
EURASIP Journal on
Embedded Systems

Alessandrini et al. EURASIP Journal on Embedded Systems  (2017) 2017:7 
DOI 10.1186/s13639-016-0042-x

RESEARCH Open Access

Optimizing linear routing in the ToLHnet
protocol to improve performance over long
RS-485 buses
Michele Alessandrini, Giorgio Biagetti*, Paolo Crippa, Laura Falaschetti, Simone Orcioni
and Claudio Turchetti

Abstract

As the adoption of sensing and control networks rises to encompass the most diverse fields, the need for simple,
efficient interconnection between many different devices will become ever more pressing. Though wireless
communication is certainly appealing, current technological limits still prevent its usage where high reliability is
needed or where the electromagnetical environment is not really apt to let radio waves through. In these cases, a
wired link, based on a robust and well-consolidated standard such as an RS-485 bus, might prove to be a good choice.
In this paper, we present an extension to the routing strategy originally implemented in the recently proposed “tree or
linear hopping network” (ToLHnet) protocol, aimed at better handling the special but important case of linear routing
over a (possibly very long) wired link, such as an RS-485 bus. The ToLHnet protocol was especially developed to suit
the need of low complexity for deployments on large control networks. Indeed, using it over RS-485 already makes it
possible to overcome many of the traditional limitations regarding cable length, without requiring segmenting the
bus to install repeaters. With the extension here proposed, it will also be possible to simultaneously reduce latency
(i.e., increase throughput, should it matter) for short-distance communications over the same cable, largely increasing
the overall network efficiency, with a negligible increase in the complexity of the nodes’ firmware.

Keywords: Routing protocols, Sensor networks, Control networks, Linear routing

1 Introduction
Sensing and control networks are becoming ubiqui-
tous in many application fields, including industrial and
building automation, intelligent lighting control, body
area networks, and environmental monitoring. They
are promising for their ability of potentially lowering
the maintenance, installation, and refurbishment costs,
increasing situation awareness, and allowing useful data
to be gathered in difficult situations.
Nevertheless, widespread interconnection of the most

simple devices is often hindered by the cost associated
with adding the communication and processing resources
needed to allow them to talk to the network. To miti-
gate these cost problems, the development of a simple
network protocol that is able to let thousands of devices

*Correspondence: g.biagetti@univpm.it
Department of Information Engineering, Università Politecnica delle Marche,
Via Brecce Bianche 12, 60131 Ancona, Italy

talk over a variety of transmission media, while requiring
very limited computational resources and small memory
footprints on the nodes, would surely help.
Recently, a simple and efficient network protocol suit-

able to be implemented in nodes with limited computa-
tional resources has been proposed [1], with details of the
network-level packet structure, an outline of the address-
ing mechanism employed for unicast routing, and a freely
available reference implementation [2].
It was designed from the grounds up to allow a strongly

asymmetrical implementation, i.e., very simple code on
the network (slaves) nodes that rely on a much more com-
plex implementation on the master node. Moreover, a
clever bit-packing of the packet header optional addresses
and fields allowed a very low-overhead implementation
across a variety of transmission media, resulting in a very-
high maximum channel occupancy for many of them.
To achieve this performance, the routing mechanism

devised was limited to be tree-based, i.e., packets were

© 2016 Alessandrini et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13639-016-0042-x-x&domain=pdf
mailto: g.biagetti@univpm.it
http://creativecommons.org/licenses/by/4.0/


Alessandrini et al. EURASIP Journal on Embedded Systems  (2017) 2017:7 Page 2 of 10

only allowed to follow the branches of a predetermined
tree that spans the whole network. Though many algo-
rithms exist to build such a suitable tree, in practice,
gathering the necessary information to run them, and tun-
ing their parameters to find the optimal routing tree, turns
out to be a non-trivial task.
Indeed, the original paper only focused on the slave-

side (end-device) implementation and processing, leaving
the details of the much harder task of the master-side
processing open to further research.
The scope of this paper is thus to extend such work,

focusing on the special but important case of routing over
a linear medium [3], with the aim of further improving
the performance attainable over possibly very long RS-485
buses.
This paper is organized as follows. Section 2 presents a

brief discussion of previous works related to this subject.
Section 3 gives a brief summary of the “tree or linear hop-
ping network” (ToLHnet) protocol, while Sect. 4 describes
the details of the proposed routing strategy. Simulation
and experimental results are given in Section 5, while
conclusions are drawn in Section 6.

2 Related works
A lot of research is devoted to trying and make the so-
called Internet-of-Things possible by using mostly wire-
less communications media [4–7]. Nevertheless, many
applications require the intrinsic safety and reliability of
a wired medium [8], or need higher or predictable band-
width, or operate in an unfavorable electromagnetic envi-
ronment [9]. Some devices might still need to be continu-
ously powered to operate, and these might all be reasons
to make a cable the preferred medium over a wireless link.
The RS-485 bus [10] is an extremely well-consolidated

and widespread standard for medium-range communica-
tion between industrial devices (up to about 1 km) over a
simple twisted-pair cable [11]. Unfortunately, traditional
systems communicating over RS-485 face a trade-off
between cable length, which constitutes one of the most
important factors that determine bus loading, and the
employed baud rate, to ensure end-to-end signal integrity.
This is not a limitation of the medium itself. It origi-

nates from the fact that protocols operating over RS-485
typically assume that each device is able to communicate
directly with any other device on the bus, without the
need of dealing with the complexities of routing. When
the need to span greater distances than allowed arises, two
separate buses can be joined together by means of special-
ized RS-485 repeaters that bridge the cables, regenerating
the signal.
Alternatively, application-specific solutions need to be

developed. For instance,Modbus nodes’ [12] firmware can
be modified to double the maximum distance, by allowing
devices to repeat queries. Still, the lack of explicit routing

capabilities in the underlying protocol makes the solu-
tion cumbersome, as it must rely on timeouts to avoid
collisions, and so performance is limited.
Repeaters, on the other hand, do not limit perfor-

mance, but they do not come without problems anyway.
Using them requires to physically segment the network,
and their fixed placement reduces installation flexibility,
besides adding to the total system cost and management
complexity. They also reduce the overall network reliabil-
ity, introducing points of failure that may isolate sizeable
portions of the network.
It should be apparent that adding intrinsic routability

in the protocol used to talk over the bus might be the
best solution. Preliminary experiments [3] showed that
using ToLHnet [1] over RS-485 practically lifts all lim-
its about total cable length, allowing each node to repeat
the signal if need be, and can also be nearly optimal in
terms of attainable data rate. This paper builds upon these
results to detail the routing strategy that can be estab-
lished to purse the maximum throughput (or, which is
the same in this case but can often matter most, the
lowest latency), and a simple modification to the origi-
nal routing algorithm is proposed to further increase the
performance.

3 ToLHnet protocol overview
The ToLHnet protocol sits at the network layer of the
ISO/OSI model. It is able to span different transmission
media, being largely unaware of the details of the under-
lying data link, media access control (MAC), and physical
layers. The physical network topology is arbitrary, and it
does not need anyMAC-level addressing or filtering capa-
bilities. Nodes are permanently identified by 48-bit hard-
ware addresses and are automatically assigned temporary
16-bit network addresses upon network configuration.
ToLHnet is by design strongly asymmetrical. There

exists a master node, at address 0, which knows the whole
network topology and is equipped with quite complex
software able to compute routes and configure the net-
work. All the other nodes are slaves, requiring very little
code and memory space to run the protocol and forward
packets.
It is also extremely lightweight: typically only 4 bytes of

network header suffice to route packets between the mas-
ter and any other node, in any direction, and 6 bytes suffice
for communication between two generic nodes.

3.1 Network topology and tree routing
To simplify routing, a logical network topology, consisting
in a tree rooted at the master node, is built on top of the
physical topology. Details on how this tree is built will be
given in the next section.
If packets are only allowed to follow the branches of a

tree, routing tables will be greatly simplified, containing



Alessandrini et al. EURASIP Journal on Embedded Systems  (2017) 2017:7 Page 3 of 10

only one entry for each physical interface with children
attached (assuming they are assigned a contiguous span of
addresses) and a default route to direct all other destina-
tions to the parent.
To enforce this, each node must know its own depth in

the tree (i.e., the number of hops separating itself from the
root), and every packet traveling on the network must also
contain a depth level that will be compared by each node
to their own. Only packets with a matching depth will be
acted upon.
This, together with a “direction” flag also contained in

the packet header and denoting whether the packet is
traveling towards the root or towards a leaf, is enough to
ensure that packet retransmission/processing only follows
tree branches and no collisions are ever generated during
packet forwarding [1].
This is of course guaranteed to work even if the physi-

cal topology of the network is such that many other nodes
besides the intended recipients are actually able to sense
the packet on the media. They will simply ignore it.
These provisions help keep routing tables small and

packet header overhead at bay, since each traveling packet
only need to contain the (possibly compressed) endpoint
addresses, there is no need to carry and store next-hop
addresses, whose job is essentially replaced by the depth
field (which for typical trees can usually be stored in far
fewer bits than the next-hop address would have other-
wise required).

3.2 Packet processing
In order to understand how to optimize the routing algo-
rithm, a deeper understanding of how nodes process
incoming packets is needed.
First of all, the network header of a packet specifies

the value of at least the following fields (identified by
uppercase names):

• SRC: the 16-bit network address of the originating
node

• DST: the 16-bit network address of the destination
node

• HOPS: current routing depth of the packet,
automatically updated by routers as the packet flows
through the network (maximum of 16 bits)

• DIR: packet direction flag (1 bit)

Each node has the following information (dynamically
assigned by the master, identified by lowercase names):

• address: the 16-bit local network address
• depth: the 16-bit node depth in the logical tree

Finally, each entry in the routing table contains the
following fields:

• span: a pair of network addresses used for matching
the rule, every address numerically within the
specified range matches

• iface: the physical network interface associated to
this route

• dir: the direction, i.e., the value to add to HOPS
when following this route.

As a packet arrives, its HOPS field is compared to depth
and discarded if they do not match. Then, SRC and DST
are looked up in the routing table, and the packet dis-
carded if SRC’s dir and DST’s dir are both negative (i.e.,
both addresses matched the default route) or if SRC’s dir
sign equals DIR’s (can happen when a packet unrelated
to the current tree branch was nevertheless sensed on an
interface). Otherwise, the packet is either accepted locally
or forwarded according to whether or not DST equals
address. An example of how these rules affect packet
forwarding will be given in the next section.

4 Routing algorithms
In order to optimally route packets within the network,
a basic knowledge of the properties of the used media
is necessary. This knowledge pertains to the master and
consists essentially of the network topography and an
indicative transmission range r of each medium, where by
“indicative,” we mean the distance above which it would
be helpful to find an intermediate repeater.

4.1 Mesh and weights generation
For each pair of nodes sharing a common physical trans-
mission medium, a link is put in the mesh and associated
with a weight (or cost) c(dn), given by

c(dn) = a
[
1 + 2

(
dn
r

)2
]
, (1)

where dn is the distance between the two nodes and a is
a medium-specific weight that can be used to specify dif-
ferent costs for transmission along different media. The
parameter a can be useful if the node has multiple inter-
faces and different means of reaching some of its peers, so
that the cheapest path can be chosen. If there is only one
type of transmission media, its value becomes obviously
irrelevant.
As can be seen, a quadratic increase in cost has been

assumed to mimic the quadratic decrease in signal power
typical of radio communications. Other transmission
media might have different distance behaviors, but for the
sake of simplicity, we used the same formula for every
medium. The extension to use different algorithms for
different media is nevertheless trivial to implement. It is
worth noting that (1) is formulated so that

c(r) = 2 c(r/2) (2)



Alessandrini et al. EURASIP Journal on Embedded Systems  (2017) 2017:7 Page 4 of 10

thus obeying the empirical definition of range given at the
beginning.

4.2 Routing tree computation
The well-known Dijkstra algorithm can be applied to the
mesh obtained as described in the previous subsection, to
extract an optimal tree having its root at the master node.
The tree is optimal in the sense of minimizing the total
cost of transmitting a packet from or to the root.
An example is shown in Fig. 1, where a chain of ten

nodes attached to a master controller is depicted. Arcs
represent all the possible edges in the mesh; those in
red were selected by the algorithm to belong to the tree.
By visiting the tree in a depth-first pre-order fashion,
nodes can be numbered (assigned network addresses) so
that all the children of a particular node share a com-
mon span of addresses, ensuing in the smallest possible
routing tables.
This is shown in Fig. 2, where the same tree found in

Fig. 1 is redrawn to better highlight its topology and the
addressing scheme of the nodes. The resulting routing
tables for each node are also shown. At most one entry is
used in each table, apart from the two implicit rules, one
for the node own address and one for the fallback (default)
router.

4.3 Linear routing
Though the Dijkstra algorithm employed as outlined
before is able to generate optimal routes from the mas-
ter to any other node, direct communication between
the two nodes might require uselessly long tree traversals
to reach a common ancestor, and in extreme cases, this
mightmean reaching the tree root even to send a packet to
a neighboring node. To avoid this shortcoming, a couple
of optimizations can be performed.
First, a specialized algorithm is used instead of Dijkstra

for one-dimensional media. This ensures that the tree is
well balanced, so that neighboring nodes are at most three
hops away. To this end, a simple greedy strategy suffices.
From the first node, the farthest reachable node is selected
to act as a router, and the process repeated from this
new router until the cable ends. All the remaining nodes

are then assigned as children of the nearest router. An
example of this procedure is depicted in Fig. 3.
Second, the routing tables can be extended with special-

ized entries only used for locally generated packets. These
entries list all the directly reachable nodes and thus allow
communication between them to occur without the hop-
ping overhead. As usual, to keep the routing table short,
special numbering of the nodes is required. By numbering
the children of each router in the same order as they are
connected on the cable, at most four entries in the routing
table are needed, as shown in Fig. 4.
This ensures that nodes within the transmission range

do not need repeaters to communicate with each other,
thus providing extremely low-latency short-distance com-
munication. Further nodes still require hopping, but the
total distance traveled by the packet is the sum of the dis-
tance between the two routers involved plus the distances
between each endpoint and its local router. As the dis-
tance increases, this asymptotically approaches just the
distance between the nodes, resulting in asymptotically
optimal behavior.
To better illustrate this, Fig. 5 depicts two examples

of what happens to a packet as it travels along the net-
work. The first case involves a transmission from NodeB
(address 2) to NodeE (address 5). On the tree, these two
nodes are three hops apart, but on the cable, they are close
enough to be able to directly talk to each other. Indeed,
the extended routing table of NodeB states that destina-
tion 5 can be reached by transmitting the packet at a depth
level of one more NodeB own’s depth. This packet will of
course be sensed by other nodes at depth 3, e.g., surely
by NodeC and possibly by NodeG. These nodes will only
consult the basic, tree-derived, routing table and discover
that they are not interested in the packet as both SRC and
DST match the default route. As a second example, con-
sider the transmission always from NodeB but to NodeF
(address 7). This timeNodeF is beyond the imposed direct
communication limit, and NodeB has no special entry
for it in its routing table. It thus sends the packet up on
the tree (default route), i.e., at depth 1, for others to deal
with it. Only NodeA is at depth 1, and DST matches its
route #2, so the packet is sent again to depth 2. NodeB

NodeA NodeB NodeC NodeD NodeE NodeF NodeG NodeH NodeJ NodeKMaster
USB

RS−485

Fig. 1 Linear routing with Dijkstra algorithm. An example of an RS-485 bus connecting ten nodes uniformly spaced with an inter-node distance � is
presented. The transmission speed is assumed to have been chosen so as to allow reliable reception up to a distance of at least 3�. Among all the
possible graph edges, represented by arcs, the Dijkstra routing algorithms selected the tree highlighted in red. If the inter-node distance is exactly
uniform, it results in many different paths having exactly the same cost, so the algorithm picks one essentially at random (the algorithm itself is
deterministic, but the results will depend on the details of the implementation and on hardly predictable rounding errors)



Alessandrini et al. EURASIP Journal on Embedded Systems  (2017) 2017:7 Page 5 of 10

Fig. 2 Dijkstra-generated tree and routing tables. The logical topology of the example depicted in the previous figure is shown below. Addresses
are assigned to the children according to a depth-first pre-order visit of the tree (and are shown in the tag attached to the nodes in the format
address@depth). This leads to the minimal routing tables shown on the right, as each node needs at most one entry, besides the implicit routes
(own address and default route). There, span is the address range to match, dir is the amount to add to the current depth. Lookup stops after the
first match

senses the packet again but does not act on it because
both SRC’s dir and DIR are non-negative. NodeD, on
the other hand, senses the packet and finds DST within
the span of its route #3, so it retransmits the packet at
depth 3. Again, all nodes at depth 3 but NodeG will ignore
this packet, NodeG will finally retransmit it at depth 4,
where NodeF receives it. This is of course the worst-case
scenario, needing four transmissions to reach a node just
further away than the direct communication limit, but as
the distance increase, the overhead becomes negligible.
This simple routing algorithm is thus able to provide

superior performance than Dijkstra’s for linear media.
Unfortunately, it cannot be easily extended to two-
dimensional media, as there no simple and suitable order-
ing of the physical position that can be defined. It is
nevertheless quite easy to incorporate in a larger network,
sufficing to run it first for the linear portions of the net-
work, and then feed a reduced graph containing only the
selected edges to the full-blown Dijkstra router.

5 Performance evaluation
In order to assess the effectivity of the proposed improved
linear routing handling, a study was performed consid-
ering an EIA RS-485 bus [10] as the communication
medium.
It consists of a twisted-pair bifilar line with a 100–120 �

characteristic impedance and employs differential signal-
ing, typically carrying baseband non-return-to-zero asyn-
chronous serial data and allowing half-duplex communi-
cation. Cheap transceivers allow simple interconnection
with standard serial ports found in most microcontrollers,
and hundreds of transceivers can be connected to the
same bus.
The achievable speed depends on cable length and

transceiver performance. Considering a typical trans-
ceiver with a maximum data rate of 10 Mbit/s, the data-
rate cable-length product must be below 122 Mbit · m/s,
and the length cannot exceed 1.22 km. A summary of
other specifications is reported in Table 1.

NodeA NodeB NodeC NodeD NodeE NodeF NodeG NodeH NodeJ NodeKMaster
USB

RS−485

Fig. 3 Optimized linear routing example. An example of an RS-485 bus connecting ten nodes uniformly spaced with an inter-node distance � is
presented. The transmission speed is assumed to have been chosen so as to allow reliable reception up to a distance of at least 3�. Among all the
possible graph edges, represented by arcs, the specialized linear routing algorithms selects the tree highlighted in red



Alessandrini et al. EURASIP Journal on Embedded Systems  (2017) 2017:7 Page 6 of 10

Fig. 4 Optimized logical tree and routing tables. The logical topology of the example depicted in the previous figure is shown. Addresses are
assigned to the children ordered by physical position on the cable. This leads to the routing tables shown on the right, where each node needs at
most four explicit entries, besides the implicit routes (own address and default route). Entries in bold are those that describe the tree and are the
only ones considered to forward packets. The other entries were added to allow direct communication between nodes within direct visibility

When using the ToLHnet protocol on top of RS-485, the
data-rate cable-length trade-off can somehow be lifted as
there is no need for every node to be able to communicate
with every other node. Of course, in a properly setup and
terminated transmission line, signal degradation depends
only on what is present between the transmitting and
the receiving nodes. The total length of cable beyond the

nodes involved in the communication is essentially irrel-
evant, but for the reflected waves from possibly inexact
termination. These should anyway be kept well attenu-
ated, as they would otherwise hamper communication
even without ToLHnet.
To demonstrate this, a first experiment was set up [3],

connecting four nodes to an RS-485 bus as shown in Fig. 6.

NodeA

1@1

NodeB

2@2

NodeC

4@3

NodeD

3@2

NodeE

5@3

NodeF

7@4

NodeG

6@3

NodeH

8@4

NodeJ

10@5

NodeK

9@4

Master
USB

2−>5
@3+

2−>7
@1−

2−>7
@2+

2−>7
@3+

2−>7
@4+

RS−485

Fig. 5 Packet flow along the network. This figure depicts the transmissions that occur on the network to send a packet from NodeB to NodeE (top
example) and from NodeB to NodeF (bottom example). Yellow boxes denote packet transmissions. The packet header fields are represented inside
each such square in the format SRC -> DST @ HOPS DIR. Green boxes denote packet acceptance, either to be forwarded (light green) or to be
accepted locally (dark green). Of course, many other nodes on the network may actually receive the packet. A few of them, marked by smaller white
boxes, are also at the correct depth level to possibly accept the packet, but the routing rules are designed so that all but the designated forwarder
discard the packet



Alessandrini et al. EURASIP Journal on Embedded Systems  (2017) 2017:7 Page 7 of 10

Table 1 EIA RS-485 specifications

Parameter Conditions Min Max

Driver output
voltage

Open circuit ±1.5 V ±6 V

Driver output
voltage

RL = 54� ±1.5 V ±6 V

Driver output
short-circuit current

Output at 12 V or −7 V ±250 mA

Driver output
rise time

RL = 54�, CL = 50 pF 30% of
bit width

Driver
common-mode
voltage compliance

RL = 54� −1 ±3 V

Receiver sensitivity −7 V < Vcm < 12 V ±200 mV

Receiver
common-mode
voltage range

−7 V −12 V

Receiver input
resistance

12 k�

The routing tables, also shown in the same figure, were
set up to make each node act as a repeater, to be able to
study signal distortion at various distances from the trans-
mitters. The baud rate was set to 1 Mbit/s, just a little
above the standard limit for the span of cable between the
first two nodes, but since the bus loading is minimal (no
other nodes are attached between), communication is still
reliable.
The signal on the bus was recorded at the terminals

of Board4 while the master PC sent a ping command to
it. Figure 7 shows the recording, with bursts correspond-
ing to packets as they are transmitted along the chain of
repeaters. Each of the first four bursts was analyzed for
signal quality. A detail of the signal with four bit edges in
each is shown in Fig. 8, with their amplitude, rise, and fall
times reported in Table 2.
As can be seen, signal attenuation is not really an issue

in this case, while rise and fall times degradation increases
almost linearly with the distance separating the nodes, as

Fig. 6 Experimental setup. Four nodes were placed on an RS-485 bus
with a total cable length L � 320 m. Board1 and Board4 are at the
cable ends, Board2 is at mid-cable, Board3 midway between Board2
and Board4. Board1 communicates with the master controller (PC)
through an USB cable. The routing tables specifically set up for the test
are attached below each node. The first tag is address@depth,
the others are span:dir, while iface is color-coded

Fig. 7 Ping sequence on a chain of repeaters. The differential RS-485
signal as received by Board4 during the arrival of a ping request and
the following reply. In order of arrival, the bursts are the packet sent
from Board1, then repeated by Board2, and finally repeated by Board3.
The strongest signal is the reply transmitted by Board4 itself, followed
by the reversed chain of repeats by Board3 and Board2. Board1 finally
forwards the packet to the master PC over the USB link. The total
round trip time for the process, as seen by the master, is 1.4 ms

can be expected for relatively sharp edges at not very long
distances. Under these extremely light-load conditions, of
course, routing wouldn’t really be needed, as the most dis-
torted signal is still clearly easily recognizable despite the
degradation in rise and fall times. All the nodes could
simply talk directly to each other, though with a slightly
out-of-spec rate.
To verify that the routing performed by ToLHnet actu-

ally helps, we pushed the baud rate close to the hardware
limit, at 5 Mbit/s. At this speed, we measured the packet
loss rate resulting from sending 100,000 PING requests
from the master to each of the nodes, with (PH) and with-
out (P1) the routing performed by ToLHnet. The results
are shown in Table 3.
Of course at these speeds, more than six times above

what the length of cable would have guaranteed, a few
transmission errors occur even between close nodes. The
packet loss rate clearly increases for longer payloads, as is
normal because the packet checksum check discards the
whole packet even if it detects a single bit error.
At longer distances, the benefits of routing become

apparent. It would be almost impossible to send 240 bytes
across the cable at 5 Mbit/s without intermediate
repeaters, losing more than 96% of the packets. With
ToLHnet, instead, less than 0.1% of the packets get lost,
making communication possible and quite reliable (for
real, non-PING packets, the master will of course auto-
matically retry transmissions in case of packet loss).
Unfortunately, repeating packets by routing them,

instead than by employing electrical means, increases



Alessandrini et al. EURASIP Journal on Embedded Systems  (2017) 2017:7 Page 8 of 10

Fig. 8Measured signal distortion. The differential RS-485 signal as received by Board4 during the three retransmissions from Board1, Board2, Board3,
and the reply generated by Board4 itself, are shown

latency and decreases effective bandwidth. This is
unavoidable, and to better quantify its effect, a thorough
analysis of the performance attainable with the proposed
routing scheme was also carried out.
To this end, we simulated networks composed of up to

thousands of nodes, attached to cables of varying length
and operating at different speeds. As we focus on the per-
formance of the routing scheme, only the number of hops
imposed by the routing strategy was taken into account
to estimate the attainable throughput, disregarding any

Table 2 Peak-to-peak voltages and rise and fall times of packets
involved in a ping command at a bit rate of 1 Mbit/s

Packet # Voltage (V) Rise time (ns) Fall time (ns)

1 2.76 412.0 374.0

2 3.34 249.6 244.0

3 3.67 177.2 156.0

4 4.12 62.80 58.00

implementation overhead, that strongly depends on the
particular hardware used. We developed a custom simu-
lator that randomly positions nodes along the simulated
cable and then applies the proposed algorithm to compute
routing tables, assuming that the standard transmission
range limit of 122 Mbit · m/s applies to the distance
between any two nodes. Of course, all the nodes must
operate at the same data rate, so the above range limits the
maximum distance between closest neighbors.

Table 3 Packet losses without the forwarding capability of
ToLHnet (P1), and with the routing tables shown in Fig. 6 (PH), for
a bit rate of 5 Mbit/s, and different payload lengths N

N = 128 bytes N = 240 bytes

Destination Distance (m) P1 (%) PH (%) P1 (%) PH (%)

Board2 160 0.00 0.00 0.01 0.01

Board3 240 0.01 0.00 18.57 0.03

Board4 320 42.37 0.02 96.73 0.03



Alessandrini et al. EURASIP Journal on Embedded Systems  (2017) 2017:7 Page 9 of 10

Fig. 9 Performance of the ToLHnet protocol for different node
densities. This figure reports the simulated average attainable data
rate of the ToLHnet protocol operating at 2 Mbit/s over a 1-km-long
cable, as a function of the distance between the source and
destination nodes. At this baud rate, direct communication is possible
only up to about 60 m, then intermediate hops are needed, causing a
drop in throughput. Different curves represent results obtained with
different node densities (specified as maximal inter-node distance). It
can be seen that the average performance is very little sensitive to
node density, except possibly for communication distances just
above the direct visibility limit

These routing tables are then exploited to count the
number of hops required to reach any node from any
other node on the cable. Since, at typical RS-485 data
rates, the propagation delay is almost negligible compared
to the time required to transmit the packet, we assumed

the attainable throughput to be just inversely proportional
to the number of hops. The throughput was then aver-
aged among all the possible pairs of nodes in the network,
considering all sources and destinations equally likely.
As a first result, we investigated the effect of node

density (inverse of the average distance between near-
est neighbors �) on the average data rate. The results are
shown in Fig. 9, drawn for a 1-km cable operated at 2
Mbit/s. As can be seen, for a distance between commu-
nicating nodes below about 60 m, no hops are necessary
and the full bandwidth is available. Above 60 m, direct
communication is no longer possible, and the density of
nodes determines the probability of finding a suitable can-
didate to repeat the packet where it is needed; otherwise, a
slightly sub-optimal path must be taken. Nevertheless, as
the figure shows, it does not affect much the performance,
which can be considered essentially independent of node
density.
The other parameter that might influence performance

is the total cable length. Figure 10 shows the simulated
average data rate for three different cable lengths, 100m, 1
km, and 10 km. The latter length is well above the limit for
direct communication with a standard RS-485 setup. For
each length, different baud rates were simulated, allowing
different trade-offs between direct communication range
and latency. Both the newly proposed routing scheme,
with the augmented routing tables that allow direct com-
munication between siblings and close relatives, and the
original, tree-only routing scheme, were tested.
Of course, there is no difference between the two rout-

ing schemes at distances longer than the direct visibility
limit, both asymptotically approach the theoretical limit.

Fig. 10 Performance of the ToLHnet protocol for different cable lengths. The previous figure showed that ToLHnet performance is nearly
independent of node density. Here, its sensitivity to total cable length is verified. The three plots below illustrate the average raw performance of the
ToLHnet protocol operating on three different lengths of RS-485 cable, as a function of the distance between the nodes involved in the
communication and for different choices of the baud rate. Inter-node distance is assumed to be uniformly distributed up to a maximum of 5 m. As a
reference, both the theoretical limit and the performance of traditional RS-485 bus communication (which depends only on total cable length and
not on communicating node distance and is impossible at 10 km) are shown. Colored thin dashed lines represent the performance of the ToLHnet
protocol limited to follow tree branches, while thick solid lines represent the performance attainable with the proposed extension to the routing
strategy that also allows direct communication between neighboring nodes



Alessandrini et al. EURASIP Journal on Embedded Systems  (2017) 2017:7 Page 10 of 10

But for shorter distances, a distinctive improvement of
a factor between 2 and 3 can be achieved with the new
scheme. Again, the performance of the protocol can be
seen to be almost unaffected by total cable length, allow-
ing for a great deal of flexibility in the installation of the
network.

6 Conclusions
In this paper, we proposed an extension to the routing
algorithm employed in the ToLHnet protocol to increase
its performance in case of routing over a linear medium.
Experimental results conducted with RS-485 transceivers
demonstrated the possibility of communicating at baud
rates well above those imposed by the total cable length,
when enough intermediate nodes are present to repeat the
signal. This allows a very large network to be deployed
almost freely, without worrying about the placement of
dedicated repeater circuits, and the “soft” nature of the
forwarding mechanism, employed by every node, allows
themaster to optimize their placement so as to reach near-
optimal performance. This is demonstrated by extensive
simulations on networks of varying breadth and density.
The additional complexity imposed to the nodes to deal
with this optimized routing is deemed negligible, as only
a small increase in routing table size is required.

Competing interests
The authors declare that they have no competing interests.

Received: 1 March 2016 Accepted: 7 July 2016

References
1. G Biagetti, P Crippa, A Curzi, S Orcioni, C Turchetti, in Proceedings of the 6th

European Embedded Design in Education & Research Conference (EDERC
2014). ToLHnet: a low-complexity protocol for mixed wired and wireless
low-rate control networks (IEEE, Milan, Italy, 2014), pp. 177–181.
doi:10.1109/EDERC.2014.6924383

2. ToLHnet—tree or linear hopping network. http://www.tolhnet.org/.
Accessed Jan 2016

3. G Biagetti, P Crippa, L Falaschetti, S Orcioni, N Ortolani, C Turchetti, in
Proceedings of the 2015 12th International Workshop on Intelligent Solutions
in Embedded Systems (WISES 2015). Improvement of RS-485 performance
over long distances using the ToLHnet protocol (IEEE, Ancona, Italy,
2015), pp. 85–89

4. Y Chen, Z Liu, in International Conference on Networks Security, Wireless
Communications and Trusted Computing (NSWCTC ’09). Distributed
intelligent city street lamp monitoring and control system based on
wireless communication chip nRF401, vol. 2 (IEEE, 2009), pp. 278–281.
doi:10.1109/NSWCTC.2009.69

5. MA George, S Choudhary, D Sahay, T Yerra, CP Kurian, in 2013 Texas
Instruments India Educators’ Conference (TIIEC). Digitally addressable
wireless interface for lighting control system (IEEE, 2013), pp. 222–229.
doi:10.1109/TIIEC.2013.46

6. JM Corchado, J Bajo, DI Tapia, A Abraham, Using heterogeneous wireless
sensor networks in a telemonitoring system for healthcare. IEEE Trans. Inf.
Technol. Biomed. 14(2), 234–240 (2010). doi:10.1109/TITB.2009.2034369

7. J Song, S Han, AK Mok, D Chen, M Lucas, M Nixon, in IEEE Real-Time and
Embedded Technology and Applications Symposium, (RTAS ’08).
WirelessHART: Applying wireless technology in real-time industrial
process control (IEEE, 2008), pp. 377–386. doi:10.1109/RTAS.2008.15

8. AR Wilson, PS Vincent, Networked low-power sensing: network interface
and main operating system. IEEE Sensors J. 10(9), 1495–1507 (2010).
doi:10.1109/JSEN.2010.2044879

9. MA McHenry, D Roberson, RJ Matheson, Phone to fridge: shut up!
Spectrum IEEE. 52(9), 50–56 (2015). doi:10.1109/MSPEC.2015.7226614

10. TIA-485, electrical characteristics of generators and receivers for use in
balanced digital multipoint systems. Technical Report rev. A
Telecommunications Industry Assn. (TIA) (1998)

11. GBM Guarese, FG Sieben, T Webber, MR Dillenburg, C Marcon, in 2012
Brazilian Symposium on Computing System Engineering (SBESC). Exploiting
Modbus protocol in wired and wireless multilevel communication
architecture (IEEE, 2012), pp. 13–18. doi:10.1109/SBESC.2012.12

12. V Tipsuwanporn, A Numsomran, S Samaimak, S Hamnarong, in 13th
International Conference on Control, Automation and Systems (ICCAS 2013).
Software developments for Modbus SCADA to extend distance to 2x for
controlled devices (IEEE, 2013), pp. 605–609.
doi:10.1109/ICCAS.2013.6703939

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

http://dx.doi.org/10.1109/EDERC.2014.6924383
http://www.tolhnet.org/
http://dx.doi.org/10.1109/NSWCTC.2009.69
http://dx.doi.org/10.1109/TIIEC.2013.46
http://dx.doi.org/10.1109/TITB.2009.2034369
http://dx.doi.org/10.1109/RTAS.2008.15
http://dx.doi.org/10.1109/JSEN.2010.2044879
http://dx.doi.org/10.1109/MSPEC.2015.7226614
http://dx.doi.org/10.1109/SBESC.2012.12
http://dx.doi.org/10.1109/ICCAS.2013.6703939

	Abstract
	Keywords

	Introduction
	Related works
	ToLHnet protocol overview
	Network topology and tree routing
	Packet processing

	Routing algorithms
	Mesh and weights generation
	Routing tree computation
	Linear routing

	Performance evaluation
	Conclusions
	Competing interests
	References

