weight of edge (vk , vl) ∈ E′, ω(vk , vl) is equal to the sum of
weights of edges (vk , vl) ∈ E and (vl, vk) ∈ E.
We use an algorithm for undirected graphs, as we take

into consideration the probability of mode switching in
both directions, i.e. the sum of these probabilities for two
directed edges connecting these states in the related FSM
(the weights cannot be thus treated as probabilities in the
undirected graph as they may be higher than 1).
To guarantee a single analysis of each mode while fol-

lowing the most probable paths, a maximum spanning
tree can be constructed. We recollect that a spanning tree
of a graph G(V ,E′) is its subgraph T(V ,E′′) which is con-
nected and whose number of edges is equal to the number
of vertices minus 1, |E′′| = |V | − 1. If T denotes the
set of all spanning trees of G, a maximum spanning tree
Tmax

(
V ,E′′

max
)
of G is a spanning tree if and only if:

∀
T(V ,E′′)∈T

∑

(v,z)∈E′′
max

ω(v, z) ≥
∑

(v,z)∈E′′
ω(v, z),

where ω(v, z) is the weight value assigned to the edge
from a vertex v to z. A maximum spanning tree can
be constructed in time O

(|E′|log|V |) using the classic
Prim–Jarník’s algorithm [28].
According to this greedy algorithm, a tree is initialised

with an arbitrary vertex. In our implementation, we select
the vertex corresponding to the initial state in the FSM.
Then, in each step, one vertex is chosen and added to the
tree. This selected vertex is not yet in the tree and is con-
nected with any tree vertex with an edge having the largest
weight. This operation is repeated until all vertices are
added to the tree.
Let us illustrate this idea with a simple example, an FSM

with three states, A, B and C, presented in Fig. 6a. The cor-
responding undirected weighted graph is shown in Fig. 6b.
Vertex A is selected as the first vertex of the spanning
tree (Fig. 6c). Two vertices are adjacent to the spanning
tree, B and C, which is shown in the figure with dashed
lines. In the next step, vertex B is added to the span-
ning tree, as it is connected with vertex A with an edge
with the largest weight, ω(A,B) = 0.9 (Fig. 6d). Vertex
C is adjacent to the tree and can be connected to ver-
tex A or B. Then, in the third step, vertex C is connected
to vertex B as this edge has a larger weight, ω(B,C) =
1.4 > ω(A,C) = 0.7. Since all the vertices have been
added to the spanning tree, the Prim–Jarník’s algorithm is
completed. The maximum spanning tree is presented in
Fig. 6e.
Notice that the operation performed in this step nei-

ther influences the application behaviour nor limits
the possible mode transitions. It only makes the least
frequent transitions not optimized during the further
stages.
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Fig. 6 Example of the maximum spanning tree construction: FSM describing mode changes (a), the correponding undirectional graph (b), first (c),
second (d) and third (e) step of the Prim-Jarník’s algorithm

4.3 Static mapping
In the proposed approach, the algorithms for resource
allocation in the initial and the remaining modes vary, and
thus they are presented separately in the following two
subsections.

4.3.1 Initial mode
Algorithm 1 presents a pseudo-code of a genetic algo-
rithm that can be used to identify a mapping for the initial
mode. The algorithm ensures that no deadline violation
occurs under the chosen allocation. We propose to use
two fitness functions—measuring (i) the number of dead-
line violations and (ii) the total energy dissipated by the
resources. The first fitness function value is of primary
importance, as in a hard real-time system no deadline
violation is allowed. However, among fully schedulable
mappings, the one leading to a lower dissipated energy is
chosen.
Each chromosome in the genetic algorithm contains

genes of two types, as shown on the top of Fig. 7. The first
p genes indicate the target cores for p runnables and the
remaining |�| genes (for a mesh NoC |�| = x · y, where x
and y are the mesh dimensions) specify the P-states of the
consecutive cores.
In the algorithm, the following two main steps can be

singled out.
Step 1. Initial population generation (line 1). An arbi-

trary number of random individuals (runnable mappings
and P-states) is created.

Algorithm 1: Pseudo-code of no deadline violation
with energy minimisation algorithm for the initial
mode mapping
inputs : Workload �;

Resource set �;
outputs : Runnable mapping; Core P-states;
1 Generate an initial random population of
runnable mappings and P-states;

2 while not termination condition do
3 Evaluate the number of deadline violations;

//criterion (i)
4 Evaluate the dissipated energy; //criterion (ii)
5 Group together the individuals with the same

number of deadline violations;
6 Sort the groups by increasing number of

deadline violations;
7 Sort individuals in each group with respect to

the dissipated energy;
8 Perform tournament selection; //criterion (i)

has higher priority than criterion (ii)
9 Generate individuals using crossover and

mutation;
10 Create a new population with the best found

mappings;
end
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Fig. 7 Genes in chromosomes

Step 2. Creating a new population (lines 3–10). For each
individual, values of the two fitness functions (the number
of deadline violations and dissipated energy (lines 3–4))
are computed. Individuals with the same number of dead-
line misses are grouped together (line 5). The groups
are then sorted with respect to the number of deadline
violations in the ascending order (line 6). Inside each
group, individuals are sorted according to their grow-
ing dissipated energy (line 7). The tournament selection
is then performed, where individuals from a group with
a lower number of deadline violations are always pre-
ferred, whereas among the individuals from one group
the one with the lower dissipated energy is to be chosen
(line 8). The computation of the tournament outcome is
characterised with low overhead due to the appropriate
ordering of the groups and individuals in each group per-
formed earlier. The individuals winning the tournament
are then combined using a typical crossover operation and
mutated (line 9). Then, a new population is created from
these individuals (line 10). Step 2 is repeated in a loop as

long as a termination condition is not fulfilled, which can
be a maximal number of generated populations or lack of
improvement in a number of subsequent generations.
For example, assume that a population is comprised of

four individuals, i1, i2, i3 and i4. The evaluation of these
individuals made in line 3 shows that for individuals i1 and
i3 as many as 2 deadlines are missed, whereas the map-
pings for i2 and i4 are schedulable considering the P-state
assignments encoded in these individuals. According to
the energy dissipation evaluated in line 4, i1 dissipates the
lowest energy, followed by i2, i3 and i4 (in this order).
Since i1 and i3 violate the same number of deadlines,

they are joined together in one group, Group1, accord-
ing to line 5. Individuals i2 and i4 are grouped together in
Group2 as they do not violate any deadline. In each group,
the individuals are sorted with respect to the dissipated
energy in the ascending order (line 7).
In the tournament selection performed in line 8, each

individual from Group2 wins over any individual from
Group1, as the number of violated deadlines is the more



Dziurzanski et al. EURASIP Journal on Embedded Systems  (2017) 2017:30 Page 10 of 16

important criterion. So, for example, i4 beats i1 despite
dissipating more energy. If a tournament is performed for
two individuals from the same group, i.e. violating the
same number of deadlines, the individual characterised
with a lower energy dissipation is the winner. For example,
if both individuals from Group1 enter the tournament, i1
becomes the winner.

4.3.2 Non-initial modes
As mentioned earlier, it is of primary importance to
migrate as little data as possible during mode changes to
minimise the migration time and energy. However, it may
be beneficial to migrate more data if the energy dissipated
in the next mode is much lower than themigration energy.
Thus, there could be some trade-off between migration
data (or time) and energy dissipation in the next mode. It
is a role of a designer to choose a proper solution from the
Pareto frontier.
A mapping M is a vector of p core locations, M =

[πτ1 , . . . ,πτp ], where each element corresponds with the
appropriate element of � (taskset) and can be substituted
with any element of set � (processing cores).
To perform optimization for the migration cost that

considers the context length of the transmitted runnables,
weight vectorW is introduced. Each element of this vector
W = [wτ1 , . . . ,wτp ] is equal to the amount of data that has
to be transferred when a particular runnable (τ1, . . . , τp) is
migrated, including the labels to be read or written.
LetMα andMβ be sets of mappings (i.e. sets of M vec-

tors) that are fully schedulable in a given system in modes
α and β , respectively. The elements of the difference vec-
tor DMα ,Mβ = [ dτ1 , . . . , dτp ] indicate which runnables are
to be migrated when the mode is changed from α to β .
Each element dδ , δ ∈ {τ1, . . . , τp}, takes value 1 if the par-
ticular runnable is allocated to different cores in mappings
Mα ∈ Mα and Mβ ∈ Mβ , and 0 otherwise:

dδ =
{
1, if Mα,δ �= Mβ ,δ ,
0, otherwise. (1)

where Mα,δ and Mβ ,δ denote the δ-th element of vectors
Mα and Mβ , respectively. The migration cost c between
two modes α and β is then computed in the following way

cMα ,Mβ = DMα ,Mβ · WT. (2)

For example, we consider a taskset with three
runnables � = [ τ1, τ2, τ3]. The elements of vector W =
[ 100, 200, 150] describe the context lengths (in bytes)
of τ1, τ2 and τ3, respectively. Let, there is one map-
ping in mode α, Mα = {Mα1} and two mappings in
mode β , Mβ = {Mβ1,Mβ2}, where Mα1 = [π1,π1,π2],
Mβ1 = [π1,π2,π2] and Mβ2 = [π2,π1,π1]. Thus the cor-
responding difference vectors equal DMα1,Mβ1 = [ 0, 1, 0]

and DMα1,Mβ2 = [ 1, 0, 1]. The migration costs between
these mappings are cMα1,Mβ1 = DMα1,Mβ1 · WT = 200 and
cMα1,Mβ2 = DMα1,Mβ2 ·WT = 250 bytes. If minimisation of
the migrated data size is the only criterion, mapping Mβ2
shall be chosen for mode β .
A recursive greedy algorithm for reducing the amount

of data transferred during mode changes is presented in
Algorithm 2.

Algorithm 2: Pseudo-code of a migration data
transfer and energy minimisation algorithm

inputs : A spanning tree ST based on Finite
State Machine (FSM) describing the
system modes with transaction
probabilities;
W - size of each runnable memory
footprint;

outputs : Runnable and label mapping for each
mode; P-states for cores in each mode;

1 α ← the state of ST corresponding to the
initial state of FSM;

2 Mα ← a set of schedulable mappings in mode
α;

3 Mα ← the mapping inMα that dissipates the
lowest amount of energy;

4 forall the β being a direct successor of α in ST
do

5 Mβ ← FindMappingMin(α, β , Mα);
end

procedure FindMappingMin(η, κ , Mη)
1.1 Mκ ← a Pareto frontier of schedulable

mappings in κ minimizing criterion Eq. (2) and
energy dissipation in mode κ using W;

1.2 Mκ ← the mapping inMκ selected with
respect to design priorities;

1.3 forall the ι being a direct successor of κ in ST do
1.4 Mι ← FindMappingMin(κ , ι, Mκ );

end
1.5 return Mκ ;

Since some cycles are likely to occur in a graph rep-
resenting the finite state machine describing transitions
between modes, a maximum spanning tree (ST) is to be
built, as described earlier. Then the mode corresponding
to the initial state of the FSM is selected as the current
mode (line 1). For this mode, a set of schedulable map-
pings is generated, e.g. with Algorithm 1 (line 2). If more
than one schedulable mapping is found, the one leading
to the lowest energy dissipation is selected (line 3). Then
for each direct successor of the ST vertex corresponding
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to the FSM initial state, the FindMappingMin procedure
is executed (lines 4 and 5).
In the FindMappingMin procedure, a Pareto frontier of

schedulable mappings for that successor vertex is found
using two criteria: (i) minimal migration cost criterion
represented by Eq. (2) and (ii) minimal energy dissipated
in the next mode (line 1.1). The most suitable schedu-
lable mapping is chosen from the Pareto frontier based
on the design priorities (line 1.2). The FindMappingMin
procedure is then recursively run for each direct succes-
sor of the ST vertex provided as the function parameter
(lines 1.3 and 1.4).
More mappings could be delivered to the FindMapping-

Min procedure to browse a larger search space by skipping
lines 3 and 1.2 in the algorithm and providing all elements
ofMα instead of just one. It is the role of a designer to set
priorities between the migration time and energy dissipa-
tion to select the most suitable solution from the Pareto
frontier.
If Algorithm 2 is applied to the example spanning tree

presented in Fig. 6e, mode A is substituted to α as it
corresponds with the initial state of the FSM shown
in Fig. 6a. Then the mapping Mα that is schedulable
and dissipates the lowest amount of energy is deter-
mined using Algorithm 1. As there is only one direct
successor of mode A in the spanning tree, the Find-
MappingMin procedure is executed for mode B. In this
procedure, a Pareto frontier between schedulable map-
pings in mode B minimizing energy dissipation in B
and the amount of data to be transferred during mode
switching from A to B is determined. After selecting the
appropriate mapping using the assumed design priori-
ties, procedure FindMappingMin is executed again for
mode C, the only successor of mode B in the spanning
tree.

4.4 Schedulability analysis
The proposed runnable mapping technique aims to ben-
efit from the modal nature of applications, but it also
possesses new challenges. If the modes are treated inde-
pendently from each other, the end-to-end schedulabil-
ity of runnables and packet transmission in each mode
can be analysed using equations from [29]. However, the
instant of transition between the modes requires special
attention, as additional migration-related traffic appears
including the whole contexts of the runnables and labels to
be migrated. To guarantee the taskset schedulability dur-
ing migration, we propose to treat a migration process as
any other asynchronous process in the typical schedulabil-
ity analysis, i.e. to use so-called periodic servers, which are
periodic tasks executing aperiodic jobs. When a periodic
server is executed, it processes pending runnable migra-
tion. If there is no pending migration, the server simply
holds its capacity.

The dynamic (i.e. changeable) part of the context shall
be migrated at once using the last job of the periodic
server. It means that the local memory locations that can
be modified by the runnable must not be precopied, but
migrated after the last execution of the runnable in the
old location. This requirement can influence the mini-
mum periodic server size (i.e. the time allocated to it by a
scheduler in each hyperperiod, where hyperperiod is the
least commonmultiple of all runnables’ periods) and, con-
sequently, the network bandwidth, as it must be then wide
enough to guarantee migration of the dynamic part before
the next runnable’s job execution (in the new location).
In the proposed approach, any kind of periodic servers

can be used. However, the trade-off between implementa-
tion complexity and ability to guarantee the deadlines of
hard real-time runnables, as described for example in [30],
shall be considered. More details regarding the applied
schedulability analysis scheme in the proposed approach
are provided in [24].

4.5 On-line steps
In the proposed approach, three steps are performed on-
line: Detection of current mode, Mapping switching and
Changing voltage/frequency levels of cores.
In all the ECUs known to the authors of this paper, the

system modes are defined explicitly and there is a possi-
bility of determining the current mode by observing some
system model variables, similarly to [7]. (For example, in
DemoCar such variable is named _sm and is stored in
runnable OperatingModeSWCRunnableEntity.)
When the mode change is requested, an agent residing

in each core prepares a set of packages with runnables
to be migrated via the network. This agent is configured
statically and is equipped with a table with information
about runnables that need to be migrated during a partic-
ular mode change. Then the contexts of these runnables
are migrated. In the following hyperperiods, runnables
are transported using periodic servers of the length deter-
mined statically using schedulability analysis, as described
earlier. The agent is aware of the number of periodic
server jobs that have to be used during the whole migra-
tion process, and has the dynamic (volatile) portion of the
context identified. This part of the context is to be trans-
mitted in a single job of the periodic server, just after the
last execution of the runnable at its old location. After
migrating the dynamic part of the runnable’s context, it is
removed from the earlier (migration source) core.
Simultaneously, the same agent can receive migration

data from other agents in the network. When the precom-
puted (during the design-time) number of hyperperiods
elapses, the contexts of these runnables are fully migrated
and are ready to be executed on the migration target core.
Before the first execution of a runnable in a new mode,

the agent switches the P-state of the processing core to
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the value determined during the static analysis, described
earlier in this paper.
The details of the agent depend on the underlying oper-

ating system. Regardless of its implementation, Detection
of current mode shall be characterised by low compu-
tational complexity and thus shall impose low overhead
for the system during run-time. The number of the
hyperperiods required for performing runnable migra-
tion during Mapping switching depends on the size of
runnables and labels to be transferred, mappings, and
network bandwidth, in particular flit size and timing con-
stants for packet latencies while traversing one router and
one link (dR and dL). This dependency will be explored in
the following section.

5 Experimental results
As examples, we consider two industrial applications,
an engine control management (ECM) and a lightweight
engine control system named DemoCar. In this section,
we follow the stage order presented in Fig. 4. We begin
with mode clustering and construction of the spanning
tree, followed by runnables’ mapping and determining of
the required network bandwidth.
The energy dissipation has been determined using the

technique described in [31]. The average values obtained
during a series of simulations are following. During 1
s, a processing core dissipates 1.66E+4μJ when idle and
2.99E+4 μJ when busy. An idle link dissipates 1.43E+3 μJ
whereas a link transporting a package dissipates 3.69E+3
μJ during 1 s assuming 16-bit wide data connection links
between cores. The core energy has been scaled using
relation P ∝ fV 2 for a set of six P-states, from P0, where
the maximum voltage/frequency level has been assigned,
to P5.
For the considered applications, next, we describe the

results of (i) mode clustering and spanning tree construc-
tion, (ii) mappings exploration for initial and non-initial
modes and (iii) energy and data migration trade-off influ-
ence on NoC bandwidth.

5.1 Mode clustering and spanning tree construction
The first of the considered applications, ECM, is com-
prised of three modes, in which runnables have different
best and worst case number of operations to be executed,
as presented in Table 2. The transitions between all these
modes are possible, as shown in Fig. 8. The hyperperiod
for this application is equal to 200 ms.
From Table 2 it follows that two modes, Mode 1

and Mode 2, only differ in absence of three runnables
(Runnable_02, Runnable_03 and Runnable_06) in the lat-
ter. The remaining runnables have exactly the same num-
ber of operations to be executed in the best and worst
case scenarios. It may be then beneficial to decrease
the number of modes to k = 2 by clustering Mode 1

Table 2 Numbers of operations for runnables in all three modes
of the ECM application in the best-case and worst-case scenarios

Mode 1 Mode 2 Mode 3

Runnable Min. Op. Max. Op. Min. Op. Max. Op. Min. Op. Max. Op.

Runnable_01 12 363 12 363 12 363

Runnable_02 0 2 0 0 0 2

Runnable_03 29 222 0 0 29 222

Runnable_04 300000 600000 300000 600000 2 121

Runnable_05 55000 60000 55000 60000 5 209

Runnable_06 10000 16700 0 0 2 167

Runnable_07 20000 100000 20000 100000 2 80

Runnable_08 100000 200000 100000 200000 1 67

Runnable_09 150000 200000 150000 200000 5 25

Runnable_10 100000 200000 100000 200000 30 171

and Mode 2. The maximum numbers of operations for
all 10 runnables have been treated as features, so for
Mode 1, Mode 2 and Mode 3 their corresponding points
in the feature space are equal to [363, 2, 222, 600000,
60000, 16700, 100000, 200000, 200000, 200000], [363, 0,
0, 600000, 60000, 0, 100000, 200000, 200000, 200000] and
[363, 2, 222, 121, 209, 167, 80, 67, 25, 171], respectively.
The k-mean clustering algorithm has found the following
two centroids: [363, 1, 111, 600000, 60000, 8350, 100000,
200000, 200000, 200000] and [363, 2, 222, 121, 209, 167,
80, 67, 25, 171]. Modes Mode 1 and Mode 2 are closer to
the first centroid, so they are clustered in a single mode,
Cluster 1, as shown in Fig. 9. Notice that the Euclidean
distances between the two points in the feature space cor-
responding to Mode 1 and Mode 2 and the centroid are
relatively low, which means that these two modes do not
differ significantly and thus merging them into one mode
can be beneficial. As the maximal numbers of operations
to be executed in each runnable in Mode 1 are higher
than or equal to the corresponding numbers in Mode 2,
the former are assumed to be used for the whole clus-
ter. For such simple FSM with only two states, creating
the maximal spanning tree is rather trivial. The only edge
is the one connecting the initial mode Cluster 1 with
Mode 3.

Fig. 8 FSM describing modes in ECM
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Fig. 9 FSM describing clustered modes in ECM

Our second analysed case, a gasoline engine control unit
named DemoCar, is a larger application as it consists of 18
runnables and 61 labels.
Its flow graph has been presented in [32] together with

a detailed description. In Fig. 2, seven identified modes
of this application are presented. These modes have been
identified by inspecting the code of the runnable named
OperatingModeSWC, which computes values of transac-
tion and output functions of the FSM steering this engine.
The transitions between modes Stalled, Cranking, Idle,

Drive are to be performed between two consecutive jobs
of their runnables, which is upperbounded with 5 ms for
nine runnables. Since performing runnablemigration dur-
ing such short time window would require a bandwidth
of considerable size, these modes have been clustered into
Cluster1. For similar reason,Wait has been clustered with
PowerDown into Cluster2. Finally, three modes can be
identified after the clustering step: PowerUp, Cluster1 and
Cluster2, as presented in Fig. 10. The probabilities ofmode
switching have been shown above the arrows. The max-
imum spanning tree, constructed with the Prim–Jarník’s
algorithm, is presented in Fig. 11.

5.2 Mappings exploration for initial and non-initialmodes
For the ECM application, the genetic algorithm presented
in Algorithm 1 has been executed for the initial mode,
Cluster 1. This algorithm has been configured to gener-
ate 100 generations of 20 individuals each. The size of the
NoC has been initially set to 1×1 and the flit size has been
fixed to 16 bits. For this architecture, the genetic algo-
rithm failed to find any schedulable mapping. As many as
320 jobs out of 409 present in a hyperperiod have been
executed after their deadlines in the best solution found.

Fig. 10 FSM describing clustered modes in DemoCar

Fig. 11 Spanning tree for clustered DemoCar

Not surprisingly, this solution has been reported for P-
State P0. In this state, the core is characterised by the
best performance while dissipating the highest amount of
energy, equal to 10333.4 μJ per hyperperiod.
The NoC size has been then enlarged to 2 × 1 and the

flit size has not been altered. For this architecture, a num-
ber of schedulable mappings has been found. The schedu-
lable mapping with the lowest dissipated energy, equal to
11912.6 μJ per hyperperiod, assigned P-States P1 and P3
to the first and the second processing core, respectively.
The first core has been assigned with seven runnables:
Runnable_02, Runnable_03, Runnable_04, Runnable_06,
Runnable_07, Runnable_09, Runnable_10, whereas the
remaining three runnables have been assigned to the sec-
ond core.
The algorithm presented in Algorithm 2 has been

applied to find a schedulablemapping in the secondmode,
Mode 3. As the total number of operations to be executed
are much lower than in the initial mode (see Table 2),
the mapping has been performed to only one core. The
second core has been decided to be switched off in this
mode.
Consequently, only two mappings were possible: all

runnables from the first core can be migrated to the sec-
ond core and vice versa. The number of possible solutions
is larger though, as different P-states can be applied to
the chosen core. One solution dominated the remaining
ones in both the criteria. In this mapping, 3330.43 μJ are
dissipated per hyperperiod and 267,725 bytes have to be
migrated. The most energy efficient P-state, named P5,
has been sufficient to timely execute all the runnables.
The same procedure has been applied to the DemoCar

application. For the PowerUp (initial) mode to be executed
on a NoC-based multi-core system, we estimate the dissi-
pated energy and number of violated deadlines during one
hyperperiod by allocating runnables and labels to different
cores.
The size of the NoC mesh has been initially configured

as 2 × 2 with no idle cores, since this size had been earlier
checked (also using Algorithm 1) to be large enough to
execute DemoCar in the most computational intensive
mode, Cluster1, not violating any of its timing constraints.
The flit size has been fixed again to 16 bits. The timing
characteristics, energy dissipation per hyperperiod and
the number of idle resources for different modes are sum-
marised in Table 3 and commented below. The genetic
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Table 3 Timing and energy characteristics of 2 x 2 mesh NoC executing DemoCar in different modes

Mode No. deadline violations Energy dissipation per hyperperiod No. idle cores No. idle links

PowerUp 0 3093.01 μJ 3 16

Cluster1 0 9719.45 μJ 0 10

Cluster2 0 5909.37 μJ 2 10

algorithm has been executed to perform assignment of
the runnables to cores with timing characteristics for the
initial PowerUp mode. The genetic algorithm has been
configured to generate 100 generations of 20 individuals
each. The first fully schedulable allocation has been found
in the first generation, which suggests that it might be
possible to allocate the taskset to a lower number of cores.
After performing further search it has appeared that

the taskset in the initial mode is schedulable even when
mapped to one (out of four) active core in P-State P0.
The energy dissipated in this mode equals to 3093.01 μJ
per hyperperiod (100 ms). Thus, thanks to the modal
approach, one can switch off 75% of the cores while the
application is in the Cluster1mode.
As stated above, for the PowerUp mode, schedulable

mappings have been found even if three of the four cores
remain idle. It means that in this mode three cores can
be switched off, leading to considerable energy savings.
Similarly, two cores can remain idle in the Cluster2mode.
However, despite intensive search using a genetic algo-
rithm, all four cores are needed in the Cluster1 mode to
have the taskset fully schedulable. Thus, when the cur-
rent mode changes from PowerUp to Cluster1, three cores
have to be activated, whereas two cores can be switched
off after leaving the Cluster1mode.
Next we focused on the transition between the PowerUp

and Cluster1modes. For PowerUp, only one core is active
and thus all runnables are to be mapped to the only
active core. However, in other cases a larger set of map-
pings that are fully schedulable on active cores has been
identified. A Pareto frontier using two criteria, minimal
amount of data to be migrated and minimal energy dissi-
pated in the next mode, has been constructed and drawn
in Fig. 12. If energy dissipation is crucial for the design
and longer switching time can be accepted, the right-
most solution from the Pareto curve shall be chosen. On
the contrary, the leftmost solution from the Pareto curve
is appropriate for the system with switching time more
bounded, where some energy loss may be tolerated. The
remaining six solutions form a compromise between these
two extremes.
Assuming that the minimal energy dissipation is cru-

cial for the system, the solution leading to dissipation of
9719.45μJ (in the next mode) should be chosen. Then,
using the same priority, the mapping in the Cluster2mode
would dissipate 5909.37μJ per hyperperiod.

5.3 Energy and data migration trade-off influence on NoC
bandwidth

As it has been shown above, the ECM application has
been mapped to a low number of processing cores (one or
two, depending on the current mode) so that the underly-
ing NoC lacked any multi-hop links. For this application,
one solution dominated the others and thus no Pareto
curve has been built, as explained in the previous sub-
section. In this dominating solution, 267,725 bytes have
to be migrated between the NoC nodes when the cur-
rent mode is being changed. This has to be added to 2660
bytes that are sent and received by these cores during each
hyperperiod due to the runnable execution. Such amount
of data can be migrated using a periodic server during one
hyperperiod (200 ms) as long as the router (dR) and link
(dL) latencies do not exceed 500 and 200 ns, respectively.
In the case of the DemoCar application, we have eval-

uated the number of hyperperiods required to migrate
runnables from PowerUp to Cluster1, depending on con-
stants dR and dL, and presented them in Table 4. Two
extreme solutions from the Pareto frontier illustrated in
Fig. 12 are analysed: A is the mapping with the lowest
amount of data to be migrated, B is the solution with the
lowest energy dissipated in mode Cluster1. The hyper-
period length for DemoCar equals 100 ms and this time
is enough to migrate all data when the router and link
latencies are equal to 100 and 50 ns, respectively, for both

Fig. 12 Pareto curve illustrating the trade-off between minimal
amount of data to be migrated and minimal energy dissipated in the
next mode
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Table 4 Number of hyperperiods (100 ms) required for switching
between modes PowerUp to Cluster1 in DemoCar depending on
router (dR) and one link latencies (dL)

No. of hyperperiods

dR [ns] dL [ns] Solution A Solution B

100 50 1 1

200 100 1 2

400 100 1 2

500 200 2 4

800 400 3 7

1000 500 4 8

the extreme solutions. However, when the routers and
links have higher latency, the NoC needs a significant
lower number of hyperperiods to migrate all the data in
solution A.

6 Conclusions
An approach for runnable migration in a NoC-based
multi-core system has been proposed as a way to decrease
the number of cores needed for guaranteeing safe execu-
tion of a hard real-time software. Applying different volt-
age/frequency levels (P-states) to cores facilitates decreasing
of energy dissipation even further. The proposed approach
is comprised of steps to be performed statically (off-line)
and during run-time (on-line). The approach has been
illustrated with two industrial applications. In both of
them, a finite state machine describing mode changes has
been extracted from their code and transition probabil-
ities have been identified during simulation. The closely
related modes have been merged into clusters. A genetic
algorithm has been used to determine the runnable-to-
core mapping for the initial mode. Similarly, a multi-
objective genetic algorithm minimizing the migrated data
and the energy dissipated in the next mode has been used
for the remaining modes. Each Pareto-optimal solution
determines the runnables to be migrated when a change
of the current mode is requested. The migration time has
been evaluated using schedulability analysis depending on
the network bandwidth. In the first application, in one
mode a single processing core is sufficient to execute all
the functionalities before their deadlines, whereas in the
remaining modes two processing cores are required. In
the case of the engine control unit, in a particular mode
only quarter of the initial number of cores is used.
The proposed approach requires the development of an

agent realising the migration process. Since its architec-
ture details depend on the underlying operating system,
its implementation and evaluation in real embedded envi-
ronments are planned as a future work.
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