
EURASIP Journal on
Embedded Systems

Bertauld and Dagenais EURASIP Journal on Embedded Systems (2017) 2017:18
DOI 10.1186/s13639-016-0067-1

RESEARCH Open Access

Low-level trace correlation on
heterogeneous embedded systems
Thomas Bertauld* and Michel R. Dagenais

Abstract

Tracing is a common method used to debug, analyze, and monitor various systems. Even though standard tools and
tracing methodologies exist for standard and distributed environments, it is not the case for heterogeneous
embedded systems. This paper proposes to fill this gap and discusses how efficient tracing can be achieved without
having common system tools, such as the Linux Trace Toolkit (LTTng), at hand on every core. We propose a generic
solution to trace embedded heterogeneous systems and overcome the challenges brought by their peculiar
architectures (little available memory, bare-metal CPUs, or exotic components for instance). The solution described in
this paper focuses on a generic way of correlating traces among different kinds of processors through traces
synchronization, to analyze the global state of the system as a whole. The proposed solution was first tested on the
Adapteva Parallella board. It was then improved and thoroughly validated on TI’s Keystone 2 System-on-Chip (SoC).

Keywords: Heterogeneous embedded systems, Tracing, Traces synchronization, Traces correlation, Parallella,
Keystone 2

1 Introduction
Heterogeneous embedded systems combine the pecu-
liarities of traditional embedded systems (little available
memory and exotic architectures among others) with the
complexity of having many processors of different archi-
tectures on the same board. Usually, some processors are
referred to asmasters as they are the main cores, typically
running a high-level OS (HLOS) like Linux, and offload-
ing work to some coprocessors (slaves). Even though some
coprocessors could run an HLOS [1], we assume in this
paper that they are used as bare-metal units, as this
brings the most compelling challenges. This is a reason-
able assumption since those coprocessors are mostly used
to perform very specific tasks and should not be disturbed
by any other processes.
On such systems, finding the root of an issue such as

a bottleneck, an abnormal latency, or even a simple bug
usually cannot be done by separately looking at each core.
For this reason, proper methods and tools should be used
to have a complete understanding of the whole system.
However, even the right tools can sometimes encounter

*Correspondence: thomas.bertauld@gmail.com
Department of Computer and Software Engineering, École Polytechnique de
Montréal, Montréal, Quebec, Canada

limitations on such devices: running the GDB debugger on
a thousand cores, for instance, can be tough. As such, het-
erogeneous system vendors often provide their own, more
suited, diagnosis tools for a particular device, thus forc-
ing the users to use as many different tools as there are
existing platforms, without any consistency.
Tracing is an elegant and efficient way of obtaining

information on a system while minimizing the moni-
toring’s impact. It requires the instrumentation of the
traced application (i.e., the addition of tracepoints) to
output timestamp-matched events and give insights on
the execution of specific parts of a system. A set of
such events is called a trace. Because of its granularity
(tracing can be as precise as the internal clock of the
device is), traces can be massive and are not well-suited
for every situation. However, tracing allows a better
information-gain/performance-loss ratio than standard
logging methods and requires less time and effort than
classical step-by-step debugging.
In this paper, we present a generic way of tracing het-

erogeneous embedded systems in an attempt to show how
efficient it is to solve common problems and how it can
lead to a standard analysis methodology for those systems.
The described method only assumes that two common
constraints are met. Under those reasonable assumptions,

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13639-016-0067-1&domain=pdf
http://orcid.org/0000-0001-5264-2273
mailto: thomas.bertauld@gmail.com
http://creativecommons.org/licenses/by/4.0/

Bertauld and Dagenais EURASIP Journal on Embedded Systems (2017) 2017:18 Page 2 of 14

only the actual implementation of the process can dif-
fer from one system to another. By presenting how our
solution is implemented on the Keystone 2 platform,
we provide some guidelines and a complete example
on how to proceed with any new platform, the key
point being the implementation of the synchronization’s
process.
This paper is structured as follows. Section 2 cov-

ers related work on heterogeneous environments, trac-
ing, bare-metal CPUs tracing and traces synchronization.
Section 3 briefly describes the architectures of the two
devices used in this work and highlights their specifici-
ties. Section 4 introduces barectf 1, a tool used to generate
traces on bare-metal systems. Section 5 then discusses in
details the challenges and methods for correlating hetero-
geneous traces. Finally, Section 6 exposes and discusses
some results through a set of benchmarks and a complete
use-case on the Keystone 2, before concluding on the state
of tracing on heterogeneous embedded systems.

2 Related work
Working on heterogeneous environments can be a com-
plicated task. Conte et al. [2] highlight in particu-
lar how the use of different programming languages
along with their respective (sometimes exotic) compil-
ers and the inherent load balancing and management
among heterogeneous environments are common prob-
lems needing to be addressed. The latter issue is part
of a more general load-balancing problem, for which it
is impossible to design a universal solution, as the tasks
distribution is heavily dependent on the algorithm being
distributed. However, some works, such as [3], study the
use of specific frameworks to balance the load between
different components within the same heterogeneous
environment.
Communications between heterogeneous components

is a commonly addressed issue in distributed systems. It
can be tackled in a similar way on embedded devices. In
particular, Lamport [4] discusses the basis of interprocess
communication mechanisms, where all can be reduced
to a classical producer/consumer problem on a shared
medium. In this model, a consumer will poll said medium
and wait for a producer to change it (by adding data for
instance). As far as heterogeneous embedded systems are
concerned, a shared memory space can often endorse the
role of the communication medium, where masters and
slaves will both be producers and consumers. Of course, as
underlined by Tanenbaum [5], it is mandatory to explicitly
design a communication protocol to ensure that con-
sumers and producers can both use the shared data. For
instance, the data encoding and the bit ordering must be
agreed upon before any transaction occurs.
Tracing isan efficientmethod to gather valuable informa-

tion on a system, based on source-code instrumentation.

The instrumentation will yield events when tracepoints
are encountered, during the application’s workflow. Each
event holds a payload and is associated with a finely-
grained timestamp. Tracing is not to be mistaken with
logging or profiling [6] as they serve different purposes.
Logging is usually restricted to unusual or high-priority
events such as system failures or abnormal behaviors. Pro-
filing can be used to analyze the performances of separate
parts of a system, giving an overview of useful metrics,
without any need for events ordering. On the other hand,
tracing can be used to monitor, debug, profile, or log sys-
tems behaviors [7] and is often the favored solution to
debug and monitor concurrent programs [8]. However,
please note that logging, debugging, profiling, and tracing
can all be used at different phases during the develop-
ment cycle, and thus the use of one does not preclude the
utilization of the others.
Since tracepoints can be placed anywhere in the appli-

cation’s code, it is mandatory to ensure that the resulting
instrumentation does not affect the observed state or
create new issues. Indeed, tracing solutions need to be
highly optimized as they should only minimally impact
the monitored system, to avoid the undesired “probe
effect” [9].
Tracing Linux-based systems has been proven many

times to be a reliable and efficient solution. Common tools
such as LTTng (Linux Tracing Toolkit next generation2)
are widely used to trace both the Linux kernel and user-
space applications [10, 11]. Having the ability to trace both
domains at once allows a better understanding of a system
as a whole. It brings more context on abnormal behav-
iors: the roots of an abnormally high latency cannot always
directly be found in user-space and might require trac-
ing system calls. Desnoyers and Dagenais [12] also showed
that porting LTTng to different architectures could eas-
ily be achieved, as long as some requirements, such as the
presence of fine-grained timers, are met.
Tracing bare-metal systems is a bit more tedious as, by

definition, there is no access to any of the usual Linux
tools. Thankfully, barectf was created to address part of
this issue. It is a python-based tool able to generate C99
code implementing tracepoints, which can then be linked
with the user’s application to generate native common
trace format (CTF) traces. This is particularly interesting
as CTF is also the default output format for LTTng traces
and aims to standardize traces’ outputs across different
systems. As a proof of concept, Proulx particularly showed
in [13] and [14] how barectf could be used to trace some
very constrained coprocessors inside the Epiphany chip.
Extending this work, we will demonstrate how barectf can
be implemented on another platform, the TI’s Keystone
2 SoC. Figure 1 displays a basic setup enabling tracing of
both a master CPU and its associated slave. Among other
works targeting heterogeneous environments, Couturier

Bertauld and Dagenais EURASIP Journal on Embedded Systems (2017) 2017:18 Page 3 of 14

Fig. 1 Basic setup used to trace embedded heterogeneous systems

[15] explains how OpenCL calls can be intercepted to
produce CTF-formated traces on GPGPUs. All of this
lays the foundation of the standardization of traces
collected on different components of a heterogeneous
environment.
Having traces sharing the same format on every pro-

cessor in a heterogeneous environment is a step forward
towards the global monitoring of the system. However,
it still is necessary to find a way to correlate said traces.
In fact, traces obtained from different machines or dif-
ferent processors, will most likely not share the same
timestamps origin, have different working frequencies
and frequency scaling policies. This is a common prob-
lem when it comes to tracing distributed systems, as
every component might use a different clock. As such,
directly comparing traces obtained on all devices would
not make much sense. Tanenbaum [5] lists traditional
ways, such as NTP or the Berkeley algorithm, to achieve
clocks synchronization in a distributed system. The clas-
sical work of Lamport [16] summarizes the need to syn-
chronize as the need to preserve the events causality.
Under this constraint, only a logical clock would suffice
and ensure that the events’ order is respected across the
system.
In this context, Jabbarifar [17] proved that traces corre-

lation can be achieved through synchronization, merging
two or more traces with different timestamps’ origins
into a single one with the same (fictitious) time ori-
gin. Although this work addressed “live” synchronization
(i.e., synchronization done while the traces are being
recorded), the preferred way is to operate a post-analysis
on existing traces, with a trace analysis and viewing soft-
ware such asTraceCompass. This way, tracing is kept from
interfering too much with the system and limits its per-
formance overhead to the minimum. Poirier et al. [18],
in particular, showed how generating pairs of match-
ing events between traces brings enough context for a
post-tracing synchronization process. The idea is to pre-
serve the causality relationship between all the events, by
tracing interactions between remote cores and creating a
fictitious global clock. This method will be further dis-
cussed in Section 5.

As far as we are aware, no other published work was
directed at tracing embedded heterogeneous systems in
a generic and structured way, with traces taken at differ-
ent levels being synchronized and analyzed in a suitable
trace viewing tool. By using the tools and concepts previ-
ously presented, we intend to show how such tracing can
be achieved and how it can tackle common problems.

3 Background
Our methodology aims at tracing both generic CPUs and
coprocessors in an attempt to correlate the traces and
analyze complex heterogeneous systems. Most of the het-
erogeneous embedded devices used in industry are com-
posed of generic-purposes ARM processors, coprocessors
of various designs (from generic to highly specialized) and
a shared memory space. The ARM processors can run an
HLOS such as Linux and thus have common tracing tools
at their disposal. The coprocessors are used as bare-metal
computing units, on which the masters will offload part
of the work. No common solution presently exists to con-
sistently trace them and correlate the traces at a global
scale. Figure 2 represents the common pattern on which
this paper is focused.
The two primary devices used to develop and test

our tracing method devices are of great interest as they
respect this pattern and provide an interesting range of
specifications. The first one (Adapteva’s Parallella) is an
FPGA-based, custom board that could easily be used as
a prototyping device, with very limited hardware and
minimal coding APIs. By contrast, the Keystone 2 offers
eight widely used TI’s DSPs a very powerful hardware and
extensive APIs and could thus be adopted as a production
device.

3.1 Adapteva’s Parallella
The Parallella board [19] was the first platform used
to better understand the constraints of heterogeneous
embedded systems. The tested version contained 16
generic coprocessors (called eCores). Because of its exotic
architecture, valuable lessons were learned, and it allowed
us to infer the minimal requirements to trace a heteroge-
neous embedded system.
The core of the Parallella board is composed of a Zynq

70xx SoC containing a dual-core ARM Cortex A9 and
an Artix-7 FPGA, an Epiphany chip (where the eCores
are located) and 1 GB DDR memory. All coprocessors
are little-endian, C-programmable, and best used as bare-
metal units.
The Parallella’s limitations are very challenging, which

forced us to explore different technical alternatives, and
allowed us to tackle complex systems more easily. For
instance, the communication mechanism between the
master (ARM) and the slaves (coprocessors) is one way.
This situation does not allow a slave to send any kinds

Bertauld and Dagenais EURASIP Journal on Embedded Systems (2017) 2017:18 Page 4 of 14

Fig. 2 High-level view of the devices of interest

of information to its master directly. Thus, the first min-
imal requirement emerged: it is mandatory to dispose of
(at least) a shared memory space to allow communication
between the masters and the slaves. The very constrained
memory space, the lack of interruptions queue, the
absence of ordering for memory transactions and the
lack of software components made the Parallella a fas-
cinating device to experiment with, and from which we
gained a better understanding of what issues one could
have to tackle to trace a heterogeneous embedded system
properly.

3.2 TI’s Keystone 2
Looking at TI’s Keystone 2, SoC is a logical next step,
allowing us to test our tracing solution from scratch on
a more complex and powerful device. This way, having
addressed the issues of the weaker Parallella’s hardware,
we dispose of a solid range of devices. Moreover, since the
DSPs featured in this SoC are also present in many other
systems, everything done for this platform will have much
wider repercussions.
TI’s EVMK2H evaluation board features a 66AK2H12

SoC containing 4 ARM Cortex A15 and 8 TI’s C66
CorePacs DSPs [20]. It also provides 2-GB DDR memory
and a faster 6-MB shared memory. This SoC is commonly
used in industry and is thus a representative platform.
TI provides a set of C modules acting as a real-time

micro-kernel that can be loaded on each and every DSP.
This micro-kernel (named SYS/BIOS3) is capable of han-
dling basic tasks, memory management and communica-
tions between ARM and DSPs. Because it is lightweight
and well-optimized, its usage is somehow standardized.
Our main interest in this product is to see how it is possi-
ble to instrument it, like the Linux kernel, to obtain traces
at a lower level. For instance, tracing context switches
between tasks would provide much information regarding

the global state of the system. Being able to trace the
SYS/BIOS kernel, along with user-specific applications,
would open the way to new opportunities such as critical
path analysis [21].
No solution currently exists to trace the Keystone 2

platform, and the only tools provided are mostly target-
ing profiling. Those tools are in no way sufficient enough
to compete with the benefits of tracing a device: more
information with a lower performance impact.
Part of the challenge of tracing this platform is to eval-

uate how a tool such as barectf can be integrated into
TI’s micro-kernel, and how the provided communication
mechanisms impact the way we see the master/slave rela-
tionship. Since barectf has not yet been ported to this
platform, Section 4 will explain how it can be done and
provide some general guidelines regarding this process.

4 Bare-metal tracing with barectf
In this section, we will briefly present barectf and
describe the procedure to implement it on a new plat-
form. Barectf ’s traces’ output follows the CTF, which is
a memory-wise efficient binary format. Bit-manipulating
functions are needed to generate events in this format.
For instance, it is perfectly acceptable to declare and
trace a 3-bit integer. To ensure that a parser can read
through such traces, a set of metadata, describing the
content of each event, is required. Barectf handles the cre-
ation of the trace’s metadata and all the bit-manipulating
functions.
Barectf is a tool generating sets of C tracepoints. To

do so, the user provides a configuration file written in
YAML defining what are the required tracepoints (i.e., the
description of the metadata): each tracepoint is given a
name and a payload that can be anything from a single
integer to a complex structure.
Figure 3 sums up a basic barectf setup.

Bertauld and Dagenais EURASIP Journal on Embedded Systems (2017) 2017:18 Page 5 of 14

Fig. 3 High-level view of barectf’s workflow, extracted with permission from [14]

In order to use barectf with any device, one needs to
implement a client-side API in charge of managing the
packets generated by the tool. Packets are sets of events,
initially recorded in a local buffer on each monitored core.
They have a limited length and can thus only store a finite
set of events. As such, they need to be handled when full,
before recording new events. Therefore, because barectf is
hardware-agnostic and thus does not provide those mech-
anisms, one has to implement an API called a “barectf
platform” on every newly studied platform (see Fig. 4).
While implementing these functions, a few things

should be taken into consideration:

• The barectf_init function is in charge of allocating
and instantiating the data structures holding the
packets (either locally or on external memory). Those
can be circular buffers, regular queues or even a
single global variable holding one packet. However,
some systems might not handle dynamic allocation
very well (as it was the case for the Parallella board).
Thus, particular care must be taken when
instantiating the structures.

• When implementing the barectf_get_ctx function, it
is possible to allow multiple contexts to be created. In
that case, no assumptions should be made about any
preexisting checking mechanism, and potential
coherency issues should be tested.

• The barectf_get_clock and barectf_init_clock
functions should use a proper 64-bit counter. Usually,
a cycle counter is used, and when not available,
special care must be taken to ensure the coherency of
timestamps through time. For instance, some

Fig. 4 Barectf’s device-specific API

Bertauld and Dagenais EURASIP Journal on Embedded Systems (2017) 2017:18 Page 6 of 14

platforms (like the Parallella board) might only offer
one 32-bit counter which can be reset after hitting its
maximum value, in which case a custom-made
counter should be incremented at each reset to
simulate a 64-bit counter.

• The barectf_close_packet function is the core of the
API, as it is in charge of handling a full packet. Such
packet can be flushed into a shared memory space,
directly sent to the master or even discarded because
of lack of space. The choice is at the user’s discretion.
For instance, the first implementation of the API on
the Parallella copies the local packet into a shared
memory location for the master to consume it. It
requires proper initialization of the shared memory
space and a custom protocol to retrieve the data. Our
Keystone 2 implementation, however, uses TI’s
MessageQ API4 to directly send the packet to the
master. This API allows the host to sleep on a
semaphore’s lock while waiting for a packet to be
received, thus eliminating the need to poll a shared
memory space.

Obviously, every choice made on the slave regarding the
handling of barectf packets should have its counterpart
on the master, to ensure that the data can be retrieved
and processed afterward. For instance, if the packets are
written into a special memory location, the master should
periodically poll this area and write new packets in a
CTF file. In this case, extra care must be taken to ensure
the coherency of the data read, since both the consumer
and the producer might try to access the shared memory
location at the same time.

5 Correlating heterogeneous traces
Being able to trace every component of a heterogeneous
system separately is only the first step to trace its global
state. Indeed, directly analyzing all the raw traces without
processing them would be pointless, as different compo-
nents most probably have different clock origins. Thereby,
synchronizing the traces on the same (fictitious) time

origin is mandatory to preserve timestamps and cause-
effect coherency.

5.1 Generating pairs of matching events
Synchronization can be achieved either “live” or as a
post-tracing process. Since the monitoring process should
minimally impact the system, we chose to use the second
solution. For this to work, one needs to generate pairs of
matching events during the tracing session. Those events
can be seen as a “handshake” between a master, which
will be used as the synchronization origin, and a slave, for
which the trace’s timestamps will be adjusted to match
those of the master. This method is already well-used in
distributed systems where the synchronization’s process
uses TCP exchanges. The following process can be seen as
the generalization of this mechanism (see Fig. 5):

1. The master generates its first matching event of
sequence n and proceeds to ask for its counterpart on
the slave to be generated.

2. Once the request is handled by the slave (which
should happen as fast as possible to obtain results as
accurate as possible), the second event (seen as an
ACK) of the first pair is generated on the slave (with
sequence number n).

3. The slave then generates the first event of the second
pair of sequence n + 1 and notifies its master.

4. Once the master handles the notification, it
generates the second event of the second pair with
sequence n + 1, thus concluding the first exchange.

Those events can later be processed, post-tracing, to
compute the time conversion function to convert the
timestamps in the slave’s traces to the master’s time refer-
ence. Note that each pair needs to be uniquely identified
during the post-tracing process, thus explaining the need
for unique sequence ids.
In the next subsection, we propose a generic and effi-

cient way to make the right interactions between a master
and slave during the matching events’ generation process.

Fig. 5 Generating pairs of matching events

Bertauld and Dagenais EURASIP Journal on Embedded Systems (2017) 2017:18 Page 7 of 14

5.2 Workflow and synchronization
The below-described method aims at being hardware-
agnostic and will work under these reasonable assump-
tions:

(H1) The slaves can be interrupted by the masters
(H2) A shared memory space is accessible by both
the masters and the slaves.

To generalize our approach, we assume that the slaves
are single-core processors and thus cannot handle multi-
ple threads at a time. For this reason, (H1) ensures that
there will always be a way for a master to halt a slave’s
workflow and generate the synchronization events.
Since we cannot assume either that a proper communi-

cation mechanism (such as a message passing interface)
exists on every platform, (H2) allows data communi-
cations and is available on almost every heterogeneous
embedded platform.
As previously seen, generating pairs of matching events,

across different traces, requires the master to send a
request to the slave. This can be achieved by having the
master trigger a hardware interrupt on the slave, thus
forcing its workflow to be suspended in order to process
the incoming interruption. Upon reception of the inter-
ruption, the slave can write its ACK flag in the shared
memory. In the meantime, the master would poll said
memory and wait for the slave to complete.
To generate a set of matching events, a background task

(referred as a synchronization daemon) can run on the
master to periodically generate the interrupts and cor-
responding events. The interruptions’ frequency needs
to be adjusted so that the synchronization is accurate
enough (enough matching events can be used) but does
not significantly impact the system’s performance.
The global scheme of this generic process, for which the

only requirements are (H1) and (H2), can be summarized
by Fig. 6, where

1. The synchronization daemon (master’s side):

1.1 Interrupts the slave workflow to request
synchronization

1.2 Generates the first event of the first pair
1.3 Polls the shared memory location where the

ACKs are to be written by the slave

2. On the slave:

2.1 The interruption is handled and thus begins
the synchronization task (which can be a real
task or a function, in which case the next step
does not apply)

2.2 The synchronization task is “awoken” from its
waiting state

2.3 The second event of the first pair is then
generated

2.4 The slave ends its synchronization task by
writing the proper ACK flag in the shared
memory space and consecutively generating
the first event of the second pair

3. The synchronization daemon (master’s side):

3.1 Receives the ACK and leaves state 1.3
3.2 Generates the last matching event (same

transition as 1.2)
3.3 Stays on standby until the next periodic

synchronization

This process could be tweaked in harmony with
hardware-specific components for better results. For
instance, the Keystone 2 platform allows the use of TI’s
message passing API (MessageQ) to send the ACKs from
the slave to the host, thus eliminating the need to con-
stantly poll a shared memory location (the synchroniza-
tion daemon can simply wait on a blocked semaphore for
the ACK to arrive). Similarly, if the device of interest does
not provide any shared memory space but handles local
network packets, those could be used instead.

5.3 Post-analysis treatment
Once the pairs of matching events are created, a post-
analysis process can handle the traces and proceed to the
timestamps’ transformation.
The chosen method, whose efficiency is well proven,

is based on the convex hull algorithm, as discussed in

Fig. 6 High-level view of the synchronization process

Bertauld and Dagenais EURASIP Journal on Embedded Systems (2017) 2017:18 Page 8 of 14

[18] and [22]. It has been widely used to synchronize
kernel traces using network packets among distributed
systems. The pairs of matching events described here are
the generic equivalent of those packets.
The convex hull algorithm’s goal is to find a suitable

linear transformation of the slaves timestamps. The pairs
of events are displayed on a 2D graph where each axis
represents the timestamps of the events on one device.
The upper-half (respectively lower-half) of the hull is used
to determine the conversion function with the maximum
(respectively minimum) slope. Duda et al. [22] suggest to
take the bisector of the angle formed by those two lines as
the linear transformation.
Each part of the hull should contain a minimum of two

points. Obviously, the more points there is, the better the
approximation gets. However, in the case of tracing, the
compromise is to have enough points while keeping the
process from interfering too much with the system.
The TraceCompass5 trace visualization tool can eas-

ily take a set of traces, compute the hull, and apply the
corresponding linear transformation to each trace.

6 Results
6.1 Benchmarks—tracing overhead
Since tracing should be minimally intrusive (to avoid any
“probe effect” and maintain good performance), some
benchmarks were executed to evaluate the performance
of our barectf implementation on the TI Keystone 2 and
compare it to the preexisting one on the Parallella board.
The barectf platform built for the Keystone 2 relies on the
TI MessageQ API to send the packets from a slave to its
master. This way, we take advantage of the built-in wait-
ing queues, used for message passing, and do not have to
worry about memory overlapping when writing packets.
The Parallella’s implementation uses the shared memory
space to store the packets.
The platforms configurations for the benchmarks are as

follows:

• Keystone 2:

– 8 C66 CorePac DSPs running at 1.2 Ghz.

– barectf platform using MessageQ API.
– barectf platform configured to allow at most

256 packets of 256 bytes each, at a time.
– Compilation ensured by TI’s compiler with

-02 optimization option

• Parallella:

– 16 eCores running at 1 GHz.
– barectf platform using shared memory.
– barectf platform configured to allow at most

90 packets of 2048 bytes each, at a time.
– Compilation ensured by a customized gcc

with -02 optimization option

The results (given in cycles) are computed in Tables 1
and 2 and represented in Figs. 7 and 8. Six workloads were
executed on each device. The first four compute the sha-
256 hash of a set of strings. This set, composed of the
5040 permutations of the string “barectf,” is created while
the benchmark is being executed. Those tests require
heavy computations and simulate a generic demanding
task. The two other tests are the computation of pisum6

and of a quicksort on an array containing 10,000 random
integers.

• SHA-256 A: Computes the sha-256 hash of each
permutation and produces a tracepoint for each
result (5040). Note that the tracepoint is composed of
a 32-bit integer and not of the 256-bit result, because
directly tracing the result would require 4
(respectively 8) 64-bit integer (respectively 32-bit
integer) tracepoints to be sent, thus artificially
increasing the overhead.

• SHA-256 B: Computes the sha-256 hash and
produces a tracepoint for every set of 5 permutations
(1008).

• SHA-256 C: Computes the sha-256 hash and
produces a tracepoint for every set of 10
permutations (504).

• SHA-256 D: Computes the sha-256 hash and
produces a tracepoint for every set of 100
permutations (50).

Table 1 Benchmarking results (in cycles) on the TI Keystone 2

Benchmark
Instrumentation Standard deviation Overhead (%) Cost/tracepoint

None Barectf

SHA-256 A 68.37e5 105e5 3.4e5 53.58 725

SHA-256 B 17.8e5 24.25e5 0.027e5 36.23 640

SHA-256 C 11.5e5 14.7e5 0.023e5 27.82 635

SHA-256 D 5.72e5 6.04e5 0.023e5 5.95 640

Pisum 126e5 126.4e5 0.025e5 0.32 800

Quicksort 42.1e5 68.8e5 3.55e5 63.42 620

Bertauld and Dagenais EURASIP Journal on Embedded Systems (2017) 2017:18 Page 9 of 14

Table 2 Benchmarking results (in cycles) on the Parallella board

Benchmark
Instrumentation Standard deviation Overhead (%) Cost/tracepoint

None Barectf

SHA-256 A 658.5e5 784.2e5 125.7e5 19.08 2500

SHA-256 B 411e5 451e5 41e5 9.73 3900

SHA-256 C 378e5 412e5 34e5 8.99 6700

SHA-256 D 351e5 355e5 4e5 1.14 8000

Pisum 196808e5 196820e5 2.48e5 0.006 24,000

• Pisum: Computes 50 iterations of the pisum and
produces a tracepoint for each of them.

• Quicksort: Computes the quicksort of an array of
10,000 random integers and produces a tracepoint at
each recursive call. Note that this test was too
demanding to be directly reproduced on the Parallella
board.

Each one of those operations was repeated 10,000 times,
and the results presented in Tables 1 and 2 reflect the
mean values of the metrics.
As expected, the measured overhead is directly pro-

portional to the number of tracepoints triggered. On the
Keystone 2, triggering 5040 tracepoints in less than 100ms
produces more than 50% overhead on the monitored
application. However, the mean cost per tracepoint stays
consistent for each test on this platform, indicating that
there is no bottleneck induced by tracepoints. Even with
a demanding workload, one should not expect big latency
spikes brought by tracing. The built platform, even if not
perfect, offers reasonable enough performance to use in
a prototyping phase and eliminates the need for memory
polling and checking for memory overlapping.
Sadly, the same inferences cannot be made about

the Parallella board. Because the eCores are much less

powerful than TI’s DSPs, the overhead is somehow hidden
behind the already huge time passed on the algorithms
themselves. The cost per tracepoint is highly variable, and
having fewer tracepoints will increase this inconsistency,
as flushing a packet into the shared memory will take
a very variable time, due to the hardware design of the
board. Besides, since the shared memory space is accessed
by both the consumers (the slaves) and the producers (the
masters), a basic checkingmechanism exists to ensure that
they do not access the memory space at the same time,
thus leading to additional waiting times on the slaves.
This is particularly interesting to note, as instrumenting
the Epiphany chip in this way could be prone to increase
the so-called “probe effect,” where tracing the application
affects its observed state. It is also interesting to notice
that the very demanding pisum benchmark yields extreme
results for the Parallella in contrast with the Keystone 2.
This can be linked to the micro-architectural specifici-
ties of the Epiphany chip and mostly to the absence of
cache in the eCores. In fact, the pisum benchmark relies
on operations on a single variable and can thus easily take
advantage of TI’s DSPs cache. The eCores are also far less
powerful than the DSPs in terms of raw performances, so
it is likely that they have been pushed too much in this
case.

Fig. 7 Barectf instrumentation influence on Keystone 2

Bertauld and Dagenais EURASIP Journal on Embedded Systems (2017) 2017:18 Page 10 of 14

Fig. 8 Barectf instrumentation influence on Parallella

Tracing performance heavily relies on the device per-
formance itself and the barectf local implementation. As
underlined by the Keystone 2 performance, it can be very
efficient and could even be used with care in produc-
tion. Moreover, even though the Parallella’s performance
is modest, and the probe effect may be substantial because
of the board architecture, tracing is nevertheless possible
and could be useful in a lot of common use-cases such as
regular logging or casual monitoring.
Since most of the commodity hardware use a setup

similar as the Keystone 2, our approach should behave
the same on a majority of devices and in particular with
any TI’s DSPs-based platform. Tracing should also be
expected to work, albeit with limited performance, on
more exotic minimalistic devices such as the Parallella
board.

6.2 Use-case
In order to demonstrate how the described tracing solu-
tion would perform with a real-life problem, we chose to
instrument an image processing algorithm running on TI’s
C66x CorePacs DSPs (on the Keystone 2).
The algorithm uses Sobel’s filter to perform edges detec-

tion on an input image. Since TI provides it as part of the
board’s SDK, this use-case should be easily reproducible.
Sobel’s filter computes an intensity gradient for each

pixel in the image, detecting brutal changes in lighting
and their direction, which might point towards an edge.
Even though this method is rudimentary, the mathemati-
cal operations performed still benefit from the dedicated
image processing APIs available on TI’s DSPs.
The global application goes through three steps:

1. A program running on the master (ARM) is waiting
for the user to interactively provide an image to
process.

2. Then, the master parses the image and sends some
memory allocation requests to the “leader” DSP
(DSP #0).

3. Finally, the image is cut into eight pieces, each piece
being sent to a different DSP in the previously
allocated memory spaces, and the DSPs reply back
with their share of the processed image.

Communication between master (ARM) and slaves
(DSPs) is achieved through TI’s MessageQ API, which
relies, as its name suggests, on messages queues. The
master opens a single queue, to which each slave will be
connected, and every slave opens its queue, to receive
orders from the master. This API is quite high-level and
adds more latency than basic shared-memory communi-
cation. However, it is less error-prone and allows a core
to switch tasks when awaiting a message, as it will wait
for a semaphore to be unlocked. It also eliminates the
need to poll a shared memory space and waste CPU cycles
waiting for data to arrive. Of course, in the context of a
high-performance application where a slave should per-
form one task only, using the shared memory would be a
better solution.
Tracing a system must be done with a goal in mind.

Since tracepoints can be placed anywhere in the appli-
cation, tracing can serve a lot of different purposes. For
instance, one might want to place tracepoints at strate-
gic places to check when the application reaches them,
thus using them as checkpoints. It also can be utilized for
debugging and/or monitoring purposes.
In our case, tracing was employed to monitor our sys-

tem by adding tracepoints at the beginning and end of
every important function call. This way, the application’s
weakest link can easily be found by measuring the elapsed
execution time of each function and following the calls
leading to it (including calls induced by remote cores).

Bertauld and Dagenais EURASIP Journal on Embedded Systems (2017) 2017:18 Page 11 of 14

TI’s SYS/BIOS micro-kernel was also instrumented
(through the use of well-placed hooks in the APIs) so that
task management and communications (among others)
can be observed. This way, the generated traces also hold
information regarding the tasks running on a DSP. Each
DSP being single-core, they can only perform one task at
a time.
Note that every added tracepoint contains a useful pay-

load. For instance, in the case of the message passing
API instrumentation, receiving or emitting queues are
described, along with the message’s size.
In summary, the procedure is as follows:

• Add tracepoints at the beginning and end of every
“useful” functions.

• Thanks to hooks, add tracepoints inside critical APIs
functions, such as message passing or tasks
management functions.

Moreover, the underlying objectives are to

• Monitor the whole system.
• Spot and understand abnormal latency.
• Analyze dependencies between cores.

The instrumentation allows us to compute a partial call
stack view in a CTF trace viewer such as TraceCompass.
The following screenshots come from this software. The
trace view is described in Fig. 9:
Figure 10 shows the global view of our system, from the

beginning of the application to its end. Note that, for dis-
play purposes, only the four first processes (the master
and the first three slaves) are shown.
This figure confirms that the synchronization is working

since the DSPs are all entering the main task (displayed in
dark blue) approximately at the same time, i.e., when they
each receive a command from the master. Without trace
synchronization, some processes might appear well ahead
or behind others, and any cause/effect relationship would
be lost.
As highlighted, recognizing the different parts of the

workflow is easy: as long as the DSPs are in the “idle” task,
they are waiting for their master’s input. If the master is
not doing anything, it means that it is itself waiting for
user input.
Zooming on the beginning of the main task shows the

main function, which actually processes a part of the

Fig. 9 Description of the callstack view of processes

image, and allows one to see how long it took (see Fig. 11).
In this case, the average processing time was around
96 ms.
The memory allocation part better shows how the inter-

action between two distinct cores can be easily distin-
guished. Figure 12 displays this situation.
When tracing an entire heterogeneous system, the

aim is to understand the global workflow of the sys-
tem and the different interactions between its compo-
nents, which cannot be achieved when looking at each of
them separately. Figure 12 demonstrates how the depen-
dencies between two heterogeneous cores can be eas-
ily exposed, as a master and its slave are continuously
waiting for each other. The back and forth exchanges
presented here are characteristic of two-way communi-
cations between a slave and its master. By reading the
states, one can see that an exchange is structured as
follows:

1. The master sends a message (a memory allocation
command) to the slave and then waits for an answer.

2. The slave receives the message and allocates some
memory accordingly.

3. The slave finally sends back the information on said
memory to its master.

During a normal execution, this step is followed by the
actual processing of the image, as shown in Fig. 11.
We now examine a more problematic context where

another high-priority task is awoken during the actual
image processing. Because of its high priority, this task
will run to completion before the main task can be
resumed. Without tracing, this problem would only be
seen at the end, where the total processing time would
jump from an average 96 to 300 ms. Finding the cause of
this abnormal latency would be quite difficult, even with
the help of a profiling tool, as long as the slaves and the
masters are examined separately and not as a whole.
However, thanks to our instrumentation, one simple

look at the main task section of the trace would reveal that
another task actually preempts DSPs 1 and 2, and issues
communications between the two. Once the messages
exchange is over, they return to themain task, allowing the
master to finally get all the results. As can be seen, other
DSPs are not disturbed by this task. Only the master is
also impacted, as it is waiting for every slave to send back
their share of the processed image. Figure 13 displays this
situation.

6.3 Discussion
Thanks to the information gathered through tracing, we
discovered that another task might preempt our image
processing task. As such, one might try (if possible) to
protect the image processing task from being preempted,

Bertauld and Dagenais EURASIP Journal on Embedded Systems (2017) 2017:18 Page 12 of 14

Fig. 10 Global view of the application

or ensure that the conditions triggering the other task
are only met once the image processing function is
finished.
Detecting the previous problem as easily would not have

been possible without the help of traces. Even though
this issue was artificially created for demonstration pur-
poses, it is fairly representative of problems encountered
in real systems. It thus demonstrates that system moni-
toring through tracing on a heterogeneous device is both
possible and useful.
Other common problems, such as communication

faults, could also have easily been detected and corrected
with our method. For instance, one could have seen that
one DSP was hanging in a task, waiting for a message

to arrive, while its correspondent crashed or was itself
hanging on a different task.
Finally, instrumenting TI’s SYS/BIOS micro-kernel is

a step towards spreading tracing mechanisms to various
platforms, as it can be used on a broad variety of TI’s
products.

7 Conclusions
Tracing heterogeneous embedded systems, in a generic
way, is now possible, regardless of hardware specifici-
ties and existing APIs, under the reasonable assumptions
that the slaves can be interrupted (H1) and that there is
(at least) a shared memory space on the device (H2) to
communicate. We thus filled a gap regarding the state of

Fig. 11 Zoom on the main processing function

Bertauld and Dagenais EURASIP Journal on Embedded Systems (2017) 2017:18 Page 13 of 14

Fig. 12 Zoom on the memory allocation part

tracing on heterogeneous embedded systems and brought
it closer to the common methods and solutions existing
for regular systems.
Bringing standard formats and tools to these new

devices could help developers to easily adapt tracing
methods to virtually any platform, thus allowing them to
use multi-platform tools, avoiding the reliance on propri-
etary or limited, single-platform tools. This would also
enable quick comparisons, with the same tools, of the
same application running on different platforms, for per-
formance and behavioral analysis purposes.
We are confident that the work done on the Parallella

board, a very limited platform with strong constraints,
and the Keystone 2 platform, which is closer to the indus-
try’s standards, reflects the possibilities of what can be
achieved on a wide range of heterogeneous embedded sys-
tems. This opens the way for even more opportunities,
such as critical path analysis in a heterogeneous envi-
ronment. In particular, we showed how a custom-made
micro-kernel could be instrumented to obtain the same

kind of information readily available on a Linux-based
device.
Even though the generic method described to obtain

correlated traces on such devices appears fairly satisfying,
local implementations of barectf platforms could slightly
influence the tracing’s impact. For instance, due to its sim-
ple design, the Parallella board offers very inconsistent
performance when traced, whereas tracing’s impact on the
Keystone 2 is more predictable and consistent. Moreover,
barectf is still a work in progress and will surely see its
features enhanced in the near future.
Trace visualization is also worthy of further work. The

proposed call stack view will not easily scale to more than
a few cores. A new approach will be required to visually
examine systems with more than a few dozen cores.
Furthermore, it would be interesting to investigate the

optimal frequency to generate synchronization points, as
a compromise between performance overhead and syn-
chronization accuracy. In theory, only two points in each
hull are required to achieve a basic synchronization, but

Fig. 13 Zoom on the problematic area

Bertauld and Dagenais EURASIP Journal on Embedded Systems (2017) 2017:18 Page 14 of 14

having more points brings more accuracy at the cost of
more overhead.
Finally, we would like to see if trace synchronization

can be directly achieved by matching regular message
exchanges, without requiring an external synchronization
process that adds time-consuming messages exchanges,
just like we can synchronize traces by looking at exist-
ing TCP exchanges. Although this approach would lose
its generality, the overall performance would be slightly
improved.

Endnotes
1 https://github.com/efficios/barectf
2 http://lttng.org/
3 http://www.ti.com/tool/sysbios
4 http://processors.wiki.ti.com/index.php/IPC_Users_

Guide/MessageQ_Module
5 http://tracecompass.org/
6 https://github.com/JuliaLang/julia/tree/master/test/

perf/micro

Abbreviations
API: Application programming interface; ARM: Advanced RISC machines; C66x:
Texas instrument CorePacs DSPs; CPU: Central processing unit; CTF: Common
trace format; DSP: Digital signal processor; GDB: The GNU project debugger;
HLOS: High-level operating system; IPC: InterProcess communication; LTTng:
Linux trace toolkit next generation; RISC: Reduced instruction set computer;
RTSC: Real-time software components; SDK: Software development kit; TI:
Texas instruments

Acknowledgements
The authors would like to thank Geneviève Bastien, Francis Giraldeau, Philippe
Proulx, and Suchakrapani Sharma for their advices and help during the
implementation of the presented solution.

Funding
This research was funded by CRSNG, Prompt, Ericsson, and EfficiOS.

Competing interests
The authors declare that they have no competing interests.

Received: 19 July 2016 Accepted: 27 December 2016

References
1. M Durrant, J Dionne, M Leslie, in Ottawa Linux Symposium. Running Linux

on a DSP? Exploiting the computational resources of a programmable
DSP micro-processor with uClinux, (2002), pp. 130–145. https://www.
kernel.org/doc/mirror/ols2002.pdf#page=130

2. TM Conte, PK Dubey, MD Jennings, RB Lee, A Peleg, S Rathnam, M
Schlansker, P Song, A Wolfe, Challenges to combining general-purpose
and multimedia processors. Computer. 30(12), 33–37 (1997).
doi:10.1109/2.642799

3. A Haidar, C Cao, A Yarkhan, P Luszczek, S Tomov, K Kabir, J Dongarra, in
Parallel and Distributed Processing Symposium, 2014 IEEE 28th International.
Unified development for mixed multi-GPU and multi-coprocessor
environments using a lightweight runtime environment (IEEE, 2014),
pp. 491–500. doi:10.1109/IPDPS.2014.58

4. L Lamport, On interprocess communication. Distributed Computing. 1(2),
86–101 (1986). doi:10.1007/BF01786228

5. AS Tanenbaum, Distributed systems, (2007). http://cds.cern.ch/record/
1056310/files/0132392275_TOC.pdf

6. S Shende, in Proceedings of the Extreme LinuxWorkshop. Profiling and
tracing in Linux, vol. 2 (Citeseer, 1999). http://www.cs.uoregon.edu/
research/paraducks/papers/linux99.pdf

7. A Bechini, CA Prete, Behavior investigation of concurrent Java programs:
an approach based on source-code instrumentation. Futur. Gener.
Comput. Syst. 18(2), 307–316 (2001). doi:10.1016/S0167-739X(00)00095-9

8. D Toupin, Using tracing to diagnose or monitor systems. IEEE Software.
28(1), 87–91 (2011). doi:10.1109/MS.2011.20

9. J Gait, A probe effect in concurrent programs. Software: Practice and
Experience. 16(3), 225–233 (1986). doi:10.1002/spe.4380160304

10. M Desnoyers, M R. Dagenais, The LTTng tracer: a low impact performance
and behavior monitor for GNU/Linux. Proc. Linux Symp. 1, 209–224
(2006). doi:10.1.1.108.547 Citeseer

11. P-M Fournier, M Desnoyers, M R. Dagenais, Combined tracing of the
kernel and applications with LTTng. Proc. Linux Symp, 87–94 (2009).
doi:10.1.1.641.196 Citeseer

12. M Desnoyers, M Dagenais, in Embedded Linux Conference. Deploying
LTTng on exotic embedded architectures, vol. 2009, (2009). http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.641.1965&rep=
rep1&type=pdf#page=87

13. P Proulx, Tracing bare-metal systems: a multi-core story - LTTng. https://
lttng.org/blog/2014/11/25/tracing-bare-metal-systems/

14. P Proulx, Barectf2: Continuous bare-betal tracing on the Parallella
board—LTTng. http://lttng.org/blog/2015/07/21/barectf-2/

15. D Couturier, MR Dagenais, LTTng CLUST: a system-wide unified CPU and
GPU tracing tool for OpenCL applications. Adv. Softw. Eng. 2015, 1–14
(2015). doi:10.1155/2015/940628

16. L Lamport, Time, clocks, and the ordering of events in a distributed system.
Commun. ACM. 21(7), 558–565 (1978). doi:10.1145/359545.359563

17. M Jabbarifar, On line trace synchronization for large scale distributed systems.
(ProQuest, UMI Dissertations Publishing, 2013). http://search.proquest.
com/docview/1561560787

18. B Poirier, R Roy, M Dagenais, Accurate offline synchronization of
distributed traces using kernel-level events. ACM SIGOPS Oper. Syst. Rev.
44(3), 75–87 (2010)

19. Adapteva, Parallella -1.× reference manual (Rev. 14.09.09) (2014). http://
www.parallella.org/docs/parallella_manual.pdf. Accessed 09 Sept 2014

20. T Instruments, 66ak2h14/12/06 multicore dsp+ arm keystone ii
systemon-chip (soc). Texas Instruments, SPRS866E (2013). http://www.ti.
com/lit/ds/symlink/66ak2h12.pdf

21. F Giraldeau, M Dagenais, Wait analysis of distributed systems using kernel
tracing. IEEE Trans Parallel Distrib. Syst. PP(99) (2015).
doi:10.1109/TPDS.2015.248862

22. A Duda, G Harrus, Y Haddad, G Bernard, in 7th International Conference on
Distributed Computing Systems (ICDCS’87). Estimating global time in
distributed systems, (Berlin, 1987), pp. 299–306

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

https://github.com/efficios/barectf
http://lttng.org/
http://www.ti.com/tool/sysbios
http://processors.wiki.ti.com/index.php/IPC_Users_Guide/MessageQ_Module
http://processors.wiki.ti.com/index.php/IPC_Users_Guide/MessageQ_Module
http://tracecompass.org/
https://github.com/JuliaLang/julia/tree/master/test/perf/micro
https://github.com/JuliaLang/julia/tree/master/test/perf/micro
https://www.kernel.org/doc/mirror/ols2002.pdf#page=130
https://www.kernel.org/doc/mirror/ols2002.pdf#page=130
http://dx.doi.org/10.1109/2.642799
http://dx.doi.org/10.1109/IPDPS.2014.58
http://dx.doi.org/10.1007/BF01786228
http://cds.cern.ch/record/1056310/files/0132392275_TOC.pdf
http://cds.cern.ch/record/1056310/files/0132392275_TOC.pdf
http://www.cs.uoregon.edu/research/paraducks/papers/linux99.pdf
http://www.cs.uoregon.edu/research/paraducks/papers/linux99.pdf
http://dx.doi.org/10.1016/S0167-739X(00)00095-9
http://dx.doi.org/10.1109/MS.2011.20
http://dx.doi.org/10.1002/spe.4380160304
http://dx.doi.org/10.1.1.108.547
http://dx.doi.org/10.1.1.641.196
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.641.1965&rep=rep1&type=pdf#page=87
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.641.1965&rep=rep1&type=pdf#page=87
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.641.1965&rep=rep1&type=pdf#page=87
https://lttng.org/blog/2014/11/25/tracing-bare-metal-systems/
https://lttng.org/blog/2014/11/25/tracing-bare-metal-systems/
http://lttng.org/blog/2015/07/21/barectf-2/
http://dx.doi.org/10.1155/2015/940628
http://dx.doi.org/10.1145/359545.359563
http://search.proquest.com/docview/1561560787
http://search.proquest.com/docview/1561560787
http://www.parallella.org/docs/parallella_manual.pdf
http://www.parallella.org/docs/parallella_manual.pdf
http://www.ti.com/lit/ds/symlink/66ak2h12.pdf
http://www.ti.com/lit/ds/symlink/66ak2h12.pdf
http://dx.doi.org/10.1109/TPDS.2015.248862

	Abstract
	Keywords

	Introduction
	Related work
	Background
	Adapteva's Parallella
	TI's Keystone 2

	Bare-metal tracing with barectf
	Correlating heterogeneous traces
	Generating pairs of matching events
	Workflow and synchronization
	Post-analysis treatment

	Results
	Benchmarks—tracing overhead
	Use-case
	Discussion

	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Competing interests
	References

